+ All Categories
Home > Documents > ECE 255: L20 Basic Amplifier Configurations: II/uploads/ECE_255_L20… · 1 ECE 255: L20 Basic...

ECE 255: L20 Basic Amplifier Configurations: II/uploads/ECE_255_L20… · 1 ECE 255: L20 Basic...

Date post: 18-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
69
1 ECE 255: L20 Basic Amplifier Configurations: II (Sedra and Smith, 7 th Ed., Sec. 7.3) Mark Lundstrom School of ECE Purdue University West Lafayette, IN USA Spring 2019 Purdue University Lundstrom: 2019
Transcript
  • 1

    ECE 255: L20

    Basic Amplifier Configurations: II

    (Sedra and Smith, 7th Ed., Sec. 7.3)

    Mark Lundstrom School of ECE

    Purdue University West Lafayette, IN USA

    Spring 2019 Purdue University

    Lundstrom: 2019

  • Announcements

    2

    1)  There is no HW due Monday, but HW7 (Practice

    Problems for Exam 2) will be discussed in class on Monday.

    2)  Exam 2 is Tuesday, March 5, 6:30-7:30 PM PHYS 112

    3)  Professor Janes will hold a help session on Tuesday in ME 1061 at 1:30 PM.

    4)  No class on Friday, March 8

    Lundstrom: 2019

  • Announcements

    For Exam 2, you should be prepared on:

    Lundstrom: 2019

    1) DC analysis / design of 4-resisitor bias circuit 2) Small signal models 3) Reducing a circuit diagram to a s.s. equiv. circuit 3) Amplifier configurations 4) CE and CS in detail

    (HW5- HW7)

    3

  • Three basic BJT amplifiers

    4

    +υi−

    +

    υ0

    C E

    B

    CE

    +υi−

    +

    υ0

    C E

    B

    CB

    B

    +υi−

    +υ0−

    C E

    CC

  • Three basic MOS amplifiers

    5

    +υi−

    +

    υ0

    D S

    G

    CS

    +υi−

    +

    υ0

    D S

    G

    CG

    G

    +υi−

    +υ0−

    D S

    CD

  • Outline

    6

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)

    Lundstrom: 2019

  • Amplifier with source and load

    7

    +υi−

    +υ0−

    Rin+−

    Ro

    Avoυi+−

    Rseries

    υs RL

    Gv =Rin

    Rin + Rseries× Avo ×

    RLRL + Ro

    Lundstrom: 2019

    Gi = AvoRinRL

    Gp = GvGi

    Avo Rin Ro

  • Common emitter

    8

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    RC+−

    Rseries

    υsB

    Lundstrom: 2019

    Small signal analysis directly on the circuit diagram.

  • Common emitter results

    9

    Aυo =υoυi

    = −gmRC || ro

    Rin = rπ

    Ro = RC || ro

    open circuit voltage gain

    Aυ = −gm RC || ro || RL( ) with load attached

    Lundstrom: 2019

  • Common source

    10 Lundstrom: 2019

    +

    υi

    +

    υ0

    D S

    ig = ii

    id

    RD+−

    Rseries

    υsG

    Small signal analysis directly on the circuit diagram.

  • Common source results

    11

    Aυo =υoυi

    = −gmRD || ro

    Rin = ∞

    Ro = RD || ro

    open circuit voltage gain

    Aυ = −gm RD || ro || RL( ) with load attached

    Lundstrom: 2019

  • Common emitter with “emitter degeneration”

    12

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    RC+−

    Rseries

    υs

    RE

    Lundstrom: 2019

    Small signal analysis directly on the circuit diagram.

  • Common emitter with emitter resistor

    13

    Aυo = −rπ

    rπ + β +1( )REgmRC( )

    Rin = rπ + β +1( )RE

    Ro = RC

    Lundstrom: 2019

    open circuit voltage gain

    Aυo = −rπ

    rπ + β +1( )REgmRC || RL( ) with load attached

  • Common source with source degeneration

    14 Lundstrom: 2019

    +

    υi

    +

    υ0

    D S

    ig = ii

    ic

    RD+−

    Rseries

    υs

    RE

    G

  • Common source with source resistor

    15

    Aυo = −1

    1+ gmRSgmRD( )

    Rin = ∞

    Ro = RD

    Lundstrom: 2019

    open circuit voltage gain

    Aυo = −1

    1+ gmRSgmRD || RL( ) with load attached

    rπ → ∞ β →∞

  • Aside: taking limits

    16 Lundstrom: 2019

    rπ → ∞ β →∞

    Aυo = −rπ

    rπ + β +1( )REgmRC( )

    Rin = rπ + β +1( )RE

  • CS analysis with equivalent circuits

    17 Lundstrom: 2019

    +

    υi

    +

    υ0

    D S

    ig = ii

    ic

    RD+−

    Rseries

    υs

    RE

    G

  • 1) CS with hybrid-pi model

    18

    +υgs−

    +

    υ0

    D

    ig = ii id

    RD+−

    Rseries

    υs

    gmυgs

    G

    S RS

    +υi

  • Hybrid pi vs. T-model

    19

    S

    D G

    ig id

    gmυgs

    +υgs−

    is

    S

    D

    G

    ig

    id

    gmυgs

    +υgs−

    is1gm

    Lundstrom: 2019

  • Draw the s.s. model using T-model

    20 Lundstrom: 2019

    +

    υi

    +

    υ0

    D S

    ig = ii

    ic

    RD+−

    Rseries

    υs

    RE

    G

  • Common source with source resistor

    21

    +υgs−

    +

    υ0

    D id

    RD

    +−

    Rseries

    υs

    gmυgsG

    S RS

    +υi

    1 gm

  • Common source with source resistor

    22

    Aυo = −1

    1+ gmRSgmRD( )

    Rin = ∞

    Ro = RD

    Lundstrom: 2019

    open circuit voltage gain

    Aυo = −1

    1+ gmRSgmRD || RL( ) with load attached

  • Outline

    23 Lundstrom: 2019

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)

  • Common base

    24

    +υi

    +

    υ0

    C E

    ic

    RC

    +−

    Rseries

    υs RE

    B

    Lundstrom: 2019

    Draw the small signal equivalent circuit.

  • Common base amplifier

    25

    RC RE

    +υi−

    υo

    gmυbe

    −υbe+

    E C

    B

    υo = −gmυbeRC

    υbe = −υi

    υo = +gmυiRC

    Av =υoυi

    = +gmRC

    Ro = RC

    Rin = ?

    Effect of r0?

  • Looking into current sourse

    26

    RC RE

    +υi−

    υo

    gmυbe

    −υbe+

    E C

    B

    Rth =1gm

    Rth = ∞

    Lundstrom: 2019

  • CB input resistance

    27

    RC RE

    +υx−

    υo

    gmυbe

    −υbe+

    E C

    B

    Rin ⇒

    ix

    Rin = RE || ?

    Lundstrom: 2019

  • CB input resistance (ii)

    28

    RC

    +υx−

    υo

    gmυbe

    −υbe+

    E C

    B

    ′Rin ⇒

    ix

    Rin = RE || rπ || ?

    Lundstrom: 2019

  • CB input resistance (iii)

    29

    RC

    +υx−

    υo

    gmυbe

    −υbe+

    E C

    B

    ′′Rin ⇒

    ix

    Rin = RE || rπ || ? ′′Rin =υxix

    = υxgmυx

    = 1gm

    Lundstrom: 2019

  • Common base

    30

    +υi

    +

    υ0

    C E

    ic

    RC

    +−

    Rsυs RE

    B

    Av =υoυi

    = +gmRC

    Ro = RC

    Rin = RE || rπ ||1gm

    Effect of RL?

    Lundstrom: 2019

  • CB analysis on the circuit diagram

    31 Lundstrom: 2019

    +υi

    +

    υ0

    C E

    RC

    +−

    Rsυs RE

    B

    ic

  • Common base: results

    32

    Av =υoυi

    = +gmRC

    Ro = RC

    Rin = RE || rπ ||1gm

    rπ ||1gm

    = rπβ +1

    Lundstrom: 2019

    Av =υoυi

    = +gmRC

    Ro = RC

    Rin = RE ||rπ

    β +1

  • When can we not do problems by inspection?

    33 Lundstrom: 2019

    E

    C B

    ib ic

    rπ gmυπ+υπ−

    ro

    +υce−

  • Common emitter amplifier

    34 Lundstrom: 2019

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    RC+−

    Rseries

    υsB

  • Small signal equivalent circuit

    35 Lundstrom: 2019

    +υi =υπ

    +

    υ0

    C E

    ib = ii ic

    RC+−

    Rseries

    υs gmυπrπ

    B

  • Result

    36 Lundstrom: 2019

    Sedra and Smith, problem 7.63

    Av = −gmRC

    Ro = RC

    Rin = rπ

    Av = −gmRC1−1 gmrµ( )1+ RC rµ

    ⎣⎢⎢

    ⎦⎥⎥

    Ro = RC || rµ

    Rin = rπ ||rµ + RC1+ gmRC

    ⎣⎢

    ⎦⎥

  • Common base numbers

    37

    Ro = RC = 10 kΩ

    1gm

    = 139kΩ = 26Ω

    Rin = 25Ω

    Lundstrom: 2019

    IC = 1.0 mA

    gmrπ = β

    gm = IC VT = 39 mS

    rπ = β gm = 2.6 kΩ

    Av = +gmRC = +390RC = 10 kΩ

    Rin = RE || rπ ||1gm

    RE = 1kΩ

    β = 100

  • Common base to common gate

    38 Lundstrom: 2019

    +υi

    +

    υ0

    C E

    RC

    +−

    Rseries

    υs RE

    B

    ic

  • Common gate

    39 Lundstrom: 2019

    +υi

    +

    υ0

    D S

    RD

    +−

    Rseries

    υs RS

    G

    ic

    Let’s try to do this directly on the circuit diagram

  • Input resistance

    40 Lundstrom: 2019

    +υi

    +

    υ0

    D S

    RD

    RS

    G

    ic

    Rin ⇒

  • Input resistance (ii)

    41 Lundstrom: 2019

    +υi

    +

    υ0

    D S

    RD

    RS

    G

    Rin = RS || ?

    Rin ⇒

    gmυgs+υgs−

  • Input resistance (iii)

    42 Lundstrom: 2019

    +υx−

    +

    υ0

    D S

    RD

    G

    Rth ⇒

    gmυgs+υgs−

    ix

    ix = −gmυgs

    ix = +gmυx

    Rth =υxix

    = 1gm

  • Common base vs. common gate

    43

    Av =υoυi

    = +gmRC

    Ro = RC

    Rin = RE || rπ ||1gm

    Lundstrom: 2019

    Av =υoυi

    = +gmRD

    Ro = RD

    Rin = RS ||1gm

    CB CG

    rπ ||1gm

    = rπβ +1

  • Outline

    44

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)

    Lundstrom: 2019

  • Realistic Common base amplifier

    45

    V + = +10 V

    RC

    RE

    V − = −10 V

    υi

    υo

    CC1

    CC 2

    RoAvo Rin

    Compute:

  • Size of Capacitors?

    46

    Audio frequencies: 20 – 20,000 Hz

    Lundstrom: 2019

  • Realistic Common base amplifier

    47

    V + = +10 V

    RC

    RE

    V − = −10 V

    υi

    υo

    CC1

    CC 2

    RoAvo Rin

    Compute:

    DC analysis first

  • DC analysis

    48

    VBE≈ 0.7 V

    β = 100

    V + = +10 V

    V − = −10 V

    RC = 5 kΩ

    RE = 10 kΩIE

    IC

    IB

    Lundstrom: 2019

  • DC analysis

    49

    VBE≈ 0.7 V

    β = 100

    V + = +10 V

    IE = 0.93mA

    V − = −10 V

    IC = 0.92 mA

    VC = −5.4 V

    VE = +0.7 V RC = 5 kΩ

    RE = 10 kΩIE

    IC

    IB

    Lundstrom: 2019

    gm =ICVT

    = 35.4 mS

    rπ =βgm

    = 2.8 kΩ

  • Realistic Common base amplifier

    50

    V + = +10 V

    V − = −10 V

    υi

    υo

    CC1

    CC 2

    RoAvo Rin

    Compute:

    RC = 5 kΩ

    RE = 10 kΩ

  • Outline

    51 Lundstrom: 2019

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)

  • Common collector (emitter follower)

    52

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    +−

    Rseries

    υs

    RE = 1kΩ

    Lundstrom: 2019

    Let’s do the analysis directly on the circuit diagram

  • CC by inspection

    Aυo =υoυi

    = +β +1( )RE

    rπ + β +1( )RE

    Ro = RE ||rπ + Rseriesβ +1

    ⎛⎝⎜

    ⎞⎠⎟

    Rin = rπ + β +1( )RE

    Lundstrom: 2019 53

    Aυo ≈1

    Emitter follower

    CC is not a unilateral amplifier

  • CC by inspection

    Aυo =υoυi

    = +β +1( )RE

    rπ + β +1( )RE

    Ro = RE ||rπ + Rseriesβ +1

    ⎛⎝⎜

    ⎞⎠⎟

    Rin = rπ + β +1( )RE

    Hybrid pi model

    Aυo =υoυi

    = + RErπβ +1

    + RE= REre + RE

    Rin = rπ + β +1( )RE = β +1( ) re + RE( )

    Ro = RE || re +Rseriesβ +1

    ⎛⎝⎜

    ⎞⎠⎟

    T model Lundstrom: 2019 54

  • Common collector analysis with hybrid-pi model

    55

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    +−

    Rseries

    υs

    RE

    Lundstrom: 2019

    Re-draw the circuit using the hybrid-pi model.

  • Small signal equivalent circuit

    56

    +

    υi

    − +

    υ0

    E

    +−

    Rseries

    υs

    RE

    Lundstrom: 2019

    rπ gmυbe

    B

    +υbe−

    C

  • Small signal analysis

    57 Lundstrom: 2019

    Aυo = ?

    Ro = ?

    Rin = ? RE = 1kΩ

  • CC numbers

    Aυo =101( )1

    2.6 + 101( )1 = +0.98

    Rin = 2.6 kΩ+ 101( )1kΩ = 104 kΩ

    Ro = 1kΩ ||2.6 kΩ101

    = 25Ω

    1gm

    = 139kΩ = 26Ω

    Aυo =υoυi

    = +β +1( )RE

    rπ + β +1( )RE

    Ro = RE ||rπ

    β +1⎛⎝⎜

    ⎞⎠⎟≈ RE ||

    1gm

    ⎛⎝⎜

    ⎞⎠⎟

    Rin = rπ + β +1( )RE

    58

    “emitter follower”

    IC = 1.0 mA gm = 39 mS rπ = 2.6 kΩβ = 100

  • CC is a “voltage buffer”

    Lundstrom: 2019 59

    +υi−

    +υ0−

    Rin+−

    Ro

    Avoυi+−

    Rseries

    υs RL

    Gv =Rin

    Rin + Rseries× Avo ×

    RLRL + Ro

    Gi = AvoRinRL

    Gp = GvGi

    Avo Rin Ro

  • CC to CD

    60

    +

    υi

    +

    υ0

    C E

    ib = ii

    ic

    +−

    Rseries

    υs

    RE

    Lundstrom: 2019

  • Common Drain (Source follower)

    61

    +

    υi

    +

    υ0

    D S

    ic

    +−

    Rseries

    υs

    RS

    Lundstrom: 2019

    Let’s do the analysis directly on the circuit diagram

    G

    +υgs−

  • CC vs. CD

    Aυo =υoυi

    = +β +1( )RE

    rπ + β +1( )RE

    Ro = RE ||rπ

    β +1⎛⎝⎜

    ⎞⎠⎟≈ RE ||

    1gm

    ⎛⎝⎜

    ⎞⎠⎟

    Rin = rπ + β +1( )RE

    62

    Aυo =υoυi

    = + gmRS1+ gmRS

    Ro = RS ||1gm

    ⎛⎝⎜

    ⎞⎠⎟

    Rin = ∞

    source follower

    Lundstrom: 2019

  • Outline

    63 Lundstrom: 2019

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)

  • BJT Amplifier summary

    Common emitter Common base Common collector

    Ro = RC

    Av =β +1( )RE

    rπ + β +1( )RE

    Ro = RE ||rπ

    β +1⎛⎝⎜

    ⎞⎠⎟

    Rin = rπ + β +1( )RERin = RE ||rπ

    β +1

    Aυo = +gmRC

    Ro = RC

    Aυo = −gmRC

    Rin = rπ

    < 0, | high | >0, | high | ~1

    moderate low high

    moderate moderate low 64

  • BJT Amplifier summary

    Common emitter with RE

    Aυo = −rπ

    rπ + β +1( )REgmRC( )

    Rin = rπ + β +1( )RE

    Ro = RC

    < 0 , |moderate|

    moderate

    high

    Lundstrom: 2019 65

  • MOS Amplifier summary

    Common source Common gate Common drain

    66 Lundstrom: 2019

  • Summary

    67

    The Common Emitter amplifier has a voltage gain that is large in magnitude and with a negative sign. It has moderate input and output resistance.

    The Common Base amplifier has a voltage gain that is large in magnitude and with a positive sign. It has low input resistance and moderate output resistance.

    The Common Source amplifier has a voltage gain that is moderate in magnitude and with a negative sign. It has a high input resistance and moderate output resistance.

    The Common Gate amplifier has a voltage gain that is lmoderate in magnitude and with a positive sign. It has fairly low input resistance and moderate output resistance.

  • Summary

    68

    The Common Collector (emitter follower) amplifier has a voltage gain of about one, It has high input resistance and a very low output resistance.

    The Common Drain (source follower) amplifier has a voltage gain of a little less than one, It has a very high input resistance and a moderately low output resistance.

    Lundstrom: 2019

  • Basic Amplifier Configurations: II

    Lundstrom: 2019 69

    1)  Basic amplifier considerations

    2)  CE / CS

    3)  CB / CG

    4)  Common base example 5)  CC (emitter follower) / CD (source follower)


Recommended