+ All Categories
Home > Documents > ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667...

ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667...

Date post: 11-Mar-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
57
ECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University [email protected]
Transcript
Page 1: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

ECEN 667 Power System Stability

Lecture 6: Synchronous Machine Modeling

Prof. Tom Overbye

Dept. of Electrical and Computer Engineering

Texas A&M University

[email protected]

Page 2: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

1

Announcements

• Read Chapter 3

• Homework 1 is due today

• Homework 2 is due on Thursday September 19

Page 3: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

2

37 Bus System

• Next we consider a slightly larger, ten generator, 37

bus system. To view this system open case

AGL37_TS. The system one-line is shown below.

To see summary

listings of the

transient stability

models in this case

select “Stability

Case Info” from the

ribbon, and then

either “TS Generator

Summary” or “TS

Case Summary”

slack

Aggieland Power and LightSLA CK345

SLA CK138

HOWDY345

HOWDY138

HOWDY69

12MA N69 63%

A

MVA

GIGEM69

KYLE69

KYLE138

WEB138

WEB69

BONFIRE69

FISH69

RING69

T REE69

CENT URY69

REVEILLE69

T EXA S69

T EXA S138

T EXA S345

BA T T 69

NORT HGA T E69

MA ROON69

SPIRIT 69

YELL69

RELLIS69

WHIT E138

RELLIS138

BUSH69

MSC69

RUDDER69

HULLA BA LOO138

REED69

REED138

A GGIE138 A GGIE345

12%A

MVA

25%A

MVA

41%A

MVA

24%A

MVA

50%A

MVA

31%A

MVA

55%A

MVA

54%A

MVA

33%A

MVA

28%A

MVA

44%A

MVA

24%A

MVA

34%A

MVA

72%A

MVA

27%A

MVA

50%A

MVA

44%A

MVA

29%A

MVA

37%A

MVA

37%A

MVA

37%A

MVA

46%A

MVA

37%A

MVA

55%A

MVA

34%A

MVA

19%A

MVA

68%A

MVA

72%A

MVA

56%A

MVA

48%A

MVA

55%A

MVA

43%A

MVA

67%A

MVA

25%A

MVA

50%A

MVA

28%A

MVA

38%A

MVA

38%A

MVA

A

MVA

A

MVA

21%A

MVA

51%A

MVA

52%A

MVA

41%A

MVA

61%A

MVA

70%A

MVA

54%A

MVA

54%A

MVA

1.02 pu

1 .01 pu

1 .02 pu

1 .03 pu

0 .98 pu

1 .00 pu1 .01 pu

0 .99 pu

1 .00 pu

1 .02 pu

1 .00 pu

1 .01 pu1 .01 pu

1 .01 pu

1 .02 pu

1 .02 pu

0 .98 pu

0 .98 pu

1 .04 pu

1 .008 pu

1 .01 pu

1 .01 pu

1 .02 pu

0 .99 pu

0 .99 pu

1 .00 pu

1 .00 pu 1 .00 pu

1 .00 pu

1 .00 pu1 .00 pu

79%A

MVA

1.02 pu

73%A

MVA

34%A

MVA

PLUM138

A

MVA

1.01 pu

19%A

MVA

1.01 pu

57%A

MVA

270 MW

34 MW

0 Mvar

59 MW

17 Mvar

MW 250

100 MW

30 Mvar

20 MW

8 Mvar

MW 500

100 MW

30 Mvar

61 MW 17 Mvar

59 MW

6 Mvar

70 MW

0 Mvar

93 MW

58 Mvar

58 MW

17 Mvar

MW 0 36 MW

24 Mvar

96 MW

20 Mvar

MW 60

37 MW

14 Mvar

53 MW

21 Mvar

16.2 Mvar 29 MW

8 Mvar

93 MW

65 Mvar 82 MW

27 Mvar

20.3 Mvar

35 MW

11 Mvar

25 MW

10 Mvar

38 MW

10 Mvar 22 MW

0 Mvar

31.2 Mvar

22.2 Mvar

12.7 Mvar

29.4 Mvar

31.2 Mvar

20.8 Mvar

MW 80

31 MW

13 Mvar

MW 92

27 MW

4 Mvar

MW 12

49 MW

17 Mvar

MW 80

MW 100

deg 0

tap1.0875

tap1.0125

tap1.0000

Page 4: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

3

Transient Stability Case and Model Summary Displays

Right click on a line

and select “Show

Dialog” for more

information.

Page 5: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

4

37 Bus Case Solution

Graph

shows the

rotor angles

following

a line fault

Page 6: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

5

Stepping Through a Solution

• Simulator provides functionality to make it easy to see

what is occurring during a solution. This functionality

is accessed on the States/Manual Control Page

Run a Specified Number of Timesteps or Run

Until a Specified Time, then Pause.

See detailed results

at the Paused Time

Transfer results

to Power Flow

to view using

standard

PowerWorld

displays and

one-lines

Page 7: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

6

Physical Structure Power System Components

Generator

P, Q

Network

Network

control

Loads

Load

control

Fuel

Source

Supply

control

Furnace

and Boiler

Pressure

control

Turbine

Speed

control

V, ITorqueSteamFuel

Electrical SystemMechanical System

Voltage

Control

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

Page 8: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

7

Dynamic Models in the Physical Structure

Machine

Governor

Exciter

Load

Char.

Load

RelayLine

Relay

Stabilizer

Generator

P, Q

Network

Network

control

Loads

Load

control

Fuel

Source

Supply

control

Furnace

and Boiler

Pressure

control

Turbine

Speed

control

V, ITorqueSteamFuel

Electrical SystemMechanical System

Voltage

Control

P. Sauer and M. Pai, Power System Dynamics and Stability, Stipes Publishing, 2006.

Page 9: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

8

Generator Models

• Generators can

have several

classes of models

assigned to them

– Machine Models

– Exciter

– Governors

– Stabilizers

• Others also available

– Excitation limiters, voltage compensation, turbine load

controllers, and generator relay model

Page 10: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

9

Generator Models

Page 11: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

10

Machine Models

Page 12: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

11

Synchronous Machine Modeling

• Electric machines are used to convert mechanical

energy into electrical energy (generators) and from

electrical energy into mechanical energy (motors)

– Many devices can operate in either mode, but are usually

customized for one or the other

• Vast majority of electricity is generated using

synchronous generators and some is consumed using

synchronous motors, so we'll start there

• There is much literature on subject, and sometimes it is

overly confusing with the use of different conventions

and nomenclature

Page 13: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

12

Synchronous Machine Modeling

3 bal. windings (a,b,c) – stator

Field winding (fd) on rotor

Damper in “d” axis

(1d) on rotor

Two dampers in “q” axis

(1q, 2q) on rotor

Page 14: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

13

Two Main Types of Synchronous Machines

• Round Rotor

– Air-gap is constant, used with higher speed machines

• Salient Rotor (often called Salient Pole)

– Air-gap varies circumferentially

– Used with many pole, slower machines such as hydro

– Narrowest part of gap in the d-axis and the widest along

the q-axis

Page 15: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

14

Dq0 Reference Frame

• Stator is stationary, rotor is rotating at synchronous

speed

• Rotor values need to be transformed to fixed reference

frame for analysis

• Done using Park's transformation into what is known as

the dq0 reference frame (direct, quadrature, zero)

– Parks’ 1929 paper voted 2nd most important power paper of

20th century (1st was Fortescue’s sym. components)

• Convention used here is the q-axis leads the d-axis

(which is the IEEE standard)

Page 16: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

15

Synchronous Machine Stator

Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo

Page 17: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

16

Synchronous Machine Rotors

• Rotors are essentially electromagnets

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

Two pole (P)

round rotor

Six pole salient

rotor

Page 18: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

17

Synchronous Machine Rotor

Image Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

High pole

salient

rotor

Shaft

Part of exciter,

which is used

to control the

field current

Page 19: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

18

Fundamental Laws

• Kirchhoff’s Voltage Law, Ohm’s Law, Faraday’s

Law, Newton’s Second Law

11 1 1

11 1 1

22 2 2

fdfd fd fd

dd d d

qq q q

qq q q

dv i r

dt

dv i r

dt

dv i r

dt

dv i r

dt

aa a s

bb b s

cc c s

dv i r

dt

dv i r

dt

dv i r

dt

shaft 2

2m e f

d

dt P

dJ T T T

P dt

Stator Rotor Shaft

Page 20: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

19

Dq0 Transformations

1

or ,

d a

q dqo b

co

a d

b dqo q

c o

v v

v T v i

vv

v v

v T v

v v

In the next few slides

we’ll quickly go

through how these

basic equations are

transformed into the

standard machine

models. The point

is to show the physical

basis for the models.

And there is NO quiz

at the end!!

Page 21: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

20

Dq0 Transformations

2 2sin sin sin

2 2 3 2 3

2 2 2cos cos cos

3 2 2 3 2 3

1 1 1

2 2 2

shaft shaft shaft

dqo shaft shaft shaft

P P P

P P PT

with the inverse,

13

2

2cos

3

2

2sin

13

2

2cos

3

2

2sin

12

cos2

sin

1

shaftshaft

shaftshaft

shaftshaft

dqo

PP

PP

PP

T

Note that the

transformation

depends on the

shaft angle.

Page 22: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

21

Transformed System

11 1 1

11 1 1

22 2 2

fdfd fd fd

dd d d

qq q q

qq q q

dv r i

dt

dv r i

dt

dv r i

dt

dv r i

dt

2

2

shaft

m e f

d

dt P

dJ T T T

P dt

dd s d q

qq s q d

oo s o

dv r i

dt

dv r i

dt

dv r i

dt

Stator Rotor Shaft

Page 23: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

22

Electrical & Mechanical Relationships

Electrical system:

2

(voltage)

(power)

dv iR

dt

dvi i R i

dt

Mechanical system:

2

2(torque)

2 2 2 2(power)

m e fw

m e fw

dJ T T T

P dt

dJ T T T

P dt P P P

P is the

number of

poles (e.g.,

2,4,6); Tfw

is the friction

and windage

torque

Page 24: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

23

Torque Derivation

• Torque is derived by looking at the overall energy

balance in the system

• Three systems: electrical, mechanical and the

coupling magnetic field

– Electrical system losses are in the form of resistance

– Mechanical system losses are in the form of friction

• Coupling field is assumed to be lossless, hence we

can track how energy moves between the electrical

and mechanical systems

Page 25: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

24

Energy Conversion

ooqqddccbbaa iviviviviviv 32

3

2

3

Look at the instantaneous power:

Page 26: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

25

Change to Conservation of Power

dt

di

dt

di

dt

di

dt

di

dt

di

dt

di

dt

diP

iririririiirP

iv

ivivivivivivP

qq

qq

dd

fdfd

cc

bb

aa

electtrans

qqqqddfdfdcbaselectlost

qq

qqddfdfdccbbaaelectin

22

11

11

222

211

211

2222

22

1111

We are using

v = d/dt here

Page 27: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

26

With the Transformed Variables

222

211

211

2222

2211

11

32

3

2

3

32

3

2

3

qqqq

ddfdfdosqsdselectlost

qqqq

ddfdfdooqqddelectin

irir

iririririrP

iviv

ivivivivivP

Page 28: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

27

With the Transformed Variables

dt

di

dt

di

dt

di

dt

di

dt

di

dt

di

idt

dP

dt

dii

dt

dPP

qq

qq

dd

fdfd

oo

qq

qdshaftd

ddqshaft

electtrans

22

11

113

2

3

22

3

2

3

22

3

Page 29: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

28

Change in Coupling Field Energy

fdW

dt

PTe

2

dt

dai

dt

d abi

dt

d b

ci dt

d cfdi

dt

d fddi1

dt

d d1

qi1 dt

d q1qi2

dt

d q2

This requires the lossless coupling field assumption

First term on

right is what is

going on

mechanically,

other terms are

what is going

on electrically

Page 30: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

29

Change in Coupling Field Energy

For independent states , a, b, c, fd, 1d, 1q, 2q

fdW

dt

fW

dt

d f

a

W

dt

d a f

b

W

dt

d b

f

c

W

dt

d c f

fd

W

dt

d fd

1

f

d

W

dt

d d1

1

f

q

W

dt

d q1

2

f

q

W

dt

d q2

Page 31: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

30

Equate the Coefficients

2 f fe a

a

W WT i

P

etc.

There are eight such “reciprocity conditions for

this model.

These are key conditions – i.e. the first one gives

an expression for the torque in terms of the

coupling field energy.

Page 32: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

31

Equate the Coefficients

shaft

fW

3

2 2d q q d e

Pi i T

dd

fi

W

2

3

3, , 3

2

f fq o

q o

W Wi i

fdfd

fi

W

1 1 2

1 1 2

, , ,f f f

d q qd q q

W W Wi i i

These are key conditions – i.e. the first one gives an expression for

the torque in terms of the coupling field energy.

Page 33: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

32

Coupling Field Energy

• The coupling field energy is calculated using a path

independent integration

– For integral to be path independent, the partial derivatives of

all integrands with respect to the other states must be equal

• Since integration is path independent, choose a

convenient path

– Start with a de-energized system so variables are zero

– Integrate shaft position while other variables are zero

– Integrate sources in sequence with shaft at final value

3For example,

2

fdd

fd d

ii

Page 34: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

33

Define Unscaled Variables

11 1 1

fdfd fd fd

dd d d

dr i v

dt

dr i v

dt

2shaft s

Pt

ds d q d

qs q d q

os o o

dr i v

dt

dr i v

dt

dr i v

dt

11 1 1

22 2 2

qq q q

qq q q

dr i v

dt

dr i v

dt

2 3

2 2

s

m d q q d f

d

dt

d PJ T i i T

p dt

s is the rated

synchronous speed

plays an important role!

Page 35: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

34

Synchronous Machine Equations in Per Unit

1

1

1

ds d q d

s s

qs q d q

s s

os o o

s

dR I V

dt

dR I V

dt

dR I V

dt

11 1 1

1

1

fdfd fd fd

s

dd d d

s

dR I V

dt

dR I V

dt

11 1 1

22 2

1

12

qq q q

s

qq q

s

dR I V

dt

dR I V

dt

2

s

M d q q d FWs

d

dt

H dT I I T

dt

Units of H are

seconds

Page 36: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

35

Sinusoidal Steady-State

3

2cos2

3

2cos2

cos2

3

2cos2

3

2cos2

cos2

isssc

isssb

isssa

vsssc

vsssb

vsssa

tII

tII

tII

tVV

tVV

tVVHere we consider the

application to balanced,

sinusoidal conditions

Page 37: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

36

Simplifying Using

• Define

• Hence

• These algebraic

equations can be

written as complex

equations

issq

issd

vssq

vssd

II

II

VV

VV

cos

sin

cos

sin

2shaft s

Pt

The conclusion is

if we know , then

we can easily relate

the phase to the dq

values!

/ 2

/ 2

jj vsV jV e V ed q s

jj isI jI e I ed q s

Page 38: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

37

Summary So Far

• The model as developed so far has been derived

using the following assumptions

– The stator has three coils in a balanced configuration,

spaced 120 electrical degrees apart

– Rotor has four coils in a balanced configuration located

90 electrical degrees apart

– Relationship between the flux linkages and currents must

reflect a conservative coupling field

– The relationships between the flux linkages and currents

must be independent of shaft when expressed in the dq0

coordinate system

Page 39: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

38

Assuming a Linear Magnetic Circuit

• If the flux linkages are assumed to be a linear

function of the currents then we can write

The rotor

self-

inductance

matrix

Lrr is

independent

of shaft

1 1

1 1

2 2

a a

b bss shaft sr shaft

c c

fd fd

d d

rs shaft rr shaftq q

q q

i

iL L

i

i

iL L

i

i

Page 40: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

39

Conversion to dq0 for Angle Independence

1

1 11

1 1

2 2

d d

q q

o odqo srdqo ss dqo

fd fd

d d

rrrs dqoq q

q q

i

i

iT LT L Ti

iLL T

i

i

Page 41: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

40

Conversion to dq0 for Angle Independence

1 1

1 1

1 1 1 1 1 1

3

2

3

2

d s md d sfd fd s d d

fd sfd d fdfd fd fd d d

d s d d fd d fd d d d

L L i L i L i

L i L i L i

L i L i L i

1 1 2 2

1 1 1 1 1 1 2 2

2 2 1 2 1 2 2 2

3

2

3

2

q s mq q s q q s q q

q s q q q q q q q q

q s q q q q q q q q

L L i L i L i

L i L i L i

L i L i L i

o s oL i

,md A B

mq A B

3L L L

2

3L L L

2

For a round rotor

machine LB is small

and hence Lmd is

close to Lmq. For a

salient pole machine

Lmd is substantially

larger

Page 42: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

41

Convert to Normalized at f = s

• Convert to per unit, and assume frequency of s

• Then define new per unit reactance variables

, ,

, ,

, ,

,

,

s mqs s s mds md mq

BDQ BDQ BDQ

s fdfd s fd 1d sfds 1d 1dfd 1d fd 1d

BFD B1D BFD s1d

s 1q1q s 2q2q s 1q2q s1q

1q 2q 1q2q

B1Q B2Q B1Q s2q

fd fd md 1d 1d md

1q 1q mq 2q 2

LL LX X X

Z Z Z

L L LLX X X

Z Z Z L

L L L LX X X

Z Z Z L

X X X X X X

X X X X X

,

q mq

d s md q s mq

X

X X X X X X

Page 43: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

42

Key Simulation Parameters

• The key parameters that occur in most models can

then be defined as 2

2

1

1

1

1

1

1 1

1

1 1

,

mdd s d

fd

md fd

mqq s q

q

mq q

qdo qo

s fd s q

XX X X

X

X X

XX X X

X

X X

XXfdT T

R R

These values

will be used in

all the

synchronous

machine models

In a salient rotor machine

Xmq is small so Xq = X'q;

also X1q is small so

T'q0 is small

Page 44: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

43

Key Simulation Parameters

• And the subtransient parameters

These values

will be used in the

subtransient machine

models. It is common

to assume X"d = X"q

1

1 2

1 21 2

1 1

1

1 1 1

1

1 1 1

1 1 1 1,

1 1 1 1

d s

md fd d

q s

mq q q

do d qo qs d s q

md d mq q

X X

X X X

X X

X X X

T X T XR R

X X X X

Page 45: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

44

Example Xd/Xq Ratios for a WECC Case

Page 46: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

45

Example X'q/Xq Ratios for a WECC Case

About 75% are Clearly Salient Pole Machines!

Page 47: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

46

Internal Variables

• Define the following variables, which are quite

important in subsequent models

Hence E'q and E'd are

scaled flux linkages

and Efd is the scaled

field voltage

11

XmdE

q fdXfd

Xmq

Ed qX

q

XmdE V

fd fdRfd

Page 48: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

47

Dynamic Model Development

• In developing the dynamic model not all of the

currents and fluxes are independent

– In this formulation only seven out of fourteen are

independent

• Approach is to eliminate the rotor currents,

retaining the terminal currents (Id, Iq, I0) for

matching the network boundary conditions

Page 49: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

48

Rotor Currents

• Use new variables to solve for the rotor currents

1

1

1 12

1

d s d dd d d q d

d s d s

fd q d d d dmd

d dd d d s d q

d s

X X X XX I E

X X X X

I E X X I IX

X XI X X I E

X X

Page 50: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

49

Rotor Currents

2

1 2

2 22

1

q s q q

q q q d q

q s q s

q d q q q qmq

q qq q q s q d

q s

o s o

X X X XX I E

X X X X

I E X X I IX

X XI X X I E

X X

X I

Page 51: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

50

Final Complete Model

These first three equations

define what are known

as the stator transients; we

will shortly approximate

them as algebraic constraints

12

q d ddo q d d d d d s d q fd

d s

dE X XT E X X I X X I E E

dt X X

22

q qdqo d q q q q q s q d

q s

X XdET E X X I X X I E

dt X X

Page 52: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

51

Final Complete Model

11

22

2

ddo d q d s d

qqo q d q s q

s

M d q q d FWs

dT E X X I

dt

dT E X X I

dt

d

dt

H dT I I T

dt

TFW is the friction

and windage

component

1

2

d s d sd d d q d

d s d s

q s q q

q q q d q

q s q s

o s o

X X X XX I E

X X X X

X X X XX I E

X X X X

X I

Page 53: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

52

Single-Machine Steady-State

The key variable

we need to

determine the

initial conditions

is actually , which

doesn't appear

explicitly in these

equations!

1

0

0

0

0

0

s d q d

s q d q

s o o

q d d d fd

d q d s d

R I V

R I V

R I V

E X X I E

E X X I

s d q d d

q q q d

o s o

E X I

X I E

X I

2

0

0

0

0

d q q q

q d q s q

s

m d q q d FW

E X X I

E X X I

T I I T

Page 54: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

53

Field Current

• The field current, Ifd, is defined in steady-state as

• However, what is usually used in transient stability

simulations for the field current is the product

• So the value of Xmd is not needed

/fd fd mdI E X

fd mdI X

Page 55: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

54

Single-Machine Steady-State

• Previous derivation was done assuming a linear

magnetic circuit

• We'll consider the nonlinear magnetic circuit later but

will first do the steady-state condition (3.6)

• In steady-state the speed is constant (equal to s), is

constant, and all the derivatives are zero

• Initial values are determined from the terminal

conditions: voltage magnitude, voltage angle, real and

reactive power injection

Page 56: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

55

Determining without Saturation

• In order to get the initial values for the variables we

need to determine

• We'll eventually consider two approaches: the simple

one when there is no saturation, and then later a

general approach for models with saturation

• To derive the simple approach we have

d s d d q q

q s q q d d

V R I E X I

V R I E X I

Page 57: ECEN 667 Power System Stabilityoverbye.engr.tamu.edu/.../146/2019/09/ECEN667_2019_Lect6.pdfECEN 667 Power System Stability Lecture 6: Synchronous Machine Modeling Prof. Tom Overbye

56

Determining without Saturation

• In terms of the terminal values

/2Since

j

jq d d q

j e

E X X I E e

( )as s q asE V R jX I

The angle on E


Recommended