+ All Categories
Home > Documents > Early Voltage

Early Voltage

Date post: 02-Jun-2018
Category:
Upload: ankurjaiswal
View: 219 times
Download: 0 times
Share this document with a friend
25
ESE319 Introduction to Microelectronics 1 2009 Kenneth R. Laker, update 11Sep12 KRL Early Effe ct & BJT Biasing )  Early Effect )  DC BJT Behavior )  DC Biasing the BJT
Transcript
Page 1: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 1/25

ESE319 Introduction to Microelectronics

12009 Kenneth R. Laker, update 11Sep12 KRL

Early Effect & BJT Biasing 

) Early Effect)

 DC BJT Behavior ) DC Biasing the BJT

Page 2: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 2/25

ESE319 Introduction to Microelectronics

22009 Kenneth R. Laker, update 11Sep12 KRL

V  BE 

V CE 

 I C 

 I C 

V CE 

Saturationregion

0

-V  A

V  BE1

V  BE2

V  BE3

V  BE4

Forward-Activeregion

Ideal NPN BJT

 TransferCharacteristic

Early Effect 

Page 3: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 3/25

ESE319 Introduction to Microelectronics

32009 Kenneth R. Laker, update 11Sep12 KRL

Early Effect - Continued 

Collector voltage has some effect on collector current – it increases slightly with increases in voltage. This phenomenonis called the “Early Effect” and is modeled as a linear increase

in total current with increases in v CE :

iC " I S e

v BE 

V T  -1* vCE 

V  A .

  is called the Early voltage and ranges from about 15 V 

  to 150 V .

NMOS transistor 3n"

  1

V   A

V  A"/V CE 

/ I C 

 I C 

Page 4: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 4/25

ESE319 Introduction to Microelectronics

42009 Kenneth R. Laker, update 11Sep12 KRL

Early Effect - Continued 

-V  A

V CE 

V  BE  = ...

V  BE 

 = ...

V  BE 

 = ...

V  BE 

 = ... I 

V CE 

V  BE 

 I C 

Saturationregion

Fwd-Activeregion

15 V #  V  A

 #  150 V 

Observed by

James Earlyfrom BTL

 slope"1! r o

Page 5: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 5/25

ESE319 Introduction to Microelectronics

52009 Kenneth R. Laker, update 11Sep12 KRL

Early Effect - Continued iC " I 

S e

v BE 

V T  -1*vCE 

V  A .Total (bias+signal) quantities:

iC " I C    v BE "V  BE    vCE "V CE 

 I C " I S e

V  BE 

V T 

-1*

V CE 

V  A

 ." I C 

-1*

V CE 

V  A

 .

Consider dc (bias) condition (signal = 0):

Let's call the idealized collector bias current (no Early Effect) I' C , i.e.

 I C ' " I S e

V  BE 

V T 

iC " I C *ic  v BE "V  BE *vbe   vCE "V CE *vce

Page 6: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 6/25

ESE319 Introduction to Microelectronics

62009 Kenneth R. Laker, update 11Sep12 KRL

We shall define:   r o"V  A

 I C ' 

 I C " I C ' *V CE 

r o

 I C " I C '  -1*V CE 

V  A ." I C '  *V CE 

V  A

 I C ' 

Rearranging slightly:

Early Effect - Continued 

The dc current due to both V  BE 

 and V CE 

 is:

MOS transistor 

r o"V   A

 I  D I C 

' " I S e

V  BE 

V T 

 I  D"1

2k n

'   W 

 L-V GS $V t .

2

=>  r o = f(V 

 BE  )

r o

Page 7: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 7/25

ESE319 Introduction to Microelectronics

72009 Kenneth R. Laker, update 11Sep12 KRL

 Although the bias current is better modeled by including the Earlyeffect

 I C " I C 

' *

V CE 

r o

We – almost always – will ignore the second term above in handcalculations and use our ideal expression for the bias current:

 I C % I C ' " I S e

V  BE 

V T 

Early Effect - Continued 

Page 8: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 8/25

ESE319 Introduction to Microelectronics

82009 Kenneth R. Laker, update 11Sep12 KRL

The Early term adds r o to the large signal model:

Early Effect - Continued 

 I C 

 I C ' " I S e

v BE !V T 

V CE 

V  BE  V 

CE r o

V CE "- I C $ I C '  . r o

 I C " I C ' *V CE 

r o

V  BE 

r o

Page 9: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 9/25

ESE319 Introduction to Microelectronics

92009 Kenneth R. Laker, update 11Sep12 KRL

For typical operating conditions:

V  A%50$100V.

 I C ' %1mA.

r o"V  A

 I C '   %

100V 

10$3 A"100 k 0

We usually can ignore r o since, in practice, r 

o is in parallel

with other resistors, which are much smaller than .For the time being, you will be specifically told if you mustinclude r 

o in your circuit analyses and designs.

Early Effect - Continued 

100 k 0

Page 10: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 10/25

ESE319 Introduction to Microelectronics

102009 Kenneth R. Laker, update 11Sep12 KRL

Simulation Results

r o = "

r o ! "

 slope =-1/R

 I C  (mA)

V CE 

 (V)

12

10

  8

  6

  4

  2

  00 2 4 6 8 10 12

Early Effect

load-line

Note: r o is in parallel with R

C .

V CC 

 I C "

  1

 RC  -V CC $V CE .

 RC 

load-line

dictated by circuit

V CE 

 I C 

Page 11: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 11/25

ESE319 Introduction to Microelectronics

112009 Kenneth R. Laker, update 11Sep12 KRL

 Active Mode Conditions

Base-emitter diode forward-biased:

Base-collector diode reverse-biased:

V  BE '0.7V 

V  BC "V  BE $V CE &0.5V 

$V CE &0.5

$V  BE #V CE '0.2

V CE '0.2V 

Forward-Active(ideal cond.)

V  BE  > 0V 

 BC  < 0

i E  = i

C  + i

 B

vCE 

 = vCB

 + v BE 

Page 12: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 12/25

ESE319 Introduction to Microelectronics

122009 Kenneth R. Laker, update 11Sep12 KRL

 Amplifier Biasing GoalsWe wish to set a stable value of  I 

C  so that we can apply a

signal voltage or signal current to the emitter-base circuit andobtain an amplified (undistorted) version of the signal between

the collector and ground.

The transistor cannot saturate during operation, i.e.

vCE ,0.2V.

 And it cannot cut off  during operation, i.e.iC ,0mA.

Page 13: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 13/25

ESE319 Introduction to Microelectronics

132009 Kenneth R. Laker, update 11Sep12 KRL

 Amplifier DC Bias Problem

iC " I C *ic

v BE "V  BE *vbe

vCE "V CE *vce

Timev I  = v

 BE 

vO = v

CE 

 RC 

V CC 

iC 

vO

V CE 

V CC 

0

Time

vi = v

be

V  BE 

Time

vo = v

ce

V CEsat 

 = 0.2 V 

v I 

0.5 1.51.0

Q

cutoff   saturation

 fwd active

 slope = Av

Page 14: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 14/25

ESE319 Introduction to Microelectronics

142009 Kenneth R. Laker, update 11Sep12 KRL

 Amplifier Action   ) Base current source: )  A small ac change in base current

results in a large ac collector current(  ).

) This yields a large change in the ac

collector voltage vce.

) Base voltage source:) A small ac change in base voltage

results in a large change in the accollector current (i

c = I 

S  exp(v

be /V 

T  )).

) This yields a large change in theac collector v

ce voltage.

2 ib

vC 

iC 

i B

Source v BE 

V CC 

 RC 

(ac + dc)

vCE 

Page 15: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 15/25

ESE319 Introduction to Microelectronics

152009 Kenneth R. Laker, update 11Sep12 KRL

Voltage Source Input With Collector Load 

Solution of the simultaneousequations exists where the twocurves: the exponential (i

,v BE 

) and

the straight line (iC ,v

CE ) intersect:

iC " I S e

v BE 

V T 

iC "V CC $vCE 

 RC 

V CC $vCE 

 RC 

" I S e

v BE 

V T 

Load Line

BJT

Circuit

(ac + dc)

vCE 

Page 16: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 16/25

ESE319 Introduction to Microelectronics

162009 Kenneth R. Laker, update 11Sep12 KRL

Scilab Plot of NPN Characteristic//Calculate and plot npn BJT collector //characteristic using active mode modelVT=0.025;VTinv=1/VsubT;IsubS=1E-14;

vCE=0:0.01:10;for vBE=0.58:0.01:0.63  iC=IsubS*exp(VTinv*vBE);  plot(vCE,1000*iC); //Current in mA.endVCC=10;

Rc=10000;vLoad=0:0.01:10;iLoad=(VCC-vLoad)/Rc;plot(vLoad,1000*iLoad);

Page 17: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 17/25

ESE319 Introduction to Microelectronics

172009 Kenneth R. Laker, update 11Sep12 KRL

NPN Transistor Load Line

Vce (V.)

Ic (mA.)

0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Plot Output v BE "0.63V.

v BE "0.62V.

v BE "0.60V.

Load Line

iC "

V CC $vCE 

 RC 

V CC "10V

 RC "10k 0

/ v BE 

"0.04V

/ vCE %7V

iC 

 (mA)

vCE 

 (V) =vC 

Page 18: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 18/25

ESE319 Introduction to Microelectronics

182009 Kenneth R. Laker, update 11Sep12 KRL

 Amplifier ActionNote that as v

BE  varies from about 0.59 V  to 0.63 V , v

CE  varies

from about 1 V  to 8 V !

 A 0.04 V  peak-to-peak swing of v BE 

 results in an 7 V  peak-to-

peak swing in vCE 

 - a voltage-gain ratio of 7/0.04, or about 175.

The input signal has two components: a dc one called thebias voltage, and an ac one called the (small ) signal

voltage. For proper operation, let:

V  BE "V  BIAS "-v BE - MAX .*v BE - MIN ..!2"0.61V 

vbe"v signal "-v BE - MAX .$v BE - MIN ..!2"0.02V peak 

Page 19: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 19/25

ESE319 Introduction to Microelectronics

192009 Kenneth R. Laker, update 11Sep12 KRL

Candidate Bias Configurations

Base voltagesource

Base currentsource

Emitter currentsource

Page 20: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 20/25

ESE319 Introduction to Microelectronics

202009 Kenneth R. Laker, update 11Sep12 KRL

Drive Base With a Base Current Source

 Assume:   2"100

 I C "2 I  B"100(5(10$6

 I C "0.5mA.

For this collector current:

V CE "V CC $ RC  I C 

V CE 

"10$104(0.5(10

$3"5V 

The transistor is almost right in thecenter of the desired operatingregion!

V CE 

 I C   R

c = 10 k !

V CC 

 = 10 V  I 

 B

 I = 5 µ A

Q1

Page 21: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 21/25

ESE319 Introduction to Microelectronics

212009 Kenneth R. Laker, update 11Sep12 KRL

Current Bias Beta DependenceUnfortunately, # is often poorly controlled and may easily

vary from 100 to 200. And # is also temperature dependent!

 I C "100(5(10$6"0.5mA.

For # = 100:

The BJT with a V CE 

 = 5 V  

For # = 200:

 I C "200(10(5$6"1.0mA.

The BJT is saturated!

Base current source biasing ! BIAS POINT IS UNSTABLE.

V CE "10$104(0.5(10

$3"5V    V CE "10$10

4(1(10

$3"0V 

V CE "V CC $ RC  I C 

Page 22: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 22/25

ESE319 Introduction to Microelectronics

222009 Kenneth R. Laker, update 11Sep12 KRL

Drive Base with a Base Voltage Source

For an I C  of 0.5 mA:

V  BE "V T ln - I C 

 I S .

Given:   I S "10$14

 A

 I C "0.5(10$3 Aand:

V  BE "0.025ln -0.5(1011.

V  BE "0.025(24.635"0.616V 

OK. Apply 0.616  volts to thebase and we have the desiredcollector current!

Since V CE 

 = 5 V  the transistor is

nearly at the center of the desiredoperating region!

 I C " I S e

V  BE 

V T 

V CC 

 = 10 V 

 Rc = 10 k !

V  BE  

= 0.616 V 

Q1

Page 23: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 23/25

ESE319 Introduction to Microelectronics

232009 Kenneth R. Laker, update 11Sep12 KRL

Voltage Bias I S 

 and V CE 

 DependenceUnfortunately, I 

S  is highly temperature-dependent, doubling

for every 5oC  increase in temperature.

If the base-emitter voltage is chosen to give  I C  = 0.5 mA at 20oC  (68o F ),

it will be 2x at 25oC  and 0.5x at 15oC .

 I C  is also highly sensitive to V 

 BE . Consider two values I 

C  and 10  I 

C :

10 I C 

 I C " I S e

V  BE10

V T 

 I S eV  BE1V T 

V  BE10$V  BE1"V T ln -10.

V  BE10$V  BE1"0.025(2.3025"0.058V.

Less than a 60 mV  change in V  BE 

 voltage increases I C  by an

order of magnitude (10X ).  BIAS POINT IS UNSTABLE.

Page 24: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 24/25

ESE319 Introduction to Microelectronics

242009 Kenneth R. Laker, update 11Sep12 KRL

Emitter Current SourceThis holds collector current close to its desired value since:

 I C "1 I  E 

Changes in  I C  due to variations in " in the range determined

by the extremes of # are negligible, i.e.

100+2+200#100

101+1+

200

201#0.990+1+0.995

There is considerable variation in base current, however, but

this is usually of no consequence.

 I  B"  I  E 

2*1#

  I  E 

101+ I  B+

  I  E 

201

1"  2

1*2

Page 25: Early Voltage

8/10/2019 Early Voltage

http://slidepdf.com/reader/full/early-voltage 25/25

ESE319 Introduction to Microelectronics

252009 Kenneth R. Laker, update 11Sep12 KRL

Conclusion

Biasing a BJT poses potential large bias stability prob-lems, since its characteristics are highly sensitive to

temperature and since its electrical properties (princip-ally #) can vary widely from one device to another!

The next lecture sequence will cover some techniques for

stabilizing the BJT bias.


Recommended