+ All Categories
Home > Documents > Earth observation of water cycle and applications in ... · Earth observation of water cycle and...

Earth observation of water cycle and applications in ... · Earth observation of water cycle and...

Date post: 27-Jun-2019
Category:
Upload: donhi
View: 218 times
Download: 0 times
Share this document with a friend
78
INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Earth observation of water cycle and applications in drought monitoring and prediction Z. Bob Su International Institute for Geo-Information Science and Earth Observation (ITC) Enschede, The Netherlands E-Mail: [email protected] http://www.itc.nl
Transcript

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Earth observation of water cycle andapplications in drought monitoring and

prediction

Z. Bob SuInternational Institute for Geo-Information Science

and Earth Observation (ITC)Enschede, The Netherlands

E-Mail: [email protected]://www.itc.nl

2

Earth Observation of The Water Cycle

Precipitation(100%)Water Storage

in Ice and Snow

Surface Runoff

Infiltration

Evaporation (100%)

Groundwater Storage & FlowRiver Discharge

(35%)

Soil Moisture

RadiationRadiation

VapourTransport

(35%)

Evaporation/Transpiration

(65%)

Condensation (65%)

Water Resources Management

3

Why Drought Monitoring & Prediction ?

Drought disasters have often caused greathunger, social instability, large scalemigration of the population and extinction ofcivilizations in the history.

The conflict between supply and demand ofwater resources constitutes the biggestproblem for food security of a hugepopulation in China.

Drought has become a key factor constrainingChina’s economic development.

4

Problem statements

Drought is one of the major environmental disastersin various parts of the world

Quantification of drought distribution in space andtime is very difficult

Usually, the severity of droughts can be assessed withmeteorological based indices (e.g., the standardisedprecipitation index), or satellite based indices (e.g.,vegetation indices)

But the former fail to capture short-term variationand the latter is difficult to interpret forheterogeneous terrain

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

The Dragon Drought Project teamEuropean Partners:European Partners:

(1) (1) Z. Bob Su (PI), Tom Rientjes, Rogier van Z. Bob Su (PI), Tom Rientjes, Rogier van derder Velde, Marcel van Velde, Marcel van HelvoirtHelvoirt, , WenjingWenjingLin,Lin, ITC, The NetherlandsITC, The Netherlands

(2) (2) Massimo Massimo MenentiMenenti, , CNR CNR –– ISAFoMISAFoM, , ItalyItaly(3) (3) Jose Sobrino,Jose Sobrino, UniversitatUniversitat de Valencia, Spain de Valencia, Spain(4) (4) Zhao-Liang Li,Zhao-Liang Li, GRTR/LSIIT, GRTR/LSIIT, ULPULP, France, France(5) (5) WoutWout VerhoefVerhoef,, National Aerospace Laboratory, The NetherlandsNational Aerospace Laboratory, The Netherlands(6) (6) Peter Peter TrochTroch, , Wageningen University/University of Arizona, Wageningen University/University of Arizona, The NetherlandsThe Netherlands(7) (7) KeesKees van van DiepenDiepen, , Alterra, Alterra, The NetherlandsThe Netherlands(8) (8) Michael Petrakis, & C. Michael Petrakis, & C. GainnakopoulosGainnakopoulos,, National Observatory of Athens, Greece National Observatory of Athens, Greece

Chinese Partners:Chinese Partners:(1)(1) YouqiYouqi Chen (PI), Chen (PI), LiminLimin Wang, Wang, Chinese Academy of Agricultural Sciences, BeijingChinese Academy of Agricultural Sciences, Beijing(2) (2) Jiren Li,Jiren Li, IWHR, Beijing IWHR, Beijing(3) (3) Yaoming Ma,Yaoming Ma, Institute of Tibetan Plateau ResearchInstitute of Tibetan Plateau Research, CAS, , CAS, LashaLasha/Beijing/Beijing(4) (4) Li Wan, Li Wan, China University of China University of GeoscienceGeoscience, Beijing, Beijing(5) (5) Yanbo He, Yanbo He, National Meteorological National Meteorological CenterCenter, Beijing, Beijing(6) (6) QinhuoQinhuo Liu, Liu, Institute of Remote Sensing Applications, CAS, Beijing Institute of Remote Sensing Applications, CAS, Beijing(7) (7) CaixingCaixing Li, Li, Academy of Academy of OptoOpto-Electronics, CAS, Beijing, China-Electronics, CAS, Beijing, China(8) (8) Jun Jun WenWen,, Cold and Arid Regions Environmental and Engineering Research Institute,Cold and Arid Regions Environmental and Engineering Research Institute,

CAS, LanzhouCAS, Lanzhou

6

Project Objectives

To develop an operational system fornationwide drought monitoring anddrought impact assessment forapplication in agriculture and waterresources management in China

7

Wet Condition: Maximum TranspirationTranspiration limited by plant wateravailability in the root zone

What is Drought ?What is Drought ?

Dry Condition: No transpiration

8

Approaches for Drought Monitoring and Prediction

Approach 1: Surface Energy Balance To derive relative evaporation & relative soil moisture in the

root zone from land surface energy balance To define a quantitative drought severity index (DSI) for

large scale drought monitoring

Approach 2: Soil Moisture Retrieval To determine surface soil moisture To assimilate surface SM into a hydrological model to derive

root zone soil moisture

To validate the methodologies on the basis of largescale field experiments

9

Climate &Satellite

InformationSystem

Drought Monitoring & Prediction

DecisionDecisionMakersMakers

MeteorologicalMeteorologicalDataData

Surface Energy Balance SystemSurface Energy Balance System(SEBS)(SEBS)

Drought Information System(Drought Severity Distribution)

InternetInternet

(Su et al., 2003a,b)

Surface Soil MoistureSurface Soil Moisture

Data AssimilationData Assimilation(to infer root zone(to infer root zonewater availability)water availability)

10

Wind

Solar Radiation

Approach 1: Surface Energy Balance

Sens

ible

Hea

t (d

iffus

ion/

conv

ectio

n)So

il H

eat

(Con

duct

ion)

Ther

mal

radi

atio

n

Late

nt H

eat

(Pha

se c

hang

e)

11

SEBS - The Surface Energy Balance System

SEBS Core Modules

Boundary Layer Similarity Theory

Roughness for Heat Transfer

Surface Energy Balance Index

Meteorological Data

Boundary LayerVariables

Remote Sensing Data

VIS

NIR TIR

Input Output

Evaporative Fraction

Turbulence Heat Fluxes

ActualEvaporation

Z. Su, 2002, The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,Hydrology and Earth System Sciences, 6(1), 85-99.

12

Approach 2: Microwave remote sensing of soil moisture

13

EO Data and Ground Data CollectionCampaigns

We use ESA and other relevant satellite data as majordata source in combination with other data (e.g.meteorological and drought statistics, etc.).

EO data acquisition (MERIS, AATSR, ASAR, WSC - ref.Rogier van der Velde)

Routine meteorological data and model outputs Campaigns for algorithms development and validation

(SPARC2004, SEN2FELX2005, CAMP/Tibet, LOPEX2005,EAGLE2006) and other field experiments conduced inthe summer 2006 (Tibetan soil moisture experiment2006).

14

Ground Data Collection Campaigns

9 dedicated field experiment sites for thedevelopment and validation of algorithms. 3 sites in Europe (Barrax in Spain, Cabauw and

Loobos in the Netherlands) 6 sites in China (CAMP/Tibet site, The Heihe Oasis-

Desert Site, Luancheng agro-ecological ObservationStation (Hebei), CAS Xiaotangshan & Shunyi Fieldexperiment sites in Beijing, The Yellow RiverHeadwater Site, Loess Plateau Experiment inGansu).

13 application demonstration sites in China.

15

• Basic Water Cycle and Earth Observation Process Studies• Calibration/Validation of Earth Observation Data and Instrument• PhD & MSc Education

ITC Earth Observation Research and Education Sites

16

Sensible Heat fluxes derived withSEBS and AHS data, 15 July 2004(A. Gieske)

Sensible Heat Fluxwith SEBS and ASTER data,18 July 2004

WM^-2

Field campaigns – validation of retrieval algorithms

17

EAGLE2006EAGLE2006(8 June (8 June –– 2 July 2006) 2 July 2006)

EAGLE Netherlands Multi-purpose, Multi-Angle and Multi-sensor,EAGLE Netherlands Multi-purpose, Multi-Angle and Multi-sensor,In-situ, Airborne and Space Borne Campaigns over Grassland and ForestIn-situ, Airborne and Space Borne Campaigns over Grassland and Forest

ESA, ItalyESA, ItalyITC, The NetherlandsITC, The Netherlands

University of Valencia, SpainUniversity of Valencia, SpainINTA, SpainINTA, Spain

ITRES, CanadaITRES, CanadaDLR, GermanyDLR, Germany

WUR / ALTERRA, The NetherlandsWUR / ALTERRA, The NetherlandsLSIIT, FranceLSIIT, France

NLR, The NetherlandsNLR, The NetherlandsKNMI, The NetherlandsKNMI, The Netherlands

WUR / Meteorology Group, The NetherlandsWUR / Meteorology Group, The NetherlandsRIVM, The NetherlandsRIVM, The Netherlands

WH Stichtse Rijnlanden, The NetherlandsWH Stichtse Rijnlanden, The NetherlandsMIRAMAP, The NetherlandsMIRAMAP, The Netherlands

University of Washington, USAUniversity of Washington, USAUniversity of South Carolina, USAUniversity of South Carolina, USA

ISAFoMISAFoM, Italy, ItalyUtrecht University, The NetherlandsUtrecht University, The NetherlandsStaatsbosbeheerStaatsbosbeheer, The Netherlands, The Netherlands

FugroFugro, The Netherlands, The Netherlands

GAME/Tibet (1997-2001)CAMP-Tibet (2001-2005)

CEOP (2001-2010)

HEIHE

Yucheng

LOPEXXiaotangshan

Yellow River HW

19

?Ô¶¯ÆøÏóÕ?

GEWEX Asian Monsoon Experiment (GAME) inGEWEX Asian Monsoon Experiment (GAME) inthe Tibet Plateau (GAME-Tibet,1996-2000)the Tibet Plateau (GAME-Tibet,1996-2000)

20

IOP of GAME/Tibet.(1998.5-1998.9)

Data free (CD-Rom,website)

21

CEOP (Coordinated Enhanced Observing Period) Asia-CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project in the Tibetan PlateauAustralia Monsoon Project in the Tibetan Plateau(CAMP/Tibet, 2001-2010)(CAMP/Tibet, 2001-2010)

22

23

SMEX02 and SMEX03were conducted in thesummer of 2002 and 2003 inIowa and Oklahoma states,United States of America(Organised by Dr. T.Jackson).

LOPEX05 - LOess plateau land-atmosphereinteraction Pilot EXperiment, 2005, Pingliang,Gansu, China (To be organised by Prof. JunWen)

24

Map of monitoring stations for soil moisture

25

Scheme to estimate ideal soil water deficit and drought severityon the basis of meteorological data only

PotentialEvaporation

at each weatherstations

Potential Soil Water Deficit forIdeal Soils

(Ideal soil: Large scale regionalrepresentative natural bare soil,

under non-irrigation, non-vegetationconditions)

(Runoff generation: Actualprecipitation less potentialevaporation and soil water

depletion)

Wind speed, airtemperature and

humidity, cloudinessfrom over 600meteorological

stations over China

LinearLinearinterpolation tointerpolation toproduce mapsproduce maps

of potentialof potentialevaporationevaporationover Chinaover China

InterpolatedInterpolatedmaps of soilmaps of soil

water deficit andwater deficit anddrought severitydrought severityof ideal soil onof ideal soil on

the basis ofthe basis ofhistorical datahistorical data

Actualprecipitation from

meteorologicalstations over

China

Empiricaldepletion curve,maximum soilwater content

26

SEBS - Surface Energy Balance SystemBasic Equations (Su, 2002, Hydrol. Earth Sys. Sci.)

wetdry

wetr

HH

HH

!

!!=" 1

GR

E

GR

E

n

wetr

n!

"#=

!=#

$$

( ) !!"

#$$%

& '+!!

"

#$$%

& ()((=

**

+1

0

ee

r

CGRH s

ew

p

nwet

0

0,0

GRH

orHGRE

ndry

dryndry

!=

"!!=#

wetnwet

wetnwet

EGRH

orHGRE

!

!

""=

""=

0

0,

wet

wet

wet

r

E

EE

E

E

!

!!

!

! ""==# 1

EHGRn

!++=0

( ) ( )

( )GRE

GRH

n

n

!"#=

!"#!=

$

1

27

P0 I0 E

zi

zi+1

qi

qi+1

Ic

Zero flux planeor bottom of active rooting zone

θi

Soil Water Deficit Calculation

P0: PrecipitationI0: IrrigationE: EvaporationIc: Capillary/percolation fluxθi : Soil moisture contentqi : Soil water fluxzi : Depth

28

From Energy Balance to Water Balance

r

wetwetwetE

E

E

ER !====

"

"

#

#

0!= drydryE "# wetwetE !" =

EIIPttc!++=! 0012 )()( ""

wetdry

wet

HH

HHRDSI

!

!=!=1

R: Relative PlantAvailable SoilWater ContentDSI: Droughtseverity Index

29

Relation of evaporative fraction to surface variables(albedo, fractional vegetation coverage and surfacetemperature)

The relative evaporation is given as

30

Relation of evaporative fraction to surface variables(albedo, fractional vegetation coverage and surfacetemperature)

31

Relation of evaporative fraction to surface variables(albedo, fractional vegetation coverage and surfacetemperature, an example)

32

Normalized temperature difference versusalbedo, a). Tomelloso )

33

Normalized temperature difference versusalbedo, b). Lleida )

34

Normalized temperature difference versusalbedo, c). Badajoz )

35

July 1, 2000July 1, 2000 July 8, 2000July 8, 2000

Temporal-Spatial Distributions of DroughtsTemporal-Spatial Distributions of Droughts

36

Example: SATELLITE BASED REGIONAL-SCALE EVAPOTRANSPIRATION IN THEHEBEI PLAIN, N.E. CHINA(W. Lin, R. van de Velde, Z. Su, 2006)

Satellite observations (MODISL2 data: 8.2004 – 3.2005,surface reflectance, surfacetemperature products & landcover products)

Meteorological observations(Chinese NationalMeteorological Centre:relative humidity, wind speed,air temperature at 2m height,actual vapour pressure,rainfall, sunshine hours andopen water evaporation, etc.)

Lysimeter observations ( CASLuancheng Agro-EcosystemStation: ground truthevapotranspiration)

0 1,250 2,500km

Location of city

N

Capital city

Beijing

Langfang

Tianjin

Shijiazhuang

Bazhou

Baoding

Xingtai

Hengshui

Handan

Cangzhou

BoHai Sea

Tai

Han

g M

ounta

in

Ta

iHan

g M

ou

nt a

in

37

SEBS Daily Evapotranspiration in Hebei Plain

!

"

#

$

%

&

'

(

#!!%)*)" #!!%)+)#! #!!%)"")+ #!!%)"#)#+ #!!&)#)"( #!!&)%)*

,-./012345

63-740893:;<=3>?:-=3<-;>01..234)

"5

@3==/>0;=0?:3=?/7409/A/<3</2 B=;:73>20000000C;=/?<000000000 A=3??73>2000000?D=E@73>2000000 E=@3>03>20@E-7<)E:F3</=0000000000

1.8.2004 4.3.2005

38

Temporal-Spatial Distributions of DroughtsTemporal-Spatial Distributions of Droughts

39

Drought Severity Index vs Normalised Plant Available Water Estimated with Water

Balance Over the Continental China

y = -0.42x + 0.63

R2 = 0.17

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Drought Severity Index

Esti

mate

d P

lan

t A

vaia

lble

Wate

r

Comparison to Water Balance Calculation

!"#$#%&'()*+,-*.

/)0)123+24)5)23,,

67)0)238+

2

237

239

23,

23:

-

-37

2 237 239 23, 23: - -37

;<&=>?#)"@A@<%#/)B'C@4

D&<E$F%G@)HF$'#)IA$%F$JF@)

B'C@4

Water Balance forWater Balance forAll StationsAll Stations

DroughtDroughtSeverity IndexSeverity Index

DroughtDroughtSeverity IndexSeverity Index

Drought SeverityDrought Severityfor Each Stationfor Each Station

40

Comparison to Soil Moisture Measurements

April 2000

0

10

20

30

40

50

60

70

80

0 20 40 60

Relative Evaporation (%)

Avera

ge R

ela

tive S

oil

Mois

ture

up to d

epth

of 50cm

(%

) Average

Relative Soil

Moisture up

to Depth of

50 cmPredicted

Average

Relative Soil

Moisture

6

April 2000

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Relative Evaporation (%)

Averg

ae R

ela

tive S

oil

Mois

ture

up to 2

0 c

m D

epth

(%

) Average

Relative Soil

Moisture up

to Depth of

20 cmPredicted

Average

Relative Soil

Moisture

April 2000

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Relative Evaporation (%)

Rela

tive S

oil

Mois

ture

(at1

0

cm

depth

)

SOIL

MOISTURE

(at10 cm

depth)Predicted

Average

Relative Soil

Moisture

Relative evaporation vs relative soil moisture

Time Series of Drought Severity Index

41

Remote sensing of soil moisture using using WindscatteromterWindscatteromter data data

42

Sites and database

GAME/Tibet field campaign(Courtesy: Prof. Yaoming Ma, Prof. Toshio Koike)

43

0

20

40

60

80

100

120

January-92

July-92

January-93

July-93

January-94

July-94

January-95

July-95

January-96

July-96

January-97

July-97

January-98

July-98

January-99

July-99

January-00

RS

M(%

)

0

100

200

300

400

500

600

Yearl

y p

recip

itati

on

(m

m)

Rainfall Amdo Naqu

Retrieval with change detection method (Wen & Su,2003b, Geophys. Res. Letter)

44

0

10

20

30

40

50

August

-97

Sep

tem

ber

-97

Oct

ober

-97

Nove

mber

-97

Dec

ember

-97

Januar

y-98

Januar

y-98

Mar

ch-9

8A

pri

l-98

May

-98

May

-98

June-

98Ju

ly-9

8A

ugust

-98

Vo

lum

e w

ate

r c

on

ten

t(%

)

0

20

40

60

80

100

Re

lati

ve

va

ria

tio

n R

SM

V(%

)

RSM/Anduo SM(0-2cm) SM(0-4cm)

Retrieval with change detection method (Wen &Su, 2003b, Geophys. Res. Letter)

45

Retrieval with change detection method: Relative Soil Moisture`

The temporal relative soil moisture isconsistent with the converted ground VSM inthe Tibetan plateau.

46

Retrieval with change detection method: Relative Soil Moisture

Regional Distribution of RSM

47

Retrieval with Radiative Transfer Equation

)()1()( 000200

vegetationsoilvegsoilbaresoil FCTFCFC !!!!"! ++#+$= $

where

0

baresoil!

,

0

soil!

are the contribution of bare soil and the soil beneath the canopy layer, respectively,

0

vegetation!

is the

contribution of vegetation volume,

0

soilveg "!

is the contribution

from land surface -vegetation interaction, FC is the fractional vegetation coverage, T is the transmissivity.

48

Temporal Fresnel reflectivity and roughness at two GAME/Tibet sites(Wen, Su, 2003a, Phy. Che. Earth)

0

0.02

0.04

0.06

0.08

0.1

0.12

January-9

2

July-9

2

January-9

3

July-9

3

January-9

4

July-9

4

January-9

5

July-9

5

January-9

6

July-9

6

January-9

7

July-9

7

January-9

8

July-9

8

January-9

9

July-9

9

January-0

0

Fres

nel R

efle

ctiv

ity

0

20

40

60

80

100

120

140

160

Pre

cipi

tatio

n (m

m)

Precipitation Ando_R2 Naqu_R2

0.00

0.15

0.30

0.45

0.60

January-91

July-91

January-92

July-92

January-93

July-93

January-94

July-94

January-95

July-95

January-96

July-96

January-97

July-97

January-98

July-98

January-99

July-99

January-00

Sur

face

slo

pe

Ando_s Naqu_s

49

Estimated Fresnel reflectivity and groundmeasured volume soil water content

0

10

20

30

40

50

Aug

ust-97

Sep

tem

ber-

97O

ctob

er-9

7N

ovem

ber-

97D

ecem

ber-

97Ja

nuar

y-98

Janu

ary-

98M

arch

-98

Apr

il-98

May

-98

May

-98

June

-98

July

-98

Aug

ust-98

Vo

lum

e w

ate

r c

on

ten

t(%

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Fre

sn

el

refl

ec

tiv

ityFresnel reflectivity SM(0-2cm) SM(0-4cm)

50

Vsm and VcfEstimates(instantaneous)

Regional distribution of Vcf, Vsm and validation

51

Regional Fresnel reflectivity and roughness over Tibet

52

Regional Soil Moisture Distribution over China

53

From local scale process understandingto regional applications

54

55

Tibetan Soil Moisture Experiment 2006 at location of CAMP/Tibet sites(in collaboration with Prof. Yaoming Ma, ITP/CAS)

GEWEX Asian Monsoon Experiment (GAME) in the Tibet Plateau (GAME/Tibet,1996-2000)GEWEX Asian Monsoon Experiment (GAME) in the Tibet Plateau (GAME/Tibet,1996-2000)

CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project in the Tibetan Plateau (CAMP/Tibet, 2001-2005)CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project in the Tibetan Plateau (CAMP/Tibet, 2001-2005)

Coordinators: Y.M.Ma & T.D.Yao, K.Ueno & T.Koike

56

Local Energy budgetLocal Energy budgetone year (2002.6-2003.5) data of one year (2002.6-2003.5) data of AWSsAWSs :MS3478(NPAM) and BJ :MS3478(NPAM) and BJ

57

Eddy correlation method

Momentum flux 2

*uwu !!" =##$=

Latent heat flux

**TuCTwCH

PP!! "=##=

**quqwE !"!"! #=$$=

Sensible heat flux

58

-200

0

200

400

600

800

1000

1200

1400

1600

03-05

03-04

03-03

03-02

03-01

02-12

02-11

02-10

02-09

02-08

02-07

SD SU LD LU

BJ

(Wm-2)

02-06

Radiation budgetRadiation budget

-200

0

200

400

600

800

1000

1200

1400

1600

03-05

03-04

03-03

03-02

03-01

02-12

02-11

02-10

02-09

02-08

02-07

SD SU LD LU

NPAM

(Wm-2)

02-06

59

Land surface heat fluxesLand surface heat fluxes

-400

-200

0

200

400

600

800

1000

1200 E! R

n H G

0

03-05

03-04

03-03

03-02

03-01

02-12

02-11

02-10

02-09

02-08

02-07

(Wm-2)

NPAM

02-06

-400

-200

0

200

400

600

800

1000

1200 E! R

n H G

0

03-05

03-04

03-03

03-02

03-01

02-12

02-11

02-10

02-09

02-08

02-07

BJ

(Wm-2)

02-06

60

NDVINDVI

June 12 June 12(Pre-Monsoon)(Pre-Monsoon)

MSAVIMSAVI

July 16 July 16 (Monsoon) (Monsoon)

August 21 August 21 (Post-Monsoon) (Post-Monsoon)

VegetationVegetationcoveragecoverage

61

JuneJune JulyJuly AugustAugust

LAILAI

SurfaceSurfacereflectancereflectance

SurfaceSurfacetemperaturetemperature

62

NetNetradiationradiation

Soil heatSoil heatfluxflux

JuneJune JulyJuly AugustAugust

63

JuneJune JulyJuly AugustAugust

SensibleSensibleheat fluxheat flux

LatentLatentheat fluxheat flux

64

0.14 0.16 0.18 0.20 0.22 0.240.14

0.16

0.18

0.20

0.22

0.24

0.14 0.16 0.18 0.20 0.22 0.240.14

0.16

0.18

0.20

0.22

0.24

0.14 0.16 0.18 0.20 0.22 0.240.14

0.16

0.18

0.20

0.22

0.24

0.14 0.16 0.18 0.20 0.22 0.240.14

0.16

0.18

0.20

0.22

0.24

Anduo

August

July

June

r0-d

eri

ve

d

r0-measured

Naqu

August

July

June

NPAMr0-

de

rive

d

r0-measured

24 28 32 36 40 44 4824

28

32

36

40

44

48

June

Anduo

Tsfc

-de

rive

d (

0

C)

Tsfc-measured

( 0C)

June

August

July

NPAM

AWS110

AWS3608

Naqu

500 550 600 650 700 750 800500

550

600

650

700

750

800

Anduo

Rn-measured

( W/m2 )

Rn-d

eri

ve

d (

W/m2

)

August

July

June

NPAM

100 110 120 130 140 150 160100

110

120

130

140

150

160

August

July

June

Anduo

G0-measured

( W/m2 )

G0-d

eri

ve

d (

W/m2

) NPAM

100 150 200 250 300100

150

200

250

300

August

July

June

Anduo

Hmeasured

( W/m2 )

Hde

rive

d (

W/m2

) NPAM

0 100 200 300 400 500 6000

100

200

300

400

500

600

August

July

June

NPAM

!Ed

eri

ve

d (

W/m2

)

Anduo

!Emeasured

( W/m2)

Validation of the derived results against field measurements forthe surface reflectance, surface temperature and land surface heat fluxesover the GAME/Tibet area (Ma et al, 2006)

65

The Tibetan Plateau observed by the MERIS (left), AATSR (middle),and ASAR Wide Swath (right)

66

Preliminary validation results using MERIS/AATSR/ASAR(Next step: Data Assimilation - EKF)

67

40m PBL tower ( radiation system and SMTMS)

Wind Profiler and RASSWind Profiler and RASS

August 2005

68

6500m6500m5200m5200m

4475m4475m

6500m6500m

Radiosonde system

5200m5200m

69

Fig. 2

Fig. 3

70

,CO2

52m PBL tower ( Radiation system and SMTMS)

Turbulent system, CO2/H2O flux and radiation system

Nam Cuo Station

71

Heat fluxes from new sites

0 2 4 6 8 10 12 14 16 18 20 22 24-200

0

200

400

600

800

LE

G0

H

Rn8 October 2005

Heat

flux

( W

m

-2 )

Beijing Standand Time

0 2 4 6 8 10 12 14 16 18 20 22 24

-200

0

200

400

600

800

6 October 2005

LE

H

G0

Rn

Heat

flux (

W m

-2 )

Beijing Standard Time

Mt. Everest

Nam Cuo

72

••LinzhiLinzhi Station Station ( Cooperation with JICA) ( Cooperation with JICA)

1.1. OneOne 20m PBL tower 20m PBL tower , one Radiation systemRadiation system(components, surface radiation (components, surface radiation

temperature) and temperature) and oneone SMTMS SMTMS.

2.2. OneOne Sonic turbulence measurement Sonic turbulence measurement systems and systems and one one CO2/H2O fluxes CO2/H2O fluxes measurement systemsmeasurement systems

73

74

Conclusions – Part 1

Based on physical consideration of land surface energy balance, atheory for quantitative drought monitoring with remote sensing datais proposed.

The relationship derived between the relative soil moisture andrelative evaporation is confirmed with experimental data collected inintensive field experiments.

Further it is shown that the proposed theory can be used to define aquantitative drought severity index (DSI) for drought monitoring,when the relative evaporation can be determined with remote sensingdata.

Comparisons between the proposed Drought Severity Index (DSI),the operational products based on water balance calculations and theactual measurements of soil moisture confirm the validity androbustness of the proposed theory.

Future work is needed to extend the proposed methodology toroutine monitoring and prediction of droughts.

75

Conclusions – Part 2

A physically based model for the determination of soil moisture androot mean square slope of surface is developed. With theapplication of windscaterometer database, the spatial/temporaldistribution of surface soil moisture can be derived.

The root zone soil moisture can be derived by assimilation of thesurface soil moisture into a hydro-meteorological model (Ongoingwork).

Many important applications are possible (floods and droughts,water – climate feedbacks)!

ASAR preliminary results are encouraging but need furtherdevelopment.

Future sensors (e.g. SMOS) provide exciting opportunities for earthobservation of water cycle components and applications (e.g.drought monitoring and prediction).

76

Referances

Z. Su, 2002, The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes,Hydrology and Earth System Sciences, 6(1), 85-99.

J. Wen, Z. Su, 2003, Estimation of soil moisture from ESA Wind-scatterometer data, Physics andChemistry of the Earth, 28(1-3), 53-61.

Z. Su, Y. Yang, J. Zhang, G. Lu, G.J. Roerink, J. Qi, J. Liu, L. Wang, J. Wen, L. Jia, W. Zen, Z.Yue, X. Chen, 2003, A technique for large scale drought monitoring. Alterra-report 683, ISSN1566-7197, 87pp.

J. Wen, Z. Su, 2004, An analytical algorithm for the determination of vegetation Leaf Area Indexfrom TRMM/TMI data, International Journal of Remote Sensing, 25(6), 1223–1234.

J. Wen, Z. Su, 2003, A Method for Estimating Relative Soil Moisture with ESA Wind ScatterometerData, Geophysical Research Letters, 30 (7), 1397, doi:10.1029/ 2002GL016557.

J. Wen, Z. Su, Y. Ma, 2003, Determination of Land Surface Temperature and Soil Moisture fromTRMM/TMI Remote Sensing Data, Journal of Geophysical Research, 108(D2),10.1029/2002JD002176.

Z. Su, A. Yacob, Y. He, H. Boogaard, J. Wen, B. Gao, G. Roerink, and K. van Diepen, 2003,Assessing Relative soil moisture with remote sensing data: theory and experimental validation,Physics and Chemistry of the Earth, 28(1-3), 89-101.

L. Jia, Z. Su, B. van den Hurk, M. Menenti, A. Moene, H.A.R. De Bruin, J.J.B.Yrisarry, M. Ibanez,A. Cuesta, 2003, Estimation of sensible heat flux using the Surface Energy Balance System (SEBS)and ATSR measurements, Physics and Chemistry of the Earth, 28(1-3), 75-88.

Su, Z., 2005, Estimation of the surface energy balance. In: Encyclopedia of hydrological sciences: 5 Volumes. / ed. by M.G. Anderson and J.J. McDonnell. Chichester etc., Wiley & Sons, 2005.3145 p. ISBN: 0-471-49103-9. Vol. 2 pp. 731-752.

Y. Ma, L. Zhong, Z. Su, H. Ishikawa, M. Menenti, T. Koike, 2006, Determination of regionaldistributions and seasonal variations of land surface heat fluxes from Landsat-7 EnhancedThematic Mapper data over the central Tibetan Plateau area J. Geophys. Res., Vol. 111, No.D10, D10305

Heihe River Basin Expedition 2006

78

What made the difference?


Recommended