+ All Categories
Home > Documents > ECE305#Homework#SOLUTIONS:#Week#8# - nanoHUB/uploads/Week8HW_Solutions5.pdf · Mark%Lundstrom% %...

ECE305#Homework#SOLUTIONS:#Week#8# - nanoHUB/uploads/Week8HW_Solutions5.pdf · Mark%Lundstrom% %...

Date post: 27-Jan-2021
Category:
Upload: others
View: 6 times
Download: 1 times
Share this document with a friend
8
Mark Lundstrom 10/17/2014 ECE305 Fall 2014 1 ECE 305 Homework SOLUTIONS: Week 8 Mark Lundstrom Purdue University (10.31.14) 1) A silicon diode is asymmetrically doped at N D = 10 19 cm 3 and N A = 10 16 cm 3 . (Note that at N D = 10 19 the semiconductor is on the edge of degeneracy, but we can assume that nondegenerate carrier statistics are close enough for this problem.) Answer the following questions assuming room temperature. Assume that the minority electron and hole lifetimes are ! n = ! p = 10 "6 s. The lengths of the N and P regions are L = 500 μm and L >> x p , x n . Assume an “ideal diode” and answer the following questions. 1a) Compute J D = I D A , the diode current density at a forward bias of V A = 0.5 V. Solution: Since this in a onesided junction with N D >> N A , essentially all of the current is due to electrons injected into the Pregion. J D = q n i 2 N A D n L n e qV A k B T ! 1 ( ) = J 0 e qV A k B T ! 1 ( ) (*) From Fig. 3.5 on p. 80 of SDF, μ n = 1248 cm 2 V-s at N A = 10 16 . Using the Einstein relation, we find D n = k B T q μ n = 0.026 ! 1248 = 32.4 cm 2 /s The diffusion length is: L n = D n ! n = 32.4 " 10 #6 = 57 μm
Transcript
  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  1  

    ECE  305  Homework  SOLUTIONS:  Week  8    

    Mark  Lundstrom  Purdue  University  

    (10.31.14)      1) A  silicon  diode  is  asymmetrically  doped  at   N D = 10

    19  cm-‐3  and N A = 1016  cm-‐3.    (Note  

    that  at   N D = 1019 the  semiconductor  is  on  the  edge  of  degeneracy,  but  we  can  assume  

    that  non-‐degenerate  carrier  statistics  are  close  enough  for  this  problem.)    Answer  the  following  questions  assuming  room  temperature.    Assume  that  the  minority  electron  and  hole  lifetimes  are  

    ! n = ! p = 10

    "6  s.    The  lengths  of  the  N  and  P  regions  are  

    L = 500 µm  and   L >> xp ,xn .  Assume  an  “ideal  diode”  and  answer  the  following  questions.  

     

     1a)    Compute   JD = ID A ,  the  diode  current  density  at  a  forward  bias  of     VA = 0.5  V.    

    Solution:  Since  this  in  a  one-‐sided  junction  with   N D >> N A  ,  essentially  all  of  the  current  is  due  to  electrons  injected  into  the  P-‐region.    

    JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( ) = J0 eqVA kBT !1( )     (*)    From  Fig.  3.5  on  p.  80  of  SDF,   µn = 1248 cm

    2 V-s  at   N A = 1016  .  

    Using  the  Einstein  relation,  we  find    

    Dn =

    kBTq

    µn = 0.026!1248 = 32.4 cm2 /s    

    The  diffusion  length  is:    

    Ln = Dn! n = 32.4"10#6 = 57 µm    

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  2  

    HW8  solutions  (continued):    Since   Ln

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  3  

    HW8  solutions  (continued):    2) Consider  the  diode  in  problem  1)  above  and  answer  the  following  questions.    

    2a)    If  the  diode  is  biased  such  that   JD = 10!6 A/cm2 ,  what  is   VA  ?  

     Solution:  

    Begin  with   JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( ) = J0 eqVA kBT !1( )    In  moderate  forward  bias,  we  can  drop  the  -‐1:    

    JD = J0eqVA kBT  

     so  

    VA =

    kBTq

    lnJDJ0

    !"#

    $%&  

     Putting  in  numbers:  

    VA = 0.026ln

    10!6

    9.1"10!12#$%

    &'(= 0.302 V    

    VA = 0.302 V  

     2b)    If  the  temperature  changes  from  300  K  to  301  K,  how  much  does   VA  change?    Solution:    Differentiate  the  expression  that  we  obtained  above:  

    dVAdT

    = ddT

    kBTq

    lnJDJ0

    !"#

    $%&

    '()

    *)

    +,)

    -)=

    kBq

    lnJDJ0

    !"#

    $%&+

    kBTq

    J0JD

    ddT

    JD J0`.1( )  

     

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    1J0

    dJ0dT

    !"#

    $%&  

    dJ0dT

    = ddT

    qni

    2

    N A

    DnLn

    !

    "#$

    %&  

     The  strongest  part  of  the  temperature-‐dependence  comes  from  the  exponential  factor  in   ni

    2 ,  so  we  can  ignore  the  temperature  dependence  of  the  diffusion  coefficient,  the  diffusion  length,  and  the  effective  densities-‐of-‐states  and  write:    

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  4  

    HW8  solutions  (continued):    

    J0 = Ke!EG kBT    

    then  

    1J0

    dJ0dT

    = 1Ke!EG kBT

    Ke!EG kBTEG

    kBT2

    "

    #$%

    &'=

    EGkBT

    2

    "

    #$%

    &',  

     which  can  be  used  to  find    

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    1J0

    dJ0dT

    !"#

    $%&=

    kBq

    lnJDJ0

    !"#

    $%&'

    kBTq

    EGkBT

    2

    !

    "#$

    %&  

     so    

    dVAdT

    =kBq

    lnJDJ0

    !"#

    $%&'

    EG qT

    !"#

    $%&.  

     Putting  numbers  in:    

    dVAdT

    = 1.38!10"23

    1.6!10"19ln 10

    "6

    9.1!10"12#$%

    &'(" 1.12

    300#$%

    &'(  

     

    dVAdT

    = 1.00!10"3 " 3.73!10"3 = "2.7 !10"3  

     

    dVAdT

    ! "3 mV/K  

     So  we  need  to  lower  the  applied  bias  about  3  millivolts  to  keep  the  current  constant  as  the  temperature  increases  1  K  or  1  degree  C.    PN  junctions  can  be  used  as  thermometers  because  the  diode  current  depends  sensitively  on  temperature.    A  more  careful  treatment  would  include  the  temperature  dependencies  of  the  bandgap,  effective  densities-‐of-‐states,  diffusion  coefficient,  etc.,  but  the  result  would  be  close  to  the  value  obtained  here.  

           

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  5  

    HW8  solutions  (continued):    3) The  sketch  below  shows  the  carrier  concentrations  in  a  PN  junction  at  room  

    temperature.    Answer  the  following  questions.    

       

    3a)    Is  the  diode  forward  or  reverse  biased?    Explain  your  answer.    

    Solution:  Forward  biased  because  there  are  excess  electrons  on  the  P-‐side  and  excess  holes  on  the  N-‐side.    

    3b)    What  is  the  acceptor  concentration  on  the  P-‐side?    

    Solution:     NA = 1016 cm-3  

     3c)    What  is  the  donor  concentration  on  the  N-‐side?    

    Solution:     ND = 1014 cm-3  

     3d)    What  is  the  intrinsic  carrier  concentration?    

    Solution:  

    n0 p0 = ni2    

    On  the  P-‐side:     n0 p0 = 1016 !107 = 1023     ni = 10

    23 = 3.16!1011 cm-3    

    On  the  N-‐side:     n0 p0 = 1014 !109 = 1023   ni = 10

    23 = 3.16!1011 cm-3      

    ni = 3.16!10

    11 cm-3  

         

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  6  

    HW8  solutions  (continued):    3e)    Do  low  level  injection  conditions  apply?    

    Solution:  YES.  

    On  the  P-‐side:     !n "xp( ) = 1010

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  7  

    HW8  solutions  (continued):    

    4a)     Is  the  diode  forward  or  reverse  biased?    

    Solution:  Forward  biased  because   Fn > Fp  .  

     4b)     What  is  the  value  of  the  applied  bias?    

    Solution:  

    qVA = Fn ! Fp  

    VA = +0.5 V  

     4c)     What  is  the  bandgap  of  the  semiconductor?    

    Solution:  Reading  from  the  graph:  

    EC ! EV = 1.25 eV  

     4d)     What  is  the  built-‐in  potential  of  the  junction.    

    Solution:  From  the  plot:    

    Vj =Vbi !VA = 0.25 V  

    Since:   VA = +0.5 V  

    Vbi =Vj +VA = 0.75 V  

    Vbi = 0.75 V  

       5) Consider  the  Si  diode  of  prob.  1)  and  make  one  change.    The  minority  carrier  lifetime  

    increases  by  a  factor  of  1000,  so   ! n = ! p = 10

    "3  s.    The  lengths  of  the  N  and  P  regions  

    are  still   L = 500 µm  and   L >> xp ,xn  .  Assume  an  “ideal  diode”  and  compute  the  

    forward-‐biased  current  density  at   VA = 0.6  V.      

    Solution:  We  recognize  that  the  minority  carrier  diffusion  length  will  change.  

    Ln = Dn! n = 32.4"10#3 = 1800 µm    

     Now   Ln >> L  ,  so  the  long  base  diode  of  prob.  1)  has  become  a  short  base  diode.  Instead  of  eqn.    (*)  in  prob.  1),  we  have  to  replace  the  minority  carrier  diffusion  length  by  the  length  of  the  P-‐region:  

  • Mark  Lundstrom     10/17/2014  

    ECE-‐305     Fall  2014  8  

    HW8  solutions  (continued):  

    JD = q

    ni2

    N A

    DnL

    eqVA kBT !1( ) = J0 eqVA kBT !1( )  

    Write  the  saturation  current  density  as    

    J0 = q

    ni2

    N A

    DnL

    = qni

    2

    N A

    DnLn

    !"#

    $#

    %&#

    '#

    LnL  

     The  term  in  brackets  was  computed  in  prob.  1a),  and  so  was  the  diffusion  length.    Using  these  results:    

    J0 = q

    ni2

    N A

    DnLn

    !"#

    $#

    %&#

    '#

    LnL

    = 9.1(10)12{ }( 57500 = 1.04(10)12 A/cm2  

     The  current  becomes:    

    JD = J0 e

    qVA kBT !1( ) = 1.04"10!12 e0.6/0.026 !1( ) = 1.04"10!12 1.05"1010 !1( ) = 1.1"10!2   JD 0.6 V( ) = 1.1!10"2 A/cm2      Note:    The  lifetime  is  longer,  so  the  current  density  must  be  smaller  –  this  is  a  sanity  check.    Key  point  to  remember:    Long  base  diode:   L >> Ln  

    JD = q

    ni2

    N A

    DnLn

    eqVA kBT !1( )  

     Short  base  diode,   L


Recommended