+ All Categories
Home > Documents > ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C...

ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C...

Date post: 30-Jul-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
13
ECE 305 Spring 2015 ECE305 Spring 2015 1 ECE 305 Homework SOLUTIONS: Week 14 Mark Lundstrom Purdue University (5.6.15) 1) For MOSFETs, we focus on understanding drain current. The gate current is taken to be negligibly small. For BJTs, we focus first on the collector current. For good BJTs, the base current is small, but not negligible. Before we discuss the base current, we focus on the collector current. We can understand the most important features of the common emitter collector current characteristic, I C V BE ,V CE ( ) or the common base collector current characteristic, I C V BE ,V CB ( ) , by examining the minority carrier concentration in the base. Answer the following questions for an NPN BJT by providing a sketch of !nx () in the base. 1a) Sketch !nx () vs. x for the forward active region of operation. 1b) Sketch !nx () vs. x for the saturation region of operation. 1c) Sketch !nx () vs. x for the reverse active region of operation. 1d) Sketch !nx () vs. x for the cutoff region of operation. HINT: Begin with the Law of the Junction and assume a good transistor, which means the base is short compared to a minority carrier diffusion length.
Transcript
Page 1: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  1  

ECE  305  Homework  SOLUTIONS:  Week  14    

Mark  Lundstrom  Purdue  University  

 (5.6.15)  

 1) For  MOSFETs,  we  focus  on  understanding  drain  current.    The  gate  current  is  taken  to  

be  negligibly  small.    For  BJTs,  we  focus  first  on  the  collector  current.    For  good  BJTs,  the  base  current  is  small,  but  not  negligible.    Before  we  discuss  the  base  current,  we  focus  on  the  collector  current.    We  can  understand  the  most  important  features  of  the  common  emitter  collector  current  characteristic,   IC VBE ,VCE( )  or  the  common  base  collector  current  characteristic,   IC VBE ,VCB( ) ,  by  examining  the  minority  carrier  concentration  in  the  base.    Answer  the  following  questions  for  an  NPN  BJT  by  providing  a  sketch  of   !n x( )  in  the  base.        1a)   Sketch   !n x( )vs.  x  for  the  forward  active  region  of  operation.  1b)   Sketch   !n x( )vs.  x  for  the  saturation  region  of  operation.  1c)   Sketch   !n x( )vs.  x  for  the  reverse  active  region  of  operation.  1d)   Sketch   !n x( )vs.  x  for  the  cut-­‐off  region  of  operation.  

 HINT:    Begin  with  the  Law  of  the  Junction  and  assume  a  good  transistor,  which  means  the  base  is  short  compared  to  a  minority  carrier  diffusion  length.  

 

   

Page 2: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  2  

HW  Week  14  Solutions  (continued)    1a)   Sketch   !n x( )vs.  x  for  the  forward  active  region  of  operation.    

Solution:  The  Law  of  the  Junction  for  an  NP  junction  says  that  the  excess  minority  electron  concentration  injected  in  the  neutral  P-­‐region  (which  begins  at  the  end  of  the  depletion  region,  is  

!n x = 0( ) = ni

2

N A

eqVA kBT "1( )    where   x = 0 is  the  beginning  of  the  neutral  base  and   VA  is  the  forward  bias  across  the  junction.      In  a  BJT,  we  have  two  junctions.    At   x = 0 ,  the  emitter-­‐base  junction  controls   !n x = 0( ) ,  so  

!n x = 0( ) = ni

2

N AB

eqVBE kBT "1( )  At  the  end  of  the  neutral  base,   x =WB ,  the

 base-­‐collector  junction  controls   !n x =WB( ) ,  

so  

!n x =WB( ) = ni

2

N AB

eqVBC kBT "1( )  So  if  we  know  the  bias  across  each  junction,  then  we  know   !n  at  each  end  of  the  base.    Since  the  base  is  assumed  to  be  short,  we  simply  connect  the  two  end  points  with  a  straight  line.    Forward  active  region  means:    The  emitter  base  junction  is  forward  biased  ( VBE > 0 )  and  the  base  collector  junction  is  reverse-­‐biased   VBC < 0 .      

!n x = 0( ) = ni

2

N AB

eqVBE kBT "1( )  

!n x =WB( ) = ni

2

N AB

eqVBC kBT "1( )    For  a  moderate  forward  bias  on  the  emitter-­‐base  junction,  the  exponential  in  the  first  equation  dominates,  so  to  a  very  good  approximation:    

!n x = 0( ) " ni

2

N AB

eqVBE kBT >>ni

2

N AB  For  a  moderate  reverse  bias  on  the  base-­‐collector  junction,  the  exponential  in  the  second  equation  above  approaches  zero,  so  to  a  very  good  approximation:    

Page 3: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  3  

HW  Week  14  Solutions  (continued)  

!n x =WB( ) " #

ni2

N AB

<< !n x = 0( )  

Because   !n x =WB( ) is  so  small,  we  can  usually  assume  that   !n x =WB( ) " 0 .    In  the  

figure  below,  we  have  exaggerated   !n x =WB( )  so  that  it  can  be  seen  on  the  plot.      

   

Additional  note:    We  could  also  ask  about  the  total  electron  density,  not  just  the  excess  electron  density.    In  that  case,  we  would  have:    

n x = 0( ) = !n x = 0( ) + ni

2

N AB

=ni

2

N AB

eqVBE kBT >>ni

2

N AB

 

n x =WB( ) = !n x =WB( ) + ni

2

N AB

=ni

2

N AB

eqVBC kBT " 0  

 

 1b)   Sketch   !n x( )vs.  x  for  the  saturation  region  of  operation.  

 Solution:    Saturation  region  means:    The  emitter  base  junction  is  forward  biased  ( VBE > 0 )  and  the  base  collector  junction  is  forward-­‐biased   VBC > 0 .        

!n x = 0( ) = ni

2

N AB

eqVBE kBT "1( ) = ni2

N AB

eqVBE kBT >>ni

2

N AB   !n x = 0( ) >> 0  

!n x =WB( ) = ni

2

N AB

eqVBC kBT "1( ) = ni2

N AB

eqVBC kBT >>ni

2

N AB   0 << !n x =WB( ) < !n x = 0( )      

Page 4: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  4  

HW  Week  14  Solutions  (continued)  

   

     

1c)   Sketch   !n x( )vs.  x  for  the  reverse  active  region  of  operation.    

Reverse  active  region  means:    The  emitter  base  junction  is  reverse  biased  ( VBE << 0 )  and  the  base  collector  junction  is  forward-­‐biased   VBC > 0 .        

!n x = 0( ) = ni

2

N AB

eqVBE kBT "1( ) = "ni

2

N AB   !n x = 0( ) " 0  

!n x =WB( ) = ni

2

N AB

eqVBC kBT "1( ) = ni2

N AB

eqVBC kBT >>ni

2

N AB   !n x =WB( ) >> 0  

   

   Again,  the  small  negative  excess  carrier  concentration  is  exaggerated  for  clarity.      

Page 5: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  5  

 HW  Week  14  Solutions  (continued)    1d)   Sketch   !n x( )vs.  x  for  the  cut-­‐off  region  of  operation.    

Reverse  active  region  means:    The  emitter  base  junction  is  reverse  biased  ( VBE << 0 )  and  the  base  collector  junction  is  reverse-­‐biased   VBC << 0 .        

!n x = 0( ) = ni

2

N AB

eqVBE kBT "1( ) = "ni

2

N AB   !n x = 0( ) " 0  

!n x =WB( ) = ni

2

N AB

eqVBC kBT "1( ) = "ni

2

N AB   !n x =WB( ) " 0  

 

   

Again,  the  small  negative  excess  carrier  concentrations  are  exaggerated  for  clarity.      

2) The  sketch  below  shows  an  NPN  BJT.    Assume  that  it  is  in  the  forward  active  region  with   IC = 1.23 mA  and   IE = 1.27 mA .    Answer  the  following  questions.  

     

Page 6: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  6  

HW  Week  14  Solutions  (continued)    

2a)   What  is  the  common  emitter  current  gain,   !dc ?        

Solution:  

!dc "

IC

IB

=IC

IE # IC

= 1.231.27 #1.23

= 1.230.04

= 1.230.04

= 31    

!dc = 31  

 2b)   What  is  the  common  base  current  gain,   ! dc ?    

Solution:  

! dc "

IC

IE

= 1.231.27

= 0.97     ! dc = 0.97  

 2c)   What  is  the  base  transport  factor,   !T ?    

Solution:  The  base  transport  factor  is  a  quantity  that  describes  internal  current  components.    Without  additional  information,  it  cannot  be  determined  from  the  terminal  currents.    

2d)   What  is  the  emitter  injection  efficiency,  ! ?    

Solution:  The  emitter  injection  efficiency  is  a  quantity  that  describes  internal  current  components.    Without  additional  information,  it  cannot  be  determined  from  the  terminal  currents.    

 2e)   What  is  the  emitter  injection  efficiency  assuming  that  there  is  no  recombination  

in  the  base?    

Solution:  If  there  is  no  recombination  in  the  base,  then  all  of  the  base  current  is  due  to  holes  that  are  back-­‐injected  into  the  emitter,  

IEp .    Also,  since  there  is  no  base  

recombination,  the  electron  current  at  the  end  of  the  base  ( ICn )  is  equal  to  the  current  injected  into  the  base  from  the  emitter,   IEn .    Accordingly,        

Page 7: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  7  

HW  Week  14  Solutions  (continued)    

IEp = IB = IE ! IC = 0.04 mA  

IEn = ICn = IC = 1.23 mA  

γ ≡

IEn

IEn + IEp

= 1.271.23+ 0.04

= 0.97    

! = 0.97    Note  that  when  there  is  no  recombination  in  the  base,  the  emitter  injection  efficiency  is  equal  to  the  common  base  current  gain,   ! =" dc  

   3) The  sketch  below  shows  an  NPN  BJT  biased  in  the  forward  active  region  with  the  four  

current  components  indicated.    Assume:    

IEn = 1.000 mA  

IEp = 0.005 mA  

ICn = 0.995 mA  

ICp ! 0  

 and  answer  the  questions  below.  

 3a)    What  is  the  emitter  injection  efficiency?  

 Solution:      We  want  the  emitter  current  to  consist  almost  entirely  of  electrons  injected  into  the  base,  but  we  also  get  hole  injected  from  the  base  to  the  emitter.    The  emitter  injection  efficiency,  ! ,    is  the  ratio  of  the  current  we  want  to  the  total  current  across  the  forward  emitter-­‐base  junction.    

! "

IEn

IEn + IEp

= 1.0001.000+ 0.005

= 0.995     ! = 0.995  

Page 8: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  8  

HW  Week  14  Solutions  (continued)    

3b)    What  is  the  base  transport  factor?    Solution:  The  base  transport  factor,   !T ,  is  the  ratio  of  the  electron  current  that  leaves  at  the  collector-­‐base  junction,   ICn  ,  to  the  electron  current  that  was  injected  at  emitter-­‐base  junction,   IEn .    

!T "

ICn

IEn

= 0.9951.000

= 0.995     !T = 0.995  

 3c)      What  is  the  common  emitter  current  gain?  

 Solution:  

!dc "

IC

IB

=ICn

IEp + IEn # ICn( ) =0.995

0.005+ 0.005= 99.5    

The  bas  current  consists  of  two  terms,  holes  that  are  injected  into  the  emitter  ( IEp  )  and  holes  that  recombine  with  electrons  in  the  base,   IEn ! ICn( ) .    

!dc = 99.5  

 3d)    What  is  the  common  base  current  gain?  

 Solution:  

! dc "

IC

IE

=ICn

IEn + IEp

= 0.9951.000+ 0.005

= 0.990  

   

It  is  worth  noting  that  we  can  write:    

! dc =

ICn

IEn + IEp

=IEn

IEn + IEp

"ICn

IEn

= # !T = 0.995" 0.995= 0.990  

! dc "

IC

IE

= # !T = 0.990  

               

Page 9: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  9  

HW  Week  14  Solutions  (continued)    4) The  four  current  components  for  the  two  diodes  in  a  PNP  transistor  are  defined  

below.    Assume  that  the  base  width  is  short  (i.e.   WB << Ln )  and  that  the  transistor  is  biased  in  the  forward  active  region  with   VCB = 0 .    The  common  emitter  current  gain  is  

!dc = 100 .    Answer  the  following  questions  assuming  that   ICp = 10 mA .    Note  that  

VCB = 0  places  the  transistor  on  the  borderline  of  the  active  and  saturation  regions.    The  behavior  is  continuous  from  one  region  to  the  next,  so  we  can  call  this  the  active  or  saturation  region.    It  is  better  to  consider  it  to  be  the  active  region,  because  it  takes  a  moderate  forward  bias  on  the  base-­‐collector  junction  to  really  get  into  the  saturation  region  and  see  the  collector  current  drop.  

 4a)    What  is   IEp ?    

Solution:    Since  the  base  is  short,  the  base  transport  factor,   !T ,  is  very  close  to  1.      Since,  

ICp =!T IEp ,  we  conclude  that   IEp = ICp  

IEp = 10 mA  

 4b)  What  is   IEn ?  

Solution:  In  the  active  region,  

IC ! ICp = 10 mA  

In  the  active  region,  the  base  current  is   IB = IC !dc = 0.1mA    

Since  the  base  is  short,   IB = IEn ,  so  we  conclude   IEn = 0.1 mA  

 4c)    What  is   ICn ?    

Solution:  

Since  the  base-­‐collector  junction  is  zero-­‐biased,   ICn = 0 mA  

Page 10: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  10  

HW  Week  14  Solutions  (continued)    

4d)    What  is  the  common  base  current  gain,   ! dc  ?    

Solution:  

! dc "

IC

IE

=IC

IC + IB

=IC

IC + IC #dc

= 11+1 #dc

=#dc

#dc +1    

! dc =

"dc

"dc +1= 100

101= 0.99  

! dc = 0.99  

 5) Consider  a  bipolar  junction  transistor.    All  three  regions  (emitter,  base  and  collector)  

are  composed  of  the  same  semiconductor  material  (except  for  doping  type/density).    The  excess  minority  carrier  concentrations  for  a  specific  bias  point  are  shown  in  the  figure  below  –  note  that  the  scale  is  linear  (although  the  concentrations  near  the  CB  junction  are  exaggerated  for  clarity).    Assume  that  T = 300 K  and  that  the  base  is  doped  at  NB = 1.0 !10

17 cm"3  (NB is  either  NA  or  ND  you  will  need  to  figure  out  which.)    The  diffusion  coefficients  for  electrons  and  holes  are  Dn = 20 cm

2 /s  and  Dp = 10 cm

2 /s  respectively.  Answer  the  following  questions.      

   5a)     What  type  of  transistor  is  this?    NPN  or  PNP?    Explain  how  you  know.    

Solution  PNP.        The  plot  shows  the  excess  minority  carrier  densities  in  each  region,  so  the  majority  carriers  are  Emitter:    holes,  Base:    electrons,  Collector:  holes.    Hence,  it  is  a  PNP  transistor.  

Page 11: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  11  

HW  Week  14  Solutions  (continued)    5b)     What  bias  regime  is  illustrated  in  the  figure?    

Solution:  The  emitter  base  junction  is  forward  biased  (because  we  have  a  positive  number  of  excess  carriers  on  each  side  of  the  junction).    The  base-­‐collector  junction  is  reverse-­‐biased  because  we  have  a  negative  excess  carrier  density  on  each  side.    FB  emitter-­‐base,  RB  base  collector,  means  that  the  bias  region  is    Forward  active  region  

 5c)     What  is  the  doping  density  in  the  emitter  (recall  that  NB  is  given)?    

Solution:  The  Law  of  the  Junction  gives  the  excess  hole  concentration  injected  into  the  base  as  

!p x = 0( ) = ni

2

N DB

eqVBE kBT "1( )  and  the  excess  electron  concentration  injected  into  the  emitter  as  

!n "x = 0( ) = ni

2

N AE

eqVBE kBT #1( )  Dividing  the  first  equation  by  the  second:  

!p x = 0( )!n "x = 0( ) =

N AE

N DB  From  the  plot     !p x = 0( ) = 1"1012 cm-3

 and

  !n "x = 0( ) = 1#1011 cm-3 ,  so  

!p x = 0( )!n "x = 0( ) = 10 =

N AE

1017  

so  we  conclude:  

N AE = 1018 cm-3  

     5d)     Which  of  the  following  best  describes  the  base  region?  Explain  your  answer.    

i)    the  base  width  is  much  larger  than  a  minority  carrier  diffusion  length  ii)    recombination  is  the  dominant  process  for  minority  carrier  flow  through  the  base  iii)  punch-­‐through  has  occurred  at  the  bias  point  illustrated  in  the  figure  iv)    all  of  the  above  v)    none  of  the  above    

Page 12: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  12  

HW  Week  14  Solutions  (continued)    

Solution:    

The  base  width  is  much  shorter  than  a  minority  carrier  diffusion  length    

There  is  a  clear,  linear,  minority  carrier  diffusion  profile,  which  indicates  that  recombination  is  negligible,  so  the  minority  carrier  diffusion  length  is  much  longer  than  the  base  width  and  recombination  is  negligible.    

5e)     What  is  the  emitter  injection  efficiency  (numerical  answer)?    Solution:  The  hole  current  injected  from  the  emitter  to  the  base  is  

JEp = q

Dp

WB

ni2

N DB

eqVEB /kBT !1( )    (The  base  is  short,  so  we  use  the  base  width,  not  the  diffusion  length.)    The  electron  current  injected  from  the  base  to  the  emitter  is  

JEn = q

Dn

Ln

ni2

N AE

eqVEB /kBT !1( )  (The  emitter  is  long,  so  we  use  the  electron  diffusion  length,  not  the  emitter  width.)  For  later  use,  we  note:  

JEn

JE p

=Dn

Dp

WB

Ln

N DB

N AE

 

The  emitter  injection  efficiency  is  

! =

JE p

JE p + JEn

= 11+ JEn JE p

= 1+Dn

Dp

WB

Ln

N DB

N AE

"

#$

%

&'

(1

 

Putting  in  numbers:  

! = 1+

Dn

Dp

WB

Ln

N DB

N AE

"

#$

%

&'

(1

= 1+ 20 cm2 s10 cm2 s

) 0.2 µm1.0 µm

) 1017 cm-3

1018 cm-3

"

#$%

&'

(1

= 1+ 0.04( )(1= 1.04  

! = 0.96                  

Page 13: ECE305#Homework#SOLUTIONS:#Week#14#... · HW#Week14#Solutions(continued)# # E I p =I B =I E!I C =0.04mA# I En =I Cn =I C =1.23mA# γ≡ I En I En +I Ep = 1.27 1.23+0.04 =0.97##!=0.97

ECE  305     Spring  2015  

ECE-­‐305     Spring  2015  13  

HW  Week  14  Solutions  (continued)    

5f)     What  is   !dc  for  this  transistor?    

Solution:  Because  there  is  no  recombination  in  the  base,    

JEp = JCp = JC = q

Dp

WB

ni2

N DB

eqVEB /kBT !1( )  Because  there  is  no  recombination  in  the  base:  

JEn = JB = q

Dn

Ln

ni2

N AE

eqVEB /kBT !1( )  

!dc "

JC

JB

=Dp

Dn

Ln

WB

N DB

N AE

= 25       !dc = 25

   A  quicker  way  to  get  this  answer  is  to  use    

!dc =

"1# "

= 0.961# 0.96

= 24  

 (Difference  is  due  to  round-­‐off  error.)      

 


Recommended