+ All Categories
Home > Documents > Dynamic Modeling and Simulation of a 10 MWe Supercritical...

Dynamic Modeling and Simulation of a 10 MWe Supercritical...

Date post: 27-Jun-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
21
Solutions for Today | Options for Tomorrow Dynamic Modeling and Simulation of a 10 MWe Supercritical CO 2 Recompression Closed Brayton Power Cycle for Off-Design, Part-Load, and Control Analysis Stephen E. Zitney and Eric A. Liese, NETL, Morgantown, WV 6th International Supercritical CO 2 Power Cycles Symposium, Pittsburgh, PA, March 27–29, 2018
Transcript
Page 1: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

Solutions for Today | Options for Tomorrow

Dynamic Modeling and Simulation of a 10 MWe Supercritical CO2Recompression Closed Brayton Power Cycle for Off-Design, Part-Load, and Control AnalysisStephen E. Zitney and Eric A. Liese, NETL, Morgantown, WV

6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, PA, March 27–29, 2018

Page 2: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

2

• Introduction• Supercritical CO2 (sCO2) Recompression Brayton Cycle• U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

• Modeling and Design• 10 MWe sCO2 Recompression Brayton Pilot Plant• Software Tools, Physical Properties, and Unit Operation Models • Steady-State Design

• Transient Studies for Part-Load Operation (Heat Input Turndown)• Operational/control strategies for maintaining cycle efficiency

• Impact of CO2 Storage Capacity and Pressure with Inventory Control• Impact of Flow Split and Flow Rate Control

• Conclusions and Future Work

Presentation Overview

Page 3: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

3

• Potential for higher efficiencies relative to traditional power cycles• Reduced cycle compression power near the

CO2 critical point• Single phase fluid heat transfer• Extensive high-quality heat recuperation from

turbine exhaust reduces cycle heat rejection• Bypass compressor (recompression) further

enhances cycle recuperation and efficiency

• Higher sCO2 working fluid density and lower cycle pressure ratio • Reduces size and cost of turbomachinery

Indirect sCO2 Recompression Brayton CycleBenefits

Indirect sCO2 Recompression Brayton Cycle

(Source: NETL)

Page 4: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

4

• DOE crosscutting initiative to demonstrate supercritical CO2 (sCO2) Brayton power cycle technologies at commercial scale

• 10 MWe sCO2 Pilot Plant Test Facility

• Plan, design, build and operate an indirect sCO2 recompression Brayton power cycle

• Verify component performance (turbomachinery, recuperators, etc.)• Demonstrate potential for producing a lower COE and cycle

efficiency approaching 50% or more• Demonstrate cycle integration, operability (steady-state, transient,

load-following), instrumentation, and controls

U.S. DOE’s Supercritical Transformational Electric Power (STEP) Program

http://energy.gov/under‐secretary‐science‐and‐energy/articles/doe‐announces‐80‐million‐investment‐build‐supercritical

(Source: SwRI)

Page 5: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

5

• Introduction• Supercritical CO2 (sCO2) Recompression Brayton Cycle• U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

• Modeling and Design• 10 MWe sCO2 Recompression Brayton Pilot Plant• Software Tools, Physical Properties, and Unit Operation Models • Steady-State Design

• Transient Studies for Part-Load Operation (Heat Input Turndown)• Operational/control strategies for maintaining cycle efficiency

• Impact of CO2 Storage Capacity and Pressure with Inventory Control• Impact of Flow Split and Flow Rate Control

• Conclusions and Future Work

Presentation Overview

Page 6: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

6

10 MWe sCO2 Recompression Brayton Pilot PlantProcess Overview

• External gas-fired heat source

• sCO2 circulates in closed loop (noncondensing)

• Two stages of recuperation used to pre-heat compressed sCO2 with hot turbine exhaust

• Cooler rejects heat that is not converted to power

• Parallel compressors, decoupled turbomachinery1

2

3

4

5

678

(Source: NETL)(Source: NETL)

Page 7: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

7

• Software Tools • Aspen Plus/Dynamics v8.8

• Property Method• NIST REFPROP: EOS from Span and Wagner (1996)†

• Unit Operation Models• Heat Exchangers

• Shell-and-tube, countercurrent flow• Dynamic Options/Specifications

• Volume = (residence time)*(steady-state volumetric flow rate)• Metal masses calculated using Aspen Exchanger Design and Rating

• Turbomachinery• Single-stage, Isentropic• Dynamics: Performance/Efficiency Curves

• Compressor curves scaled from data taken from CCSI(2014)††

• Turbine curve scaled from data taken from Pasch et al.(2012) †††

• Single curve at reference speed with fan laws used for varying speed• Piping

• Length, inner diameter, and mass per unit length from SwRI (2016)††††

sCO2 Recompression Brayton Pilot PlantModeling: Software, Physical Properties, Unit Operations

† Span, R. and Wagner, W., "A New Equa on of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100K at Pressures up to 800 MPa,“ J. Phys. Chem. Ref. Data, 1996, 25(6), 1509‐1596.†† DOE/NETL Carbon Capture Simula on Ini a ve (CCSI) CO2 Compressor Simula on User Manual (2014)††† Pasch et al., “Supercri cal CO2 Recompression Brayton Cycle: Complete Assembly Descrip on”, SAND2012‐9546, (2012). †††† SwRI, Conceptual Design for a Supercri cal Carbon Dioxide Power Cycle Test Facility, Volume II: Project Scope Plan, August 12, 2016

Performance and efficiency curves for Main Compressor

973.2 K

306.6 KȠ=0.85

Ƞ=0.78

Ƞ=0.82

Volumetric Flow [m3/s]

Hea

d [m

‐kgf

/kg]

Efficiency

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

800

1200

1600

2000

2400

2800

3200

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

Design PointPR = 2.96

Surge

Stonewall

Page 8: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

8

10 MWe sCO2 Recompression Brayton CycleSimulation Results: Steady-state Design Point

• Net power is 10 MWe.• WNET = WT – WMC – WBC

• Heat input is 21.7 MWt.

• Low pressure ratio (PR)• Turbine PR = 2.67

(23.9 MPa/ 9.0 MPa)

• Cycle is highly recuperated.• (QHTR+QLTR )/QH = 2.7• QHTR/QLTR = 3.1

• Bypass compressor flow is ~1/3 of total CO2 flow.

• Cooler rejects 11.7 MWt.

• Efficiency is 46.1%.250

350

450

550

650

750

850

950

‐1675 ‐1175 ‐675 ‐175 325

MainCompressor

BypassCompressor

Turbine

HTR Cold Side

HTR Hot Side

LTR Hot Side

LTR Cold Side

PrimaryHeater

Cooler

Tempe

rature [K

]

Entropy [J/kg‐K]

34.8% Flow

65.2% Flow1.8 MWePR = 2.96

2.7 MWe

14.5 MWe21.7 MWt

11.7 MWt306.6 K

973.2 K

PR = 2.67

8.4 MPa

14.6 MWt

CO2 Flow = 99.5 kg/s

Page 9: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

9

• Introduction• Supercritical CO2 (sCO2) Recompression Brayton Cycle• U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

• Modeling and Design• 10 MWe sCO2 Recompression Brayton Pilot Plant• Software Tools, Physical Properties, and Unit Operation Models • Steady-State Design

• Transient Studies for Part-Load Operation (Heat Input Turndown)• Operational/control strategies for maintaining cycle efficiency

• Impact of CO2 Storage Capacity and Pressure with Inventory Control• Impact of Flow Split and Flow Rate Control

• Conclusions and Future Work

Presentation Overview

Page 10: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

10

• Over 40% maximum heat input turndown (Wnet=0) • Near temperature crossover in high temperature recuperator (HTR) • Large decrease in turbine inlet temperature (TIT)

Transient Study: Part-Load Operation“Open-Loop” Heat Input Turndown

sCO2 cycle temperature responses to open‐loop heat input turndown

TIT

Main Compressor Inlet Temperature (MCIT)Near TemperatureCrossover in HTR

Tem

pera

ture

[K]

Page 11: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

11

• Goal: Maintain high cycle efficiency during turndown in heat input (Q = MCp ΔT )• To transfer less heat (Q), the cycle ΔT or mass flow rate (M), must decrease

• When considering ΔT, recall that Carnot cycle efficiency (η = 1 - Tcold/Thot)• Carnot cycle efficiency is maximized by keeping the cycle Thot/Tcold as high as possible• Thot = TIT (Design point, 973.2 K, material constraint)• Tcold = MCIT (Design point, 306.6 K, 2.5 K above CO2 critical T)

Transient Study: Part-Load Operation“Closed Loop” Heat Input Turndown

• Thus to achieve high efficiency, reduce mass flow• Inventory Control (Minventory=ΣρiVi)• Remove mass from the cycle after main compressor• As mass is removed, cycle pressure decreases (sliding pressure)• Turbomachines respond based on performance curves

• Other control measures are required to maintain high efficiency operation while satisfying process constraints

MV2

MV1

Page 12: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

12

MV2

MV1

• Objective– Maximize efficiency (net power/heat input)

• Operating Constraints– TIT ≤ Upper bound [MV1, MV2]

• Design point, 973.2 K (material constraint)– MCIT ≥ Lower bound [MV2]

• Design point, 306.6 K (2.5 K above CO2 critical temperature)• Manipulated Variables (MV)

MV1: Storage valve (V4) | TITMV2: Cooling water flow (V3) | MCIT

• Operating Strategy– Reduce inventory to maintain TIT until tank P equals cycle high P, then let TIT drop until Wnet=0 MWe

• Case Studies: Impact of CO2 Storage Capacity and Pressure– No storage tank (CO2 venting to atmosphere)– Infinitely large storage tank with an initial pressure of 9 MPa, slightly above cycle low-side pressure– Two storage tanks with different volumes, both starting an initial pressure of 9 MPa

Heat Input TurndownInventory Control

Page 13: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

13

Heat Input Turndown – Inventory Control Case Studies: Impact of CO2 Storage Capacity and Pressure

Case Study (1) (2) (3) (4)

Storage Tank Volume [m3] Vent ∞ 20.9 9.7

Initial Tank Pressure [MPa] 0.1 9.0 9.0 9.0

Pressure Pinch: Tank P = Cycle High P [MPa] NA 9.0 13.7 16.3

Turndown [%] at Pressure Pinch Point NA 89.4 75.0 62.0

Highest Turndown [%] with TIT at Design 97.0 89.4 75.0 62.0

Highest turndown keeping TIT at design

Page 14: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

14

Case Study (1) (2) (3) (4)

Storage Tank Volume [m3] Vent ∞ 20.9 9.7

Initial Tank Pressure [MPa] 0.1 9.0 9.0 9.0

Pressure Pinch: Tank P = Cycle High P [MPa] NA 9.0 13.7 16.3

Turndown [%] at Pressure Pinch Point NA 89.4 75.0 62.0

Highest Turndown [%] with TIT at Design 97.0 89.4 75.0 62.0

Maximum Turndown [%] at Wnet = 0 MWe 97.0 92.3 86.6 83.0

TIT at Maximum Turndown [K] 973.2 803.0 687.3 638.2

% CO2 in Storage Tank 88.6 68.0 52.9 36.7

Heat Input Turndown – Inventory Control Case Studies: Impact of CO2 Storage Capacity and Pressure

• Remarks• Larger storage tank capacity provides higher

efficiency and greater maximum turndown, while maintaining higher TIT.

• Cost and operational analyses are required to determine optimal tank size.

Highest turndown keeping TIT at design

Page 15: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

15

• Introduction• Supercritical CO2 (sCO2) Recompression Brayton Cycle• U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

• Modeling and Design• 10 MWe sCO2 Recompression Brayton Pilot Plant• Software Tools, Physical Properties, and Unit Operation Models • Steady-State Design

• Transient Studies for Part-Load Operation (Heat Input Turndown)• Operational/control strategies for maintaining cycle efficiency

• Impact of CO2 Storage Capacity and Pressure with Inventory Control• Impact of Flow Split and Flow Rate Control

• Conclusions and Future Work

Presentation Overview

Page 16: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

16

MV2

MV1

• Objective– Maximize cycle efficiency using inventory, flow split,

and flow rate control• Operating Constraints

– TIT ≤ Upper bound [MV1, MV2]• Design point, 973.2 K (material constraint)

– MCIT ≥ Lower bound [MV2]• Design point, 306.6 K (2.5 K above critical temperature)

– Bypass compressor surge point [MV3]– Main compressor surge point [MV4]

• Manipulated Variables (MV) MV1: Storage valve (V4) | TITMV2: Cooling water flow (V3) | MCITMV3: Bypass compressor speed (NBC) | Flow SplitMV4: Main compressor speed (NMC) | Flow Rate

Heat Input TurndownInventory, Flow Split, and Flow Rate Control

MV3

MV4

Operating strategy: Adjust flow split during turndown to increase efficiency. Once storage tank is full, reduce overall cycle flow rate to keep TIT at design by reducing main compressor speed until reaching surge.

NBC

NMC

FlowSplit

Page 17: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

17

Heat Input Turndown – Impact of Flow Split and Flow Rate ControlStorage Tank with Volume = 9.7 m3 and Initial Pressure = 9 MPa

% Turndown in Heat Input

%

TIT and Efficiency Profiles

• Results Summary• Flow split and flow rate control increase TIT and

improve cycle efficiency.• Varying compressor speed adds operational

complexity.• Compressor surge limits become a factor at low load,

requiring the need for surge control.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Cycle Efficiency [%]InventoryTIT [% of Design]InventoryCycle Efficiency [%]Inventory, Flow SplitTIT [% of Design]Inventory, Flow SplitCycle Efficiency [%]Inventory, Flow Split, Flow RateTIT [% of Design]Inventory, Flow Split, Flow Rate

TIT [% of Design]

Cycle Efficiency

Page 18: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

18

• Introduction• Supercritical CO2 (sCO2) Recompression Brayton Cycle• U.S. DOE's Supercritical Transformational Electric Power (STEP) Program

• Modeling and Design• 10 MWe sCO2 Recompression Brayton Pilot Plant• Software Tools, Physical Properties, and Unit Operation Models • Steady-State Design

• Transient Studies for Part-Load Operation (Heat Input Turndown)• Operational/control strategies for maintaining cycle efficiency

• Impact of CO2 Storage Capacity and Pressure with Inventory Control• Impact of Flow Split and Flow Rate Control

• Conclusions and Future Work

Presentation Overview

Page 19: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

19

• Developed steady-state design and pressure-driven dynamic model of 10MWe sCO2 recompression Brayton pilot plant

• Analyzed operating strategies for maximizing cycle efficiency during heat input turndown, while satisfying process constraints• For inventory control, storage capacity and initial tank pressure impact cycle

efficiency and maximum turndown. Larger capacity enables greater turndown.• Inventory control using storage tank with volume of 9.7 m3 and initial pressure

of 9 MPa provides over 80% turndown.• Flow split and flow rate control improve on cycle performance.• Maximum turndown over 90% is achievable using a combination of inventory,

flow split, and flow rate control.• Efficiencies over 40% are maintained through 70% turndown.

Conclusions

Page 20: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

20

• Dynamic Modeling• Enhance turbine design and performance maps• Compact heat exchangers (Jiang, Liese, Zitney, Bhattacharyya, Modeling & Control 3, Paper #12,)

• Transient Operations and Control• Load-following operation and control (Mahapatra, Albright, Liese, and Zitney, Modeling & Control 1, Paper #25)• Startup and shutdown• Turbine controls and compressor surge control• Advanced process control, including model predictive control

• Sensors• Optimal sensor network design• Disturbance rejection, state estimation, condition monitoring, fault diagnosis, …

• Validation• Exploit data from STEP pilot plant test facility• Validate dynamic models, controls, and sensor network

Future Work10 MWe sCO2 Recompression Brayton Cycle

Page 21: Dynamic Modeling and Simulation of a 10 MWe Supercritical ...sco2symposium.com/papers2018/modeling-control/016_Pres.pdf · LTR = 3.1 •Bypass compressor flow is ~1/3 of total CO

21

Websites and Contact Information

Stephen E. Zitney, Ph.D.

U.S. Department of EnergyNational Energy Technology Laboratory3610 Collins Ferry RoadP.O. Box 880Morgantown, WV 26507‐0880(304) 285‐[email protected] 

Office of Fossil Energy: www.energy.gov/fe/office‐fossil‐energy

NETL: www.netl.doe.gov/

sCO2 Technology Program: www.netl.doe.gov/research/coal/energy‐systems/sco2‐technology

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


Recommended