+ All Categories
Home > Documents > Dynamical Condensation of...

Dynamical Condensation of...

Date post: 31-Jan-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
32
Dynamical Condensation of Dynamical Condensation of Ex Ex c citon- Polaritons iton- Polaritons H. Deng, G. Weihs, R. Huang, C.W. Lai, S. Utsunomiya, G. Roumpos and Y. Yamamoto Stanford University and National Institute of Informatics A. Loeffler, S. Hoefling, and A. Forchel Technische Physik, Universit ät Wurzburg International School of Physics “Enrico Fermi” : Quantum Coherence in Solid State Systems Varenna (Italy) (July 1 - 11, 2008) Lecture 1 Lecture 1 Coherence Coherence properties properties
Transcript
  • Dynamical Condensation of Dynamical Condensation of ExExcciton-Polaritonsiton-Polaritons

    H. Deng, G. Weihs, R. Huang, C.W. Lai, S. Utsunomiya, G. Roumpos and Y. YamamotoStanford University and National Institute of Informatics

    A. Loeffler, S. Hoefling, and A. ForchelTechnische Physik, Universität Wurzburg

    International School of Physics “Enrico Fermi”:Quantum Coherence in Solid State Systems

    Varenna (Italy) (July 1 - 11, 2008)

    Lecture 1Lecture 1::CoherenceCoherence properties properties

  • Dynamical Condensation of Dynamical Condensation of ExcitonExciton PolaritonsPolaritons

    G. Roumpos, H. Deng, C. W. Lai, S. Utsunomiya, and Y. YamamotoStanford University, National Institute of Informatics

    International School of Physics “Enrico Fermi”:Quantum Coherence in Solid State Systems

    Varenna (Italy) (July 1 - 11, 2008)

    Lecture 2 Lecture 2 ThermodynamicalThermodynamical Properties Properties

  • Dynamical Condensation of Exciton-Polaritons

    kξ=1

    -15o 15o

    1.613 eV

    8 m

    eV

    kξ=1-15o 15o

    1.613 eV

    S. Utsunomiya, C.W. Lai, G. Roumpos and Y.YamamotoStanford University, National Institute of Informatics

    A. Loeffler, S. Hoefling, and A. ForchelTechnische Physik, Universität Wurzburg

    International School of Physics “Enrico Fermi”:Quantum Coherence in Solid State PhysicsVarenna (Italy) July 1 – 11, 2008

    3

    Lecture 3 Lecture 3 BogoliubovBogoliubov excitation and excitation and superfluiditysuperfluidity

  • 4

    OutlineOutline

    Semiconductor Cavity QED in weak and strong coupling regimes Photon laser vs. exciton-polariton condensation Bosonic final state stimulation, matter-wave amplification and laser without inversion

    Experimental tricks toward equilibrium BEC: MQW, blue detuning and lateral confinement

    Coherence properties of the condensate: Measurement of first order and and second order coherence functions

  • 5

    DBR

    DBR

    SQW in λ/2 cavity

    Enhanced (conical)spontaneous emission

    Enhanced (single lobe)spontaneous emission

    Inhibited (single lobe)spontaneous emission

    Red detuning (ωc < ωe) Blue detuning (ωc > ωe)On-resonance (ωc = ωe)

    Semiconductor Cavity QED Semiconductor Cavity QED −− Controlled Spontaneous Emission Controlled Spontaneous Emission −− Coherence and Quantum Optics VI (Plenum, New York, 1989) p.1249 Coherence and Quantum Optics VI (Plenum, New York, 1989) p.1249

  • 6

    Exciton-polariton dispersion relation

    Rabi splitting (4meV)

    ωexc0 = ωph0

    E

    k //

    QW exciton

    Lower polariton

    Upper polariton

    Microcavity photon (mph ~ 10-5 me)

    (mexc ~ 10-1 me)

    (meff ~ 2 mph)

    Ωosc~ 1 THz

    Appl. Phys. Lett. 73, 3031 (1998): Temporal oscillation

    UP LP

    cavity photon → QW exciton → cavity photon

    Nine oscillations

    C. Weisbuch et al., Phys. Rev. Lett. 69, 3314(1992): Reflection spectrum

    Semiconductor Cavity QEDSemiconductor Cavity QED in Strong Coupling Regimein Strong Coupling Regime−− Dressing Dressing ExcitonsExcitons with Cavity Vacuum Field with Cavity Vacuum Field −−

    cavity photon QW exciton collective coupling

  • 7

    Extended phase coherence reinforced by a cavity fieldsuppressed localization, disorder and inhomogeneous broadeningwhich are notorious enemies to exciton BEC.

    Light effective mass by dressing with a cavity fieldmpolariton ~ 10-4 mexciton ~ 10-8 matom

    Main decay channel = Photon leakage from the cavity with k and E conservation

    direct experimental access to polariton energy-momentum dispersion and populationdistribution

    higher critical temperaturelower particle density

    suppressed Auger recombination and dissociation of excitons

    Dynamical Condensation of Dynamical Condensation of Exciton-PolaritonsExciton-Polaritons: Proposal: ProposalPhys. Rev. A 53, 4250 (1996)Phys. Rev. A 53, 4250 (1996)

  • 8

    Exciton-PolaritonExciton-Polariton Condensation vs. Photon Laser Condensation vs. Photon Laser

    phonon emissionpolariton-polariton scattering

    external pumping

    Eexciton-polariton

    dispersion

    leakage of cavity photonsvia mirror

    crystal ground state k

    stimulated emissionof photons

    external pumping

    E

    crystal ground state k

    electron-hole pair(Populationinversion)

    spontaneouscooling

    stimulatedcooling

    k = 0 LP

    final bosonic mode cavity photon

    final bosonic mode

    Exciton-Polariton Condensation Photon Laser

  • 9

    OutlineOutline

    Semiconductor Cavity QED in weak and strong coupling regimes Photon laser vs. exciton-polariton condensation Bosonic final state stimulation, matter-wave amplification and laser without inversion

    Experimental tricks toward equilibrium BEC: MQW, blue detuning and lateral confinement

    Coherence properties of the condensate: Measurement of first order and and second order coherence functions

  • Bosonic Final State Stimulation in Polariton-Polariton Scattering

    6’

    leakage from cavity phonon scattering Polariton-polariton scattering

    Spontaneousscattering

    StimulatedScattering

  • Observation of Final State Stimulationin Polariton-Polariton Scattering in a GaAs SQW-Microcavity

    nexc = 1.5×109 cm-2

    1.2

    0.54

    theory

    Theory: Phys. Rev. B59, 10830 (1999) Experiment: Phys. Rev. B 61, R7854 (2000)

    Quantitative agreement between experiment and theory.

    • Upper-polariton emission decay time ~ 95 ps• bottle-neck polariton decay time ~ 190 ps

  • Gain=15

    BareExcitonk// = 0:LP

    Bottleneckeffect

    Bottleneck polariton decay rate = 120 ps

    Gain decay rate = 60 ps

    Phys. Rev. B 65, 165314 (2002)

    Observation of Stimulated Scattering Gainin a CdTe DQW-Microcavity

  • Nexc=3.4x106Gain =23

    Nexc=1.6x106Gain =5.4

    Nexc = 0.41x106Gain = 0.34

    )exp( 2excNconstg !"

    Probe (mW/cm2)Circles: 2×104Squares: 900

    Rate equationsolutions

    2

    1exc

    Nconstg !"#

    Low Gain Regime High Gain Regime

    Phys. Rev. B 65, 165314 (2002)Quantitative agreement between theory and experiment.

    )1()1(2

    lpexlplpexlpnnbnna ++++

    exciton-phononscattering

    exciton-excitonscattering

    lp

    lp

    lplp ô

    nPn

    dt

    d!=

    Phys. Rev. A 53, 4250 (1996) Phys. Rev. B 59, 10830 (1999)

    Matter-Wave Amplification of Polaritons in a CdTe DQW-Microcavity

  • Polariton condensation threshold observed without electronic population inversion Onset of stimulated cooling

    Proc. Natl. Acad. Sci., 100, 15318 (2003)

    injected exciton density (cm-2)

    Quantum degeneracy threshold

    polariton condensation

    photonlaser

    109 1010 1011 1012

    10-1

    100

    101

    102

    103

    polariton laserELP=1.6166 eVphoton laserECAV=1.6477 eV

    no inversion inversion

    Pola

    riton

    s pe

    r Mod

    e at

    k||∼

    0

    Phot

    ons

    per C

    avity

    Mod

    e at

    k||∼

    0

    PolaritonPolariton Condensation: Laser without Inversion Condensation: Laser without Inversion

    14

  • Real Space Distribution (Proc. Natl. Acad. Sci. 100, 15318 (2003)

    photon laserfitted spot size: 26 µm

    polariton lasersuppressed ‘expansion’

    P/Pth = 1.5polariton photon

    below thresholdbroad Gaussian

    above thresholdsteep central peak

  • 16

    OutlineOutline

    Semiconductor Cavity QED in weak and strong coupling regimes Photon laser vs. exciton-polariton laser Bosonic final state stimulation, matter-wave amplification and laser without inversion

    Experimental tricks from non-equilibrium polariton laser to equilibrium polariton BEC: MQW, blue detuning and lateral confinement

    Coherence properties of the condensate: Measurement of first order and and second order coherence functions

  • 17

    Non-Equilibrium Non-Equilibrium PolaritonPolariton Laser vs. Laser vs.Thermal Equilibrium Thermal Equilibrium PolaritonPolariton BEC BEC

    Decisive parameter: Polariton decay rate vs. cooling rate

    Non-equilibrium Quasi-equilibrium Thermal equilibrium

    t0< tpolariton Tlattice

    tpolariton< tlattice < t0Tpolariton = Tlattice

    ( BEC)

    polariton-phonon scatteringlifetime τlattice

    phonon phonon

    k//

    equilibrium is establishedwith a lattice

    polariton-polariton scatteringlifetime τpolariton

    k//

    equilibrium is establishedwithin polaritons

    polariton lifetime τ0

    k//

    polariton decay by leakageof photonic component

    leakageof photon

    Quantum Degeneracy (n0>1) under Three Conditions

  • 18

    Experimental Tricks toward Thermal Equilibrium BECExperimental Tricks toward Thermal Equilibrium BEC

    Problem1. k=0 polariton lifetime < cooling time

    Cavity resonant energy > QW exciton energy(blue detuning

  • 19

    Signatures of Bose-Einstein CondensationSignatures of Bose-Einstein Condensation- Experimentalist- Experimentalist’’s Wish List -s Wish List -

     Sudden decrease in momentum distribution and E-k dispersion Sudden decrease in position distribution Minimum uncertainty wave packet Spatial coherence (Off-diagonal long range order) and HBT correlation (bosonic final state stimulation and excess noise)

    Condensate: Lecture 1

     Bose-Einstein distribution → quantum degeneracy condition equilibrium temperature with lattice

    Bogoliubov excitation spectrum

    Excitations: Lecture 2 and 3

  • 20

    OutlineOutline

    Semiconductor Cavity QED in weak and strong coupling regimes Photon laser vs. exciton-polariton laser Bosonic final state stimulation, matter-wave amplification and laser without inversion

    Experimental tricks from non-equilibrium polariton laser to equilibrium polariton BEC: MQW, blue detuning and lateral confinement

    Coherence properties of the condensate: Measurement of the first order and and second order coherence functions

  • 21

    CryostatCryostat(4K)(4K)

    Ti:SiOTi:SiO22 laser laser(pulse)(pulse)

    CCD /CCD /Spectrometer (77K)Spectrometer (77K)

    red : Near Field imaging / blue : Far Field imagingfocal length

    Experimental SetupExperimental Setup

  • Momentum Distribution (Momentum Distribution (ΔΔkx,kx,ΔΔkyky) of a) of aPolaritonPolariton Condensate in a Free Space Condensate in a Free Space

    50 ×50 degrees(Δk=7.5 ×104 cm-1)

    ~ThresholdBelow Threshold

    Condensate aspect ratio~1:2 (anisotropic) Heisenberg limit

    Thermal Polaritons aspect ratio~1:1 (isotropic)

    +25º

    -25º

    22

  • Spatial Distribution (Spatial Distribution (ΔΔx, x, ΔΔy) of a y) of a polaritonpolaritonCondensate in a Free SpaceCondensate in a Free Space

    (120 µm×60 µm)Pump laser incident angle 60º aspect ratio=2:1

    ~ThresholdBelow Threshold

    Δx: 120 µm 23

  • Dispersion Characteristics (E vs. k) of a Dispersion Characteristics (E vs. k) of a PolaritonPolariton Condensate Condensatein a Free Spacein a Free Space

    Vertical: 6.1 meVHorizontal: 50 degrees

    Below Threshold780nm

    777nm

    ~Threshold

    ΔθY: 50 degrees (ΔkY≈7.5×104 cm-4)

    condensation blue shift due to repulsive interaction (propotional to the number of LP)

    24

  • Photon field amplitudeλ/

    2 A

    lAs

    cavi

    ty0 1 1.50.5 0 1 2

    AlGaAsTi / Au

    3 st

    acks

    of 4

    GaA

    s Q

    Ws

    DBR

    DBRGaAs Substrate  

    AlAs

    SEM image of microcavity

    Device configuration Photon field in the cavitySurface image

    detuning

    (+- 2.5meV)

    size of traps

    (4-100µm)

    • Normal mode splitting 2g~14meV (g=g0 x (NQW)1/2=7meV) with 12 (3stacks x 4QWs) QWs

    • Potential modulation ~200µeV

    Distribution of polaritons in z-direction toavoid the melting of excitons and allow highpolariton density in area.

    Depositing thin metal film modulates the photonfield in the cavity.

    30nm

    25

    Further Trick: Lateral Confinement of Further Trick: Lateral Confinement of Exciton-PolaritonsExciton-Polaritons

  • 26

  • 27

    Minimum Uncertainty Wave Packet- Position Uncertainty Δx, Momentum Uncertainty Δk and Δx Δk Product -

    Δk

    (104

    cm

    -1)

    0.6

    0.4

    0.2

    86420

    5.0

    4.0

    3.0

    2.0

    P/Pth

    Δx

    (µm

    )

    20µm

    0.3Pth Pth 2.5Pth

    numerical results based onGross-Pitaevskii equation

    Nature Physics (in press, 2008)

    ΔkΔx

    ΔxΔk=0.98(comparable to theHeisenberg limit of 0.5)

    Δx, Δk and ΔxΔkincrease with P/Pth dueto polariton-polaritonrepulsive interaction

  • 28

    Off Diagonal Long Range Order (Spatial Coherence)Off Diagonal Long Range Order (Spatial Coherence)Phys. Rev. Phys. Rev. LettLett. 99, 126403 (2007). 99, 126403 (2007)

    Interference Pattern through Young’s Double Slit Interferometer

    Above the threshold Below the threshold

  • 29

    Macroscopic Spatial Coherence over Whole CondensateMacroscopic Spatial Coherence over Whole Condensate Nature 450, 529 (2007)Nature 450, 529 (2007)

    screendouble slit

    polaritonwavefunction

    x

  • 30

    HanburyHanbury - Brown and - Brown and TwissTwiss Correlation Correlation –– Bunching Effect - Bunching Effect - Science 298, 199 (2002)Science 298, 199 (2002)

    single-mode coherentstate

    single-mode thermal state

    21

    21

    2)()(

    )()()()(

    )2()()(

    )(ˆ)(ˆ

    )(ˆ)(ˆ)(ˆ)(ˆ

    )(nn

    jinin

    tEtE

    tEtEtEtEg i

    +=

    ++=

    +!

    ++!! """

    delay τmeasurementwindow

    intensity correlation

    P/Pth 1 above threshold suggests the excess intensity noise in the condensate.

  • 31

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.31.0

    1.2

    1.4

    1.6

    1.8

    g2(!

    =0, k1=

    0, k2="k)

    "k (µm-1)

    pinhole diameter

    1 10 1001.0

    1.2

    1.4

    1.6

    1.8

    2.0

    g2(!

    =0,

    k1=

    0,

    k2=

    0)

    Pump Power (mW)

    Pth=3mW

    (a) (c)

    object aperture

    pinholes

    k1

    k2

    BS

    (b)

    (d)

    kX

    kY

    k1 or k2 plane

    pinhole

    r-space k-space

    -1.0 -0.5 0.0 0.5 1.01.0

    1.2

    1.4

    1.6

    pinhole diameter

    g2(!

    =0, k1=

    0, k2="k)

    "k (µm-1)

    HHBT Correlation:BT Correlation:Position and Momentum DependencePosition and Momentum Dependence

  • ConclusionConclusion

    Bosonic final state stimulation, matter-wave amplification and laserwithout inversion observed in exciton-polariton systems.

    Blue detuning and lateral confinement, as well as linearly polarizedpumping, seem to work for reaching the equilibrium BEC.

    Sudden decrease in momentum distribution, position distribution andposition-momentum uncertainty product at BEC threshold.

    Increase in position uncertainty and constant momentum uncertaintyare well reproduced by the inhomogeneous Gross-Pitaevskii equation.

    First order coherence emerges at BEC threshold but decreases withpump rate.

    Second order coherence measurement confirms the bosonic finalstate stimulation (photon bunching effect) and also shows the excesspopulation noise in the system.

    32


Recommended