+ All Categories
Home > Documents > Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure,...

Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure,...

Date post: 30-Oct-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
37
Dynamical equilibration and transport coefficients of strongly-interacting coefficients of strongly-interacting ‘infinite’ parton matter Vitalii Ozvenchuk Transport Meeting 1 13 December 2012
Transcript
Page 1: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Dynamical equilibration and transport coefficients of strongly-interacting coefficients of strongly-interacting

‘infinite’ parton matter

Vitalii Ozvenchuk

Transport Meeting

1

13 December 2012

Page 2: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

From hadrons to partonsFrom hadrons to partons

In order to study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma –we need a consistent non-equilibrium (transport) model with� explicit parton-parton interactions (i.e. between quarks and gluons) beyond strings!beyond strings!

� explicit phase transition from hadronic to partonic degrees of freedom

� lQCD EoS for partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the Green-functions S<h(x,p) in phase-space representation for thepartonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

QGP phase described by

DDynamical ynamical QQuasiuasiPParticle article MModel (odel (DQPM)) A. Peshier, W. Cassing, PRL 94 (2005) 172301;

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

WW. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919;NPA831 (2009) 215;

W. Cassing, EPJ ST 168 (2009) 3

Page 3: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

DQPM spectral functionDQPM spectral function

Basic idea: effective strongly-interacting quasiparticles - massive quarks, antiquarks and gluons (q, qbar ,g) with broad spectral functions

Breit-Wigner spectral function:

DQPM: Peshier, Cassing, PRL 94 (2005) 172301;

Cassing, NPA 791 (2007) 365; NPA 793 (2007)

½(!;p) =4!¡

(!2 ¡ p2 ¡M2)2 + 4¡2!2´

Breit-Wigner spectral function:

´

¡

E

1

(! ¡E)2 + ¡2¡

1

(! + E)2 + ¡2

E2 = p2 +M2 ¡ ¡2notation:

�mass and width: quasiparticle properties

� finite width:two-particle correlations

E2 = p2 +M2 ¡ ¡2notation:

)

)

Page 4: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

DQPM running couplingDQPM running coupling

� running coupling fit to the lattice QCD results

® (T ) =g2(T )

=12¼

)

lQCD: Kaczmarek et al., PRD 70 (2004) 074505

®s(T ) =g (T )

4¼=

12¼

(11Nc ¡ 2Nf ) ln[¸2(T=Tc ¡ Ts=Tc)2]

� number of colors Nc = 3

� number of flavors Nf = 3

)

)

� 3 fitting parameters

¸ = 2:42 Ts=Tc = 0:56)c = 14:4

Page 5: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

quark (antiquark):

2 N2c ¡ 1 2

µ

2¹2

q

DQPM mass and widthDQPM mass and width

½(!;p) =4!¡

(!2 ¡ p2 ¡M2)2 + 4¡2!2� spectral function:

gluon:

2 g2Ã

³ Nf´

2 NcX ¹2

q

!

M2q(¹q)(T ) =

N2c ¡ 1

8Ncg2

µ

T 2 +¹q

¼2

¡q(¹q)(T ) =1

3

N2c ¡ 1

2Nc

g2T

8¼ln

³2c

g2+ 1

´

Peshier, PRD 70 (2004) 034016

� high temperature regime

M2g (T )=

g2

6

Ã

³

Nc +Nf

2

´

T 2+Nc

2

X

q

¹q

¼2

!

¡g(T ) =1

3Nc

g2T

8¼ln

³2c

g2+ 1

´

Mg

M

�mass and width define quasiparticleproperties

high temperature regimeone-loop perturbative QCD results) Mq(¹q)

¡g ¡q(¹q)

Page 6: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

DQPM thermodynamics (NDQPM thermodynamics (Nff=3)=3)

� entropy: pressure

� energy density: � interaction measure:

s =@P

@T)

" = Ts¡P

W = "¡ 3P = Ts¡ 4PlQCD: Wuppertal-Budapest group

Y. Aoki et al., JHEP 0906 (2009) 088

W = "¡ 3P = Ts¡ 4P

Tc = 158 MeV

c= 0:5 GeV=fm3

DQPM gives a good description of lQCD results !

Page 7: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

DQPM overviewDQPM overview

running coupling:

thermodynamics quantities (pressure, entropy density, energy density) in equilibrium

� fit to lattice QCD results:

)

)

spectral function (mass and width) off-shell quasiparticleproperties

)

½(!;p) =4!¡

running coupling:

®s(T ) =g2(T )

4¼=

12¼

(11Nc ¡ 2Nf ) ln[¸2(T=Tc ¡ Ts=Tc)2]

)

� DQPM provides:

)

properties½(!;p) =

4!¡

(!2 ¡ p2 ¡M2)2 + 4¡2!2

mean fields (1 PI) for quarks (antiquarks) and gluons as well as effective 2-body interactions (2 PI)

Peshier, Cassing, PRL 94 (2005) 172301;Cassing, NPA 791 (2007) 365; NPA 793 (2007)

)

Page 8: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Our goalsOur goals

� study of the partonic system out of equilibrium (beyond the DQPM)

o dynamical equilibration of QGP within the non-equilibrium

� study of the thermal properties of equilibrated partonic system in PHSD

o dynamical equilibration of QGP within the non-equilibrium off-shell PHSD transport approach

o influence of the partonic elastic and inelastic cross sections;

transport coefficients (shear and bulk viscosities) of strongly-o transport coefficients (shear and bulk viscosities) of strongly-interacting partonic matter;

o particle number fluctuations (scaled variance, skewness, kurtosis).

Ozvenchuk, Linnyk, Gorenstein, Bratkovskaya, Cassing, arXiv: 1203.4734

Page 9: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Parton interactions in PHSDParton interactions in PHSD

� degrees of freedom in PHSD:

colored quarks (u, d, s), antiquarks (ubar, dbar, sbar) and gluons

� interaction processes:� interaction processes:

(quasi)-elastic inelastic

q + ¹q! g

g! q + ¹q)

basic processes for the chemicalequilibrationflavor exchange

,

e.g.

q(m1) + q(m2)! q(m3) + q(m4)

q + ¹q! q + ¹q

¹q + ¹q! ¹q + ¹q

g+q!g+q

q + ¹q$ g + g

g$ g + g)

suppressed (<1%)due to the large mass of gluon

) u + ¹u$ g : : : g $ s + ¹se.g.g+q!g+q

g + g! g + g

g + ¹q! g + ¹q

Page 10: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

InitializationInitialization

� cubic box:

o periodic boundary conditions;

o size is fixed to 93 fm3;

o light and strange quarks, antiquarks

� initialization is:

close to the thermal equilibrium with thermal distribution )

o light and strange quarks, antiquarksand gluons;

o various values for the energy density and quark chemical potential.

close to the thermal equilibrium with thermal distribution for the momenta;

Nu ¥Nd ¥Ns = 3¥ 3¥ 1

far out of the chemical equilibrium due to the strangeness suppression:

)

)

Page 11: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Partial widthsPartial widths

� DQPM provides the total width Г of the dynamical quasiparticles

¡total = ¡elastic + ¡inelastic

� partial widths - (quasi)-elastic and inelastic - cannot be defined

¡DQPMg (") = ¡inelastic

g!q+¹q (") + ¡elasticgg (") + ¡elastic

gq (") + ¡elasticg¹q (")

� partial widths - (quasi)-elastic and inelastic - cannot be defined from the DQPM

for gluons:

for quarks: ¡DQPMj (") = ¡inelastic

¹qq!g (") + ¡elasticjg (") + ¡elastic

jq (") + ¡elasticj¹q (")

j = q; ¹q

� obtain the partial widths cross sections for different channels from the PHSD simulations in the box

,

� final check reproduce the lQCD EoS within PHSD in the box)

Page 12: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

(Quasi)-elastic cross sections

Parton cross sections Parton cross sections in PHSDin PHSD

q + q! q + q

q + ¹q! q + ¹q

¹q + ¹q! ¹q + ¹q )

Inelastic channels

¹q + ¹q! ¹q + ¹q

g+q!g+q

g + g ! g + g

g + ¹q! g + ¹q

)

Breit-Wigner cross section

q + ¹q! g

g! q + ¹q¾q¹q!g(") =

2

4

4¼s¡2g!q+¹q

(s¡M2g ("))2 + s¡2

g

=P 2rel)

Page 13: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Detailed balanceDetailed balance

� reactions rates are practicallyconstant and obey detailed balance for

o gluon splittingo quark + antiquark fusion

� (quasi)-elastic collisions lead to thethermalization of all pacticle species

� the numbers of partons dynamicallyreach their equilibrium values throughthe inelastic collisions

o quark + antiquark fusion

q + q! q + q

q + ¹q! q + ¹q

¹q + ¹q! ¹q + ¹qthe inelastic collisions

¹q + ¹q! ¹q + ¹q

g+q!g+q

g + g ! g + g

g + ¹q! g + ¹q q + ¹q! g

g! q + ¹q

Page 14: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Chemical equilibriumChemical equilibrium

� a sign of chemical equilibrium is the stabilization of thenumbers of partons of the different species in time

� final abundancies vary with energy density

Page 15: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Chemical equilibration of strange Chemical equilibration of strange partonspartons

� slow increase of the total number ofstrange quarks and antiquarks

long equilibration times through) long equilibration times throughinelastic processes involvingstrange partons

)

� initial rate for issuppressed by a factor of 9

Nu ¥Nd ¥Ns = 3¥ 3¥ 1

Page 16: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Equation of stateEquation of state

)

� equation of state implemented in PHSD

)

� equation of state implemented in PHSD

lQCD data: Borsanyi et al., JHEP 1009, 073 (2010); JHEP 1011, 077 (2010)

o includes the potential energy density from the DQPM.

o is well in agreement with the DQPM and the lQCD results;

Page 17: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

� Kubo formula for the shear viscosity:

Shear Shear viscotyviscoty (Kubo formalism)(Kubo formalism)

´ =1

T

Z

d3r

1Z

0

dth¼xy(0; 0)¼xy(r; t)i

Z Z

0

Kubo, J. Phys. Soc. Japan 12, 570 (1957);Rep. Prog. Phys. 29, 255 (1966).

� shear component (traceless part):

¼xy(r; t) =

Z

d3p

(2¼)3pxpy

Ef(r;p; t)

� test-particles ansatz ¼xy =1

NX px

j pyj

)� test-particles ansatz ¼xy =1

V

X

j=1

pj pj

Ej

� correlation functions are empirically found to decay exponentially in time:

)

h¼xy(0)¼xy(t)i = h¼xy(0)¼xy(0)i exp³

¡t

¿

´

) ´ =V

Th¼xy(0)2i¿

Page 18: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Volume and number of TP dependenciesVolume and number of TP dependencies

� relaxation time depends on the number of test-particles� relaxation time depends on the number of test-particles

reaches the constant value for large number of TP)

� shear viscosity does not depend on the volume of the system

Page 19: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

� starting hypothesis: - relaxation time

¿ = ¡¡1

Relaxation time approximationRelaxation time approximation

¿

� shear and bulk viscosities assume the following expressions:

Hosoya, Kajantie, Nucl. Phys. B 250, 666 (1985); Gavin, Nucl. Phys.A 435, 826 (1985);Chakraborty, Kapusta, Phys. Rev. C 83, 014906 (2011).

� in numerical simulations test-particle ansatz:

Chakraborty, Kapusta, Phys. Rev. C 83, 014906 (2011).

)

Page 20: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Specific shear viscositySpecific shear viscosity

Kubo ≈ RTA

�minimum close to the critical temperature

� pQCD limit at higher temperatures

� fast increase of the ratio for ´=s T < Tc� fast increase of the ratio for ´=s T < Tc

lower interaction rate of the hadronic system;

smaller number of degrees of freedom (or entropy density).

)

)

QGP in PHSD strongly-interacting liquid )

Page 21: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

� bulk viscosity with mean-field effects:

Bulk viscosity (meanBulk viscosity (mean--field effects)field effects)

Chakraborty, Kapusta, Phys. Rev. C 83, 014906 (2011).

� DQPM expressions for masses:

� significant rise in the vicinityof critical temperature

� in line with the ratio from the lQCD calculations

Meyer, Phys. Rev. Lett. 100, 162001 (2008);Sakai, Nakamura, Pos LAT2007, 221 (2007).

Page 22: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Bulk to shear viscosity ratioBulk to shear viscosity ratio

)

� without mean-field effects:almost temperature independent behavior

� with mean-field effects:strong increase close to the critical temperature)

Page 23: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

� scaled variance:

Scaled varianceScaled variance

� scaled variances reach a plateau in time for all observables

� equilibrium values are less than 1 for all observables MCE

� particle number fluctuations are flavor blind

)

Page 24: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Cell dependence of scaled varianceCell dependence of scaled variance

� impact of total energy conservation in the sub-volumeVn is less thanin the total volumeV

for all scaled variances for large number of cells GCE) )

� for larger box sizes by up to about a factor of 8 (n ≈ 0.15)

) scaled variances reach the continuum limit

Page 25: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

SkewnessSkewness

� skewness:

� skewness characterizes the asymmetry of the distribution� skewness characterizes the asymmetry of the distributionfunction with respect to its average value

Page 26: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

KurtosisKurtosis

� kurtosis:

� kurtosis is equal to 3 for normal distribution� kurtosis is equal to 3 for normal distribution

excess kurtosis:)

lQCD: Ejiri, Karsch, Redlich, Phys. Lett. B 633, 275 (2006)

Page 27: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

SummarySummary

� partonic systems in PHSD achieve kinetic and chemical equilibrium in time

� Kubo formalism and the relaxation time approximation show the same results for the shear viscosity to entropy density ratio

� QGP in PHSD behaves as a strongly-interacting liquid

� significant rise of the bulk viscosity to entropy density ratio in the vicinity of the critical temperature when including the scalar mean-field from PHSD

� scaled variances for the different particle number fluctuations in the box reach equilibrium values in time and behave as a in micro-canonical ensembleequilibrium values in time and behave as a in micro-canonical ensemble

� scaled variances for all observables approach the Poissonian limit (GCE) when the cell volume is much smaller than that of the total box

� skewness for all observables are compatible with zero

� excess kurtosis is compatible with lQCD results for gluons and charged particles

Page 28: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Back up

28

Page 29: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Initial momentum distributions and abundancies

� initial number of partons is given by:

� with a ‘thermal’ distribution:

Ng(q;¹q) =

1Z

0

d!

Z

d3p

(2¼)3fg(q;¹q)(!;p)

f(!;p) = Cip2!½i(!;p)nF (B)(!=Tin)� with a ‘thermal’ distribution:

� spectral function:

f(!;p) = Cip2!½i(!;p)nF (B)(!=Tin)

½i(!;p) =°i

Ei

Ã

1

(! ¡Ei)2 + °2i

¡1

(! + Ei)2 + °2i

!

=4!°i

(!2 ¡ p2 ¡M2i )2 + 4°2

i !2

1� Fermi and Bose distributions:

� initial parameters:

� four-momenta are distributed according to the by Monte Carlo

nF (B) =1

e(!¡¹)=Tin § 1

Tin; ¹; Ci

f(!;p)

Page 30: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Determination of meanDetermination of mean--field parton potentialsfield parton potentials

Partonic potential energy density:Partonic potential energy density:

1.5

2.0

2.5

3.0

VP/ρρρρ

S

V0/ρρρρ

S

VS/ρρρρ

S

# [

GeV

]

+ Constrain: + Constrain:

1 10 100

0.0

0.5

1.0

1.5

# [

GeV

]

ρρρρS [fm

-3]

+ Constrain: + Constrain:

P = <PP = <Pxxxx> > -- VVss + V+ V00

ε = <pε = <p00> + V> + Vss + V+ V00

MeanMean--field potentialfield potential::

Us = dVs/dρs U0 = dV0/dρ0

2.5

3.0

U0

1rT~

N,NNN xxqqgp

++++++++++++++++++++====++++++++====ρρρρ

Parton density:

�� PHSDPHSD1 10 100

0.0

0.5

1.0

1.5

2.0

U0

US

# [

GeV

]

ρρρρS [fm

-3] NPA 831 (2009) 215NPA 831 (2009) 215

q,q,g:x,P

rT~

)T(N2

x

s

x

s

x

====≡≡≡≡

++++

ωωωωρρρρ

Scalar parton density:

Page 31: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Effective 2Effective 2--body interactions of timebody interactions of time--like partonslike partons

22ndnd derivatives ofderivatives of

interaction densitiesinteraction densitiesinteraction densitiesinteraction densities

0.0

0.2

0.4

0.6

3

4

5

6

7

υυυυqq

υυυυgg

υυυυqg

inte

ract

ion

str

engh

t [G

eV f

m3 ]

υυυυ /υυυυ

υυυυgg

/υυυυqq

1 10 100 1000

-0.4

-0.2

10 100 10000

1

2

3qq

ρρρρP [fm

-3]

inte

ract

ion

str

engh

t [G

eV f

m

ρρρρP [fm

-3]

υυυυqg

/υυυυqq

effective interactions turn strongly attractive below 2.2 fmeffective interactions turn strongly attractive below 2.2 fm--33 !! �� PHSDPHSD

9/4

Page 32: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Dynamical phase transition & different intializations

� the transition from partonic to hadronicdegrees-of-freedom is complete after about9 fm/c

� a small non-vanishing fraction of partons –� a small non-vanishing fraction of partons –local fluctuations of energy density from cellto cell

� the equilibrium values of the partonnumbers do not depend on the initial flavornumbers do not depend on the initial flavorratios

� our calculations are stable with respectto the different initializations

Page 33: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Finite quark chemical potentials

33

� the phase transition happens at the same critical energy εc for all µq

� in the present version the DQPM and PHSD treat the quark-hadron transition

as a smooth crossover at all µq

Page 34: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Spectral function

� the dynamical spectral function is well described by the DQPM form in thefermionic sector for time-like partons

34

Page 35: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Deviation in the gluonic sector

� the inelastic collisions are more important at higher parton energies

35

� the inelastic collisions are more important at higher parton energies

� the elastic scattering rate of gluons is lower than that of quarks

� the inelastic interaction of partons generates a mass-dependent width for the gluon spectral function in contrast to the DQPM assumption of the constant width

Page 36: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

PHSD: Hadronization detailsPHSD: Hadronization details

Local covariant offLocal covariant off--shell transition rate for q+qbar fusion shell transition rate for q+qbar fusion => => meson formationmeson formation

usingusing

�� NNjj(x,p)(x,p) is the is the phasephase--space density of partonspace density of parton j at spacej at space--time position time position xx and 4and 4--momentum momentum pp��WWmm is the is the phasephase--space distribution of the formed ‚prespace distribution of the formed ‚pre--hadrons‘:hadrons‘:(Gaussian in phase space)(Gaussian in phase space)�� is the is the effective quarkeffective quark--antiquark interactionantiquark interaction from the DQPMfrom the DQPM

Cassing, Bratkovskaya, PRC 78 (2008) 034919; Cassing, Cassing, Bratkovskaya, PRC 78 (2008) 034919; Cassing, EEPJ ST PJ ST 168168 (2009) (2009) 33 36

Page 37: Dynamical equilibration and transport coefficients of ... · thermodynamics quantities (pressure, entropy density, energy density) in equilibrium fit to lattice QCD results:)) spectral

Transport properties of hot glueTransport properties of hot glue

shear viscosity ratio to entropy density:shear viscosity ratio to entropy density:

Why do we need broad quasiparticles?Why do we need broad quasiparticles?

1pQCD

ηη ηη/s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.1

1/4ππππ

T = 2 TC

Nf=0

γγγγg [GeV]

� otherwise otherwise η/s will be too high!η/s will be too high!


Recommended