+ All Categories
Home > Documents > DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS...

DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS...

Date post: 14-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
41
DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS USING NONLINEAR ORDER REDUCTION Antonios Armaou and Panagiotis D. Christofides Department of Chemical Engineering University of California, Los Angeles 41st Conference on Decision and Control Las Vegas, Nevada December 11, 2002
Transcript
Page 1: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE

SYSTEMS USING NONLINEAR ORDER REDUCTION

Antonios Armaou and Panagiotis D. Christofides

Department of Chemical Engineering

University of California, Los Angeles

41st Conference on Decision and

Control

Las Vegas, Nevada

December 11, 2002

Page 2: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

MOTIVATION / BACKGROUND

• Optimization problems arising in distributed process systems.

¦ Examples:. Chemical vapor deposition process design for deposition

rate spatial uniformity.. Design of precursors’ inflow time-profile to MOVPE reactor

for deposition of desired heterostructures.

¦ Main features:. Partial differential equation (PDE) equality constraints.. Nonlinear inequality constraints.. Steady-state / dynamic.

• Traditional spatial discretization approach for solution.

¦ Discretization via finite-differences / finite-elements.

¦ Computationally expensive approach!

• Spatial discretization using empirical eigenfunctions (e.g., Arian et al,NASA report, 2000; Bendersky and Christofides, CES, 2000).

Page 3: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

PRESENT WORK(Armaou and Christofides, CES, 2002)

• Objective: Computationally efficient methods for the solution of dynamicoptimization problems involving highly dissipative PDE constraints.

¦ Order reduction in the spatial domain via method ofweighted residuals using global basis functions.

. Analytical eigenfunctions / off-the-shelf sets of basis functions.

. Empirical eigenfunctions from Karhunen-Loeve expansion.

. Accuracy and stability enhancement using the conceptof approximate inertial manifolds.

¦ Low-dimensional dynamic nonlinear programs.

. Temporal discretization using finite differences.

. Solution: Reduced gradient optimization methods.

• Application to diffusion-reaction processes and the Kuramoto-Sivashinskyequation.

Page 4: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

DYNAMIC OPTIMIZATION PROBLEM

• Optimization objective:

min

∫ tf

0

Ω

G(x(z, t), d(t))dzdt

• PDE equality constraints:

∂x

∂t= A(x) + f(x, d(t)), Cx + D

dx

∣∣∣∣Γ

= R, x(z, 0) = x0(z)

d(t): Vector of design variables.

A(x): Nonlinear spatial differential operator.

f(x, d): Nonlinear function of state and design variables.

• Nonlinear inequality constraints:

g(x, d(t)) ≤ 0

Page 5: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

PROPERTIES OF HIGHLY DISSIPATIVE PDEs

• Eigenvalue problem of linearized spatial differential operator:

Aφi(z) = λiφi(z), Cx + Ddx

∣∣∣∣Γ

= R

λi: eigenvalue; φi: eigenfunction.

• Typical structure of eigenspectrum:

Re

Im

• A finite number of dominant modes practically determines thesystem dynamics.

Page 6: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

SPATIAL DISCRETIZATION USING WEIGHTED RESIDUALS

• State variable expansion (n = 1): x(z, t) =N∑

k=1

ak(t)φk(z),

ak(t): time-varying coefficients, φk(z): global (analytical) basis functions.

• Resulting finite-dimensional approximate optimization program:

min

∫ tf

0

Ω

G(N∑

k=1

akN (t)φk(z), d)dzdt,

−N∑

k=1

akN (∫

Ω

ψν(z)φk(z)dz) +∫

Ω

ψν(z)A(N∑

k=1

akN (t)φk(z))dz

+∫

Ω

ψν(z)f(t,N∑

k=1

akN (t)φk(z), d)dz = 0

Ω

ψν(z)g(N∑

k=1

akNφk(z), d)dz ≤ 0

• When the basis functions and the weighted functions are identical:Galerkin’s method.

Page 7: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

SOLUTION OF DYNAMIC NONLINEAR PROGRAM

min

∫ tf

0

G(aN , d)dt

s.t.

aN = f(aN , d)

g(aN , d) ≤ 0

• Temporal discretization:

¦ Finite-differences.

• Solution of reduced-order optimization problem:

¦ Reduced gradient optimization method.

• Solution of reduced-order optimization problem for(N+1)-dimensional ODE system.

¦ If |JN+1 − JN | < θ1 and |dN+1(t)− dN (t)| < θ2 end, elserepeat process for N = N + 1.

¦ Gradient-based convergence criteria can be used (e.g., Alexandrov et al,Struct. Optim., 1998; Kelley and Sachs, SIAM JO, 1999).

Page 8: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

DYNAMIC DIFFUSION-REACTION PROCESS

• Process dynamic model (constant coefficients):

∂x

∂t= k

∂2x

∂z2+ βT (e

− γ

1 + x − e−γ) + βU (b(z)u(t)− x)

Process parameters: k = 1, βT = 8.0 βU = 2.0 γ = 2.0

Boundary conditions: x(0, t) = 0, x(l, t) = 0

Initial condition: x(z, 0) = x0(z) = 0.5

¦ The steady-state x(z, t) = 0 is unstable.

• Optimization objective:

min

(∫ tf

0

∫ l

0

(wsx2(z, t) + wuu2(t))dz dt

)

Page 9: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

REDUCED OPTIMIZATION PROBLEM

• Analytical Eigenfunctions: φj(z) =√

2lsin(jπ z)

• Applying Galerkin’s method with 6 analytical eigenfunctions.

min

(∫ tf

0

∫ π

0

ws(6∑

i=1

ai(t)φi(z))2 + wuu2(t)dzdt

)

s.t.

dai

dt=

6∑

j=1

αj

∫ l

0

d2φj(z)dz

φi(z)dz − βUai + βU

∫ l

0

b(z)φi(z)dz u(t)

+βT

∫ l

0

exp(−γ(

5∑

j=1

αjφj(z) + 1)−1)− exp(−γ)

φi(z)dz, i = 1, ..., 6

‖u(t)‖ ≤ 0.6, ∀(z, t) ∈ [0, l]× [0, tf ]

• Temporal discretization using implicit Euler.

Page 10: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal conditions, b(z) = H(z − 0.3l)−H(z − 0.7l)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Design variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

Sinusoids: 2Sinusoids: 4Sinusoids: 6

Page 11: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTS-12.5% variation in βT , b(z) = H(z − 0.3l)−H(z − 0.7l)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Design variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

βT=8βT=7

Page 12: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTS-20% variation in x0(z), b(z) = H(z − 0.3l)−H(z − 0.7l)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

00.05

0.10.15

0.20.25

0.30.35

0.40.45

0.5

x

Independent variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

x0=0.5x0=0.4

Page 13: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal conditions, b(z) = H(z − 0.01l)−H(z − 0.4l)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.2

0.4

0.6

0.8

1

1.2

x

Design variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

b=H(ζ-0.3)-H(ζ-0.7)b=H(ζ-0.01)-H(ζ-0.4)

Page 14: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, b1(z) = H(z − 0.2l)−H(z − 0.4l), b2(z) = H(z − 0.6l)−H(z − 0.8l)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Design variable profiles.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

b=H(ζ-0.3)-H(ζ-0.7)b1=H(ζ-0.2)-H(ζ-0.4)b2=H(ζ-0.6)-H(ζ-0.8)

Page 15: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

DYNAMIC DIFFUSION-REACTION PROCESS

• Process dynamic model (nonlinear operator, spatially-varying parameters):

∂x

∂t=

∂z(k(x)

∂x

∂z) + βT (z)(e

− γ

1 + x − e−γ) + βU (b(z)u(t)− x)

Process parameters: k(x) = 0.5 + 0.7/(x + 1), βT (z) = βT 0(cos(z) + 1)

Boundary conditions: x(0, t) = 0, x(l, t) = 0

Initial condition: x(z, 0) = x0(z) = 0.5

¦ The steady-state x(z, t) = 0 is unstable.

• Optimization objective:

min

(∫ tf

0

∫ l

0

(wsx2(z, t) + wuu2(z, t))dz dt

)

Page 16: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

DYNAMIC DIFFUSION-REACTION PROCESS

Spatiotemporal profile of solution for u(t) = 0.

00.5

11.5

2 00.5

11.5

22.5

3-0.5

0

0.5

1

1.5

2

t

z

x

Available control actuators:

• Distributed actuator: b1(z) = H(z − 0.1l)−H(z − 0.5l).

• Point actuator: b2(z) = δ(z − 0.3l).

• Distributed actuator: b3(z) = 1.

Page 17: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal conditions, sinusoidal basis functions

Spatiotemporal profile of solution (N = 4).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Design variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

Sinusoids: 2Sinusoids: 4Sinusoids: 6

• Alternative approach to basis function construction?

Page 18: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION METHODOLOGY

• Spatial discretization:

¦ Form an ensemble of solutions of the PDE system for differenttime profiles of the design variables.

. Construction of a representative ensemble.

¦ Apply Karhunen–Loeve expansion to derive empirical eigenfunctions.

¦ Discretization through Galerkin’s method with empirical eigenfunctions.

. Low-dimensional approximate ODE systems.

• Temporal discretization:

¦ Finite-differences.

• Solution of reduced optimization problem:

¦ Reduced gradient methods.

• Application to a diffusion-reaction process.

Page 19: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

COMPUTATION OF EMPIRICAL EIGENFUNCTIONS USINGPROCESS DATA

• Construction of an N -dimensional ensemble of solutions xi.

¦ Different initial conditions.

¦ Excitation of system through variation of design variables.

• Karhunen-Loeve expansion.

¦ Calculation of Ci matrices: Clmi = (xl

i, xmi )

xli: l-th snapshot of the i-th variable

¦ Calculation of eigenvectors: CiAik = λikAik

Aik: k-th eigenvector, λik: k-th eigenvalue (k=1,...,N)

¦ Calculation of empirical eigenfunctions: φik =N∑

j=1

ajikxj

i

αjik: j-th element of Aik

Page 20: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

COMPUTATION OF EMPIRICAL EIGENFUNCTIONS

• Non-dimensionalized process dynamic model:

1tf

∂x

∂τ=

1l2

∂ζ(k(ζ)

∂x

∂ζ) + βT (ζ)(e

− γ

1 + x − e−γ) + βU (b(ζ)u(τ)− x)

x(0, τ) = 0, x(1, τ) = 0, x(ζ, 0) = x0(ζ)

• Construction of ensemble in space:

Set 1

¦ 2 different initial conditions.

¦ 6 t-profiles × 1 design variable.

¦ 296 snapshots.

Set 2

¦ 2 different initial conditions.

¦ 6 t-profiles × 3 design variables.

¦ 1554 snapshots.

• Karhunen-Loeve expansion:¦ Eight empirical eigenfunctions. ¦ Nine empirical eigenfunctions.

Page 21: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

EMPIRICAL EIGENFUNCTIONS

First three empirical eigenfunctions (one actuator).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

φ j

ζ

φ1φ2φ3

First three empirical eigenfunctions (three actuators).

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

φ j

ζ

φ1φ2φ3

Page 22: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

REDUCED OPTIMIZATION PROBLEM

• Nondimensionalized spatial domain ζ =z

l

• Applying Galerkin’s method with N basis functions.

min

(∫ tf

0

∫ 1

0

ws(N∑

i=1

ai(t)φi(ζ))2 + wuu2(t)dζdt

)

s.t.

dai

dt=

N∑

j=1

αj

∫ 1

0

1l

d

k(ζ)l

dφj(ζ)dζ

φi(ζ)dζ − βUai + βU

∫ 1

0

uφi(ζ)

+∫ 1

0

βT

exp(−γ(

N∑

j=1

αjφj(ζ) + 1)−1)− exp(−γ)

dζ, i = 1, ..., N

‖u(t)‖ ≤ 0.6, ∀t ∈ [0, tf ]

• Temporal discretization using finite differences.

Page 23: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal conditions, Set 1, actuator b1(z)

Spatiotemporal profile of solution (N = 3).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Independent variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

Empirical: 1Empirical: 2Empirical: 3

Page 24: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal conditions, Set 2, actuator b1(z)

Spatiotemporal profile of solution (N = 3).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Design variable profile.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2

u(t)

t

Empirical: 1Empirical: 2Empirical: 3

Page 25: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, Set 2, actuators b1(ζ) (distributed), b2(ζ) (point)

Spatiotemporal profile of solution (N = 3).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

-0.2-0.1

00.10.20.30.40.50.6

x

Design variable profile.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.5 1 1.5 2

u 1(t)

t

Empirical: 2Empirical: 3Empirical: 5

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.5 1 1.5 2

u 2(t)

t

Empirical: 2Empirical: 3Empirical: 5

Page 26: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, sinusoid basis, actuators b1(ζ) (distributed), b2(ζ) (point)

Spatiotemporal profile of solution (N = 8).

00.5

11.5

2t 0

0.51

1.52

2.53

3.5

z

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

Design variable profiles.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.5 1 1.5 2

u 1(t)

t

Sinusoids: 3Sinusoids: 4Sinusoids: 5Sinusoids: 6

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 0.5 1 1.5 2

u 2(t)

t

Sinusoids: 3Sinusoids: 4Sinusoids: 5Sinusoids: 6

• Stiffness problems preclude further order increase.

Page 27: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

TWO-TIME-SCALE BEHAVIOR OF MODAL EQUATIONS

• Finite-dimensional dynamic nonlinear program.

min

∫ tf

0

G(aN , d)dt

aN = f(aN , d)

g(aN , d) ≤ 0

• Pictorial representation of fast and slow motions of modal equations.

Page 28: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

TWO-TIME-SCALE BEHAVIOR OF MODAL EQUATIONS

• aN modes can be decomposed into coupled fast (af ) and slow (as) modes.

min

∫ tf

0

G(as, af , d)dt

as = fs(as, af , d)

af = ff (as, af , d)

g(as, af , d) ≤ 0

• af = 0 - reduced-order dynamic nonlinear program.

min

∫ tf

0

G(as, af , d)dt

as = fs(as, af , d)

0 = ff (as, af , d)

g(as, af , d) ≤ 0

• Justification within the framework of approximate inertial manifolds.

Page 29: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

FAST AND SLOW DYNAMIC NONLINEAR PROGRAMS

• Dynamic nonlinear program at fast time-scale.

min

∫ τf

0

G(as(0), af (t), d)dt

af = ff (as(0), af (t), d)

g(as(0), af (t), d) ≤ 0

• Dynamic nonlinear program at slow time-scale.

min

∫ tf

0

G(as, af , d)dt

as = fs(as, af , d)

0 = ff (as, af , d)

g(as, af , d) ≤ 0

Page 30: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

KURAMOTO-SIVASHINSKY EQUATION

• Mathematical description:

∂U

∂t= −ν

∂4U

∂z4− ∂2U

∂z2− U

∂U

∂z+

l∑

i=1

bi(z)ui(t)

• Initial conditions:

Case 1: U(z, 0) = U0,1 =4∑

j=1

sin(j z)

Case 2: U(z, 0) = U0,2 = 0.53∑

j=1

sin(j z) + 1.56∑

j=4

sin(j z)

• Boundary conditions:

∂jU

∂zj(−π, t) =

∂jU

∂zj(+π, t) , j = 0, . . . , 3

¦ For ν = 0.12, U(z, t) = 0 is unstable.

Page 31: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

EIGENSPECTRUM / OPEN-LOOP DYNAMICS

• Eigenvalue problem:

Aφj = −ν∂4φj

∂z4− ∂2φj

∂z2= λjφj

∂jφj

∂zj(−π, t) =

∂jφj

∂zj(+π, t) , j = 0, . . . , 3

• Eigenvalues: λj = −νj4 + j2

Eigenfunctions: φj(z) = sin(j z), j = 1, . . . ,∞:

(ν = 1)

Re-72

Im

-12 0

00.5

11.5

2t -4

-3-2

-10

12

34

z

-15

-10

-5

0

5

10

15

x

(ν = 0.12)

Open-loop spatio-temporal profile of U(z, t).

Page 32: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

REDUCED OPTIMIZATION PROBLEM

• Applying Galerkin’s method with N analytical eigenfunctionsusing an N’-dimensional AIM.

min

(∫ tf

0

∫ π

0

ws(6∑

i=1

ai(t)φi(z))2 + wuu2(t)dzdt

)

s.t.

dai

dt= λiai +

N+N ′∑

j=1

N+N ′∑

k=1

αjαk

∫ π

−π

φj(z)dφk(z)

dzφi(z)dz +

l∑

j=1

uj(t)∫ π

−π

bj(z)φi(z) dz,

i = 1, ..., N

0 = λiai +N+N ′∑

j=1

N+N ′∑

k=1

αjαk

∫ π

−π

φj(z)dφk(z)

dzφi(z)dz +

l∑

j=1

uj(t)∫ π

−π

bj(z)φi(z) dz,

i = N + 1, ..., N ′

b1(z) = δ(z − 0.5π), b2(z) = δ(z + 0.5π), ‖u(t)‖ ≤ 3.0, ∀t ∈ [0, tf ]

• Temporal discretization using finite differences.

Page 33: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,1, linear Galerkin (N’=0)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-2-1.5

-1-0.5

00.5

11.5

2

x

Design variable profile.

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

u 1(t)

t

Galerkin: (3,0)Galerkin: (5,0)Galerkin: (6,0)

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2

u 2(t)

t

Galerkin: (3,0)Galerkin: (5,0)Galerkin: (6,0)

Page 34: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,1, combination Galerkin AIM

Spatiotemporal profile of solution (N = 5, N ′ = 3).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-2-1.5

-1-0.5

00.5

11.5

2

x

Independent variable profile.

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

u 1(t)

t

Galerkin+AIM: (3,5)Galerkin+AIM: (4,4)Galerkin+AIM: (4,6)Galerkin+AIM: (5,3)

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2

u 2(t)

t

Galerkin+AIM: (3,5)Galerkin+AIM: (4,4)Galerkin+AIM: (4,6)Galerkin+AIM: (5,3)

Page 35: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,1, combination Galerkin eAIM

Spatiotemporal profile of solution (N = 5, N ′ = 3).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-2-1.5

-1-0.5

00.5

11.5

2

x

Design variable profile.

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2

u 1(t)

t

Galerkin+eAIM: (3,5)Galerkin+eAIM: (4,4)Galerkin+eAIM: (4,6)Galerkin+eAIM: (5,3)

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2

u 2(t)

t

Galerkin+eAIM: (3,5)Galerkin+eAIM: (4,4)Galerkin+eAIM: (4,6)Galerkin+eAIM: (5,3)

Page 36: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,2, linear Galerkin (N’=0)

Spatiotemporal profile of solution (N = 6).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-3

-2

-1

0

1

2

3

x

Design variable profile.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

u 1(t)

t

Galerkin: (3,0)Galerkin: (4,0)Galerkin: (5,0)Galerkin: (6,0)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2

u 2(t)

t

Galerkin: (3,0)Galerkin: (4,0)Galerkin: (5,0)Galerkin: (6,0)

Page 37: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,2, combination Galerkin AIM

Spatiotemporal profile of solution (N = 5, N ′ = 5).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-3

-2

-1

0

1

2

3

x

Design variable profile.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

u 1(t)

t

Galerkin+AIM: (2,6)Galerkin+AIM: (3,5)Galerkin+AIM: (5,5)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2

u 2(t)

t

Galerkin+AIM: (2,6)Galerkin+AIM: (3,5)Galerkin+AIM: (5,5)

Page 38: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

OPTIMIZATION RESULTSNominal, U0,2, combination Galerkin eAIM

Spatiotemporal profile of solution (N = 5, N ′ = 5).

00.5

11.5

2t -4

-3-2

-10

12

34

z

-3

-2

-1

0

1

2

3

x

Design variable profile.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

u 1(t)

t

Galerkin+eAIM: (2,6)Galerkin+eAIM: (3,5)Galerkin+eAIM: (5,5)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2

u 2(t)

t

Galerkin+eAIM: (2,6)Galerkin+eAIM: (3,5)Galerkin+eAIM: (5,5)

Page 39: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

CONCLUSIONS

• Computationally-efficient methods for the solution of dynamic optimizationproblems arising in systems modeled by highly dissipative PDEs.

¦ Analytical eigenfunctions / off-the-shelf sets of basis functions.

¦ Empirical eigenfunctions derived via Karhunen-Loeve expansion.

¦ Approximate inertial manifolds.

• Applications:

¦ Diffusion-reaction processes.

¦ Kuramoto-Sivashinsky equation.

ACKNOWLEDGMENTS

• Financial support from NSF, CTS-0002626, and a doctoral dissertation fel-lowship (Antonios Armaou) from UCLA, is gratefully acknowledged.

Page 40: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally
Page 41: DYNAMIC OPTIMIZATION OF DISSIPATIVE PDE SYSTEMS …pdclab.seas.ucla.edu/pchristo/pdf/AC_CDC02talk.pdfPRESENT WORK (Armaou and Christofides, CES, 2002) † Objective: Computationally

Recommended