+ All Categories
Home > Documents > ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf ·...

ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf ·...

Date post: 27-Mar-2020
Category:
Upload: others
View: 7 times
Download: 2 times
Share this document with a friend
44
ECE 546 – Jose SchuttAine 1 ECE 546 Lecture 07 Multiconductors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected]
Transcript
Page 1: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 1

ECE 546Lecture ‐ 07

MulticonductorsSpring 2018

Jose E. Schutt-AineElectrical & Computer Engineering

University of [email protected]

Page 2: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 2

TELGRAPHER’S EQUATION FOR NCOUPLED TRANSMISSION LINES

V and I are the line voltage and line current VECTORSrespectively (dimension n).

V ILz t

I VCz t

V3(z)

V2(z)

V1(z)

...

L, C

z=0 z=l

Page 3: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 3

N-LINE SYSTEM

L and C are the inductance and capacitance MATRICES respectively

1

2

n

II

I

I

1

2

n

VV

V

V

11 12

21 22

nn

L LL L

L

L

11 12

21 22

nn

C CC C

C

C

V3(z)

V2(z)

V1(z)

...

L, C

z=0 z=l

Page 4: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 4

N-LINE ANALYSIS

In general LC ≠ CL and LC and CL are not symmetric matrices.

GOAL: Diagonalize LC and CL which will result in atransformation on the variables V and I.

Diagonalize LC and CL is equivalent to finding the eigenvalues ofLC and CL.

Since LC and CL are adjoint, they must have the sameeigenvalues.

2 2

2 2

V VLCz t

2 2

2 2

I ICLz t

Page 5: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 5

MODAL ANALYSIS

LC and CL are adjoint matrices. Find matrices E and H such that

is the diagonal eigenvalue matrix whose entries are the inverses ofthe modal velocities squared.

2 21

2 2

EV EVELCEz t

2 21

2 2

HI HIHCLHz t

1 1 2mELCE HCLH

Page 6: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 6

MODAL ANALYSIS

Second-order differential equation in modal space

2 22

2 2m m

mV Vz t

2 22

2 2m m

mI Iz t

Vm = EV Im = HI

V3(z)

V2(z)

V1(z)

...

L, C

z=0 z=l

Page 7: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 7

Vm and Im are the modal voltage and current vectors respectively.

EIGENVECTORS

1

2

m

m

m

mn

VV

V

V

1

2

m

m

m

mn

II

I

I

Im = HI

Vm = EV

Page 8: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 8

EIGEN ANALYSIS

* The eigenvalues of A satisfy the relation |A - I| = 0 where Iis the unit matrix.

* A scalar is an eigenvalue of a matrix A if there exists a vector X such that AX = X. (i.e. for which multiplication by a matrix is equivalent to an elongation of the vector).

* The vector X which satisfies the above requirement isan eigenvector of A.

Page 9: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 9

EIGEN ANALYSIS

Assume A is an n x n matrix with n distinct eigenvalues, then,

* A has n linearly independent eigenvectors.

* The n eigenvectors can be arranged into an n ´ n matrix E;the eigenvector matrix.

* Finding the eigenvalues of A is equivalent to diagonalizing A.

* Diagonalization is achieved by finding the eigenvector matrix

E such that EAE-1 is a diagonal matrix.

Page 10: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 10

EIGEN ANALYSIS

For an n-line system, it can be shown that

* Each eigenvalue is associated with a mode; the propagationvelocity of that mode is the inverse of the eigenvalue.

* LC can be transformed into a diagonal matrix whose entriesare the eigenvalues.

* LC possesses n distinct eigenvalues (possibly degenerate).

* There exist n eigenvectors which are linearly independent.

Page 11: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 11

EIGEN ANALYSIS

* Each normalized eigenvector represents the relative lineexcitation required to excite the associated mode.

* Each eigenvector is associated to an eigenvalue and thereforeto a particular mode.

Page 12: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 12

E : Voltage eigenvector matrix

H : Current eigenvector matrix

EIGENVECTORS

11 12 13

21 22 23

31 32 33

e e eE e e e

e e e

11 12 13

21 22 23

31 32 33

h h hH h h h

h h h

1 2mELCE

1 2mHCLH

Page 13: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 13

1

2

3

1 0 0

10 0

10 0

m

mm

m

v

v

v

1

2

3

1 0 0

10 0

10 0

m

mm

m

v

v

v

11 12 13

21 22 23

31 32 33

h h hH h h h

h h h

11 12 13

21 22 23

31 32 33

e e eE e e e

e e e

Eigenvalues and Eigenvectors1 2

mELCE gives

1 2mHCLH

gives

Page 14: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 14

MATCHINGNETWORK

+++

---e31

e32

e33 MODE C

MATCHINGNETWORK

+++

---e11

e12

e13 MODE A

MATCHINGNETWORK

+++

---e21

e22

e23 MODE B

Modal Voltage Excitation

Voltage EigenvectorMatrix

11 12 13

21 22 23

31 32 33

e e eE e e e

e e e

Page 15: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 15

Modal Current Excitation

Current EigenvectorMatrix

MATCHINGNETWORK

h11

h12

h13 MODE A

MATCHINGNETWORK

h21

h22

h23 MODE B

MATCHINGNETWORK

h31

h32

h33 MODE C

11 12 13

21 22 23

31 32 33

h h hH h h h

h h h

Page 16: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 16

Line variables are recovered using

V E1Vm

I H1Im

EIGENVECTORS

Special case: For a two-line symmetric system, E and H are equal and independent of L and C. The eigenvectors are [1,1] and [1,-1]

E : voltage eigenvector matrix

H : current eigenvector matrix

E and H depend on both L and C

Page 17: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 17

MODAL AND LINE IMPEDANCE MATRICES

Zm m1ELH1

By requiring Vm = ZmIm, we arrive at

Zm is a diagonal impedance matrix which relates modal voltagesto modal currents

By requiring V = ZcI, one can define a line impedance matrix Zc.Zc relates line voltages to line currents

Zm is diagonal. Zc contains nonzero off-diagonal elements. We can show that

Zc E1ZmH E1m1EL

Page 18: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 18

1

2( )

m

m

mn

j uv

j uv

j uv

e

eW u

e

1

2

1

1

1

m

mm

mn

v

v

v

Page 19: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 19

MATRIX CONSTRUCTION

siiL L ( )m

ijijL L

( )

1

[ ]n

mii s ij

j

C C C

( )[ ] mij ijC C

[ ]ii sR R [ ] mij ijR R

( )

1

[ ]n

mii s ij

j

G G G

( )[ ] mij ijG G

Page 20: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 20

Vm = EV Im = HI

Vm (z) = W(z)A +W(- z)B

Im (z) = Zm- 1 W(z)A - W(- z)B[ ]

1 1m mZ ELH

1 1 1c m mZ E Z H E EL

Modal Variables

General solution in modal space is:

Modal impedance matrix

Line impedance matrix

Page 21: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 21

N-Line Network

Zs : Source impedance matrix

ZL : Load impedance matrix

Vs : Source vector

Page 22: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 22

Reflection Coefficients

Source reflection coefficient matrix

s [1n EZsL1E1m ]1[1n EZsL1E1m ]

Load reflection coefficient matrix

L [1n EZLL1E1m ]1[1n EZLL1E1m ]

* The reflection and transmission coefficient are n x nmatrices with off-diagonal elements. The off-diagonal elements account for the coupling between modes.

* Zs and ZL can be chosen so that the reflection coefficient matrices are zero

Page 23: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 23

TERMINATION NETWORK

yp11

yp22

yp12

V1

V2

I1 = yp11V1 +yp12(V1-V2)

I2 = yp22V2 +yp12(V2-V1)

In general for a multiline system

I YVV ZI Z Y1

Note : yii ypii, yij = -yji , (i≠j)ij

1Also, z ijy

Page 24: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 24

Termination Network Construction

To get impedance matrix Z• Get physical impedance values ypij• Calculate yij's from ypij's• Construct Y matrix• Invert Y matrix to obtain Z matrix

Remark: If ypij = 0 for all i≠j, then Y = Z-1 and zii = 1/yii

Page 25: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 25

1) Get L and C matrices and calculate LC product

2) Get square root of eigenvalues and eigenvectors of LC matrix m

3) Arrange eigenvectors into the voltage eigenvector matrix E

4) Get square root of eigenvalues and eigenvectors of CL matrix m

5) Arrange eigenvectors into the current eigenvector matrix H

6) Invert matrices E, H, m.

7) Calculate the line impedance matrix Zc Zc = E-1m-1EL

Procedure for Multiconductor Solution

Page 26: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 26

8) Construct source and load impedance matrices Zs(t) and ZL(t)

9) Construct source and load reflection coefficient matrices 1(t) and 2(t).

10) Construct source and load transmission coefficient matrices T(t), T2(t)

11) Calculate modal voltage sources g1(t) and g2(t)

12) Calculate modal voltage waves:

a1(t) = T1(t)g1(t) + 1(t)a2(t - m)

a2(t) = T2(t)g2(t) + 2(t)a1(t - m)

b1(t) = a2(t - m)

b2(t) = a1(t - m)

Procedure for Multiconductor Solution

Page 27: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 27

)(

)()(

a

mod

22mod

11mod

mi

mnnei

mei

mei

ta

tata

t

)(

mi is the delay associated with mode i. mi = length/velocity of mode i. The modal volage wave vectors a1(t) and a2(t) need to be stored since they contain the history of the system.

13) Calculate total modal voltage vectors:

Vm1(t) = a1(t) + b1(t)Vm2(t) = a2(t) + b2(t)

14) Calculate line voltage vectors:

V1(t) = E-1Vm1(t)V2(t) = E-1Vm2(t)

Wave‐Shifting Solution

Page 28: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 28

ALS04 ALS240Drive Line 1

Drive Line 2

z=0 z=l

Drive Line 3

Sense Line 4

Drive Line 5

Drive Line 6

Drive Line 7

ALS04

ALS04

ALS04

ALS04

ALS04

ALS240

ALS240

ALS240

ALS240

ALS240

7-Line Coupled-Microstrip System

Ls = 312 nH/m; Cs = 100 pF/m;

Lm = 85 nH/m; Cm = 12 pF/m.

Page 29: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 29

20010000

1

2

3

4

5Drive line 3 at Near End

Time (ns)2001000

-1

0

1

2

3

4

5Drive Line 3 at Far End

Time (ns)

Drive Line 3

Page 30: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 30

2001000-1

0

1

2Sense Line at Near End

Time (ns)2001000

-1

0

1

2Sense Line at Far End

Time (ns)

The picture can't be displayed.

Sense Line

Page 31: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 31

Multiconductor Simulation

Page 32: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 32

LOSSY COUPLED TRANSMISSION LINES

Solution is best found using a numerical approach(See References)

V IRI Lz t

I VGV Cz t

V3(z)

V2(z)

V1(z)

...

L, C

z=0 z=l

Page 33: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 33

1 2 3

31 1 211 12 13

VI V VC C Cz t t t

32 1 221 22 23

VI V VC C Cz t t t

3 31 231 32 33

I VV VC C Cz t t t

31 1 211 12 13

IV I IL L Lz t t t

32 1 221 22 23

IV I IL L Lz t t t

3 31 231 32 33

V II IL L Lz t t t

Three‐Line Microstrip

Page 34: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 34

11 13( )V IL Lz t

11 13( )I VC Cz t

Subtract (1c) from (1a) and (2c) from (2a), we get

This defines the Alpha mode with:

1 3V V V 1 3I I I and

The wave impedance of that mode is:

11 13

11 13

L LZC C

and the velocity is 11 13 11 13

1uL L C C

Three‐Line – Alpha Mode

Page 35: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 35

In order to determine the next mode, assume that

1 2 3V V V V

1 2 3I I I I

31 211 21 31 12 22 32 13 23 33

V II IL L L L L L L L Lz t t t

31 211 21 31 12 22 32 13 23 33

I VV VC C C C C C C C Cz t t t

By reciprocity L32 = L23, L21 = L12, L13 = L31

By symmetry, L12 = L23

Also by approximation, L22 L11, L11+L13 L11

Three‐Line – Modal Decomposition

Page 36: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 36

31 211 12 13 12 112

V II IL L L L Lz t t t

In order to balance the right-hand side into I, we need to have

12 11 2 11 12 13 2 11 12 22L L I L L L I L L I

212 122L L

or 2

Therefore the other two modes are defined as

The Beta mode with

Three‐Line – Modal Decomposition

Page 37: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 37

The Beta mode with

1 2 32V V V V

1 2 32I I I I

The characteristic impedance of the Beta mode is:

11 12 13

11 12 13

22

L L LZC C C

and propagation velocity of the Beta mode is

11 12 13 11 12 13

1

2 2u

L L L C C C

Three‐Line – Beta Mode

Page 38: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 38

The Delta mode is defined such that

1 2 32V V V V

1 2 32I I I I

The characteristic impedance of the Delta mode is

11 12 13

11 12 13

22

L L LZC C C

The propagation velocity of the Delta mode is:

11 12 13 11 12 13

1

2 2u

L L L C C C

Three‐Line – Delta Mode

Page 39: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 39

1 0 1

1 2 1

1 2 1

E

1 2 3

Alpha modeBeta mode*

Delta mode*

Symmetric 3‐Line Microstrip

In summary: we have 3 modes for the 3-line system

*neglecting coupling between nonadjacent lines

Page 40: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 40

1 2 3

r = 4.3

113 17 5( / ) 16 53 16

5 17 113C pF m

346 162 67( / ) 152 683 152

67 162 346L nH m

0.45 0.12 0.450.5 0 0.50.45 0.87 0.45

E

0.44 0.49 0.440.5 0 0.50.10 0.88 0.10

H

Coplanar Waveguide

Page 41: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 41

73 0 0( ) 0 48 0

0 0 94mZ

56 23 8( ) 22 119 22

8 23 56cZ

0.15 0 0( / ) 0 0.17 0

0 0 0.18pv m ns

1 2 3

r = 4.3

Coplanar Waveguide

Page 42: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 42

WS' S'WS

rh

2Sk

S W

( ) : Complete Elliptic Integral of the first kindK k

'( ) ( ')K k K k

2 1/ 2' (1 )k k

30 '( ) (ohm)( )1

2

ocpr

K kZK k

1/ 22

1cpr

v c

Coplanar Waveguide

Page 43: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 43

S WW

rh

120 '( ) (ohm)( )1

2

ocsr

K kZK k

Coplanar Strips

Page 44: ECE 546 Lecture 07 Multiconductors - University Of Illinoisemlab.uiuc.edu/ece546/Lect_07.pdf · 2020-01-28 · ECE 546 Lecture ‐07 Multiconductors Spring 2018 Jose E. Schutt-Aine

ECE 546 – Jose Schutt‐Aine 44

Characteristic Microstrip Coplanar Wguide Coplanar strips

eff* ~6.5 ~5 ~5

Power handling High Medium Medium

Radiation loss Low Medium Medium

Unloaded Q High Medium Low or High

Dispersion Small Medium Medium

Mounting (shunt) Hard Easy Easy

Mounting (series) Easy Easy Easy

* Assuming r=10 and h=0.025 inch

Qualitative Comparison


Recommended