+ All Categories
Home > Documents > ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 · 2020. 10. 30. · Example: Folded-Cascode...

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 · 2020. 10. 30. · Example: Folded-Cascode...

Date post: 17-Feb-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
25
Sam Palermo Analog & Mixed-Signal Center Texas A&M University Lecture 13: Folded Cascode & Two Stage Miller OTA ECEN474/704: (Analog) VLSI Circuit Design Spring 2018
Transcript
  • Sam PalermoAnalog & Mixed-Signal Center

    Texas A&M University

    Lecture 13: Folded Cascode & Two Stage Miller OTA

    ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

  • Announcements

    • Exam dates reminder• Exam 2 is on Apr. 10• Exam 3 is on May 3 (3PM-5PM)

    • Project description is posted on website

    2

  • Agenda

    • Single-Stage Cascode OTA

    • Folded Cascode OTA

    • Two Stage Miller OTA

    3

  • Simple OTA

    4

    M1 M2Vi+ Vi-

    VDD

    VSS

    Rbias

    Itail

    M5 M6

    M3 M4

    CL

    Vo

    621 || oomoutmv rrgRGA Gain DC

    • Gain is limited by single-transistor output resistance

  • Single-Stage Cascode OTA

    • Gain is larger by a gmro factor• Output swing range is limited

    due to large compliance voltage of cascode current source load

    5

    6864241 || oomoommoutmv rrgrrggRGA Gain DC[Razavi]

  • Single-Stage Cascode OTA Unity Gain Feedback Voltage Range

    6

    !!! a than Less Range Input) (&Output

    conditionsat M2 into plugging and As

    saturation M2by set V Maximum

    saturationM4by set V Minimum

    244

    24242

    4

    2

    out

    4

    out

    TH

    THGSTH

    THGSbTHGSbTHxout

    xGSxb

    THxout

    THbout

    VVVV

    VVVVVVVVVVVVVVVV

    VVV

    • Cascode configuration constrains output & unity-gain swing

    [Razavi]

  • Folded Cascode Circuits

    7

    • “Folding” about the cascode node will increase input and output swing range

    PMOS Input & NMOS Cascode

    NMOS Input & PMOS Cascode

    [Razavi]

  • Folded Cascode OTA

    8

    [Razavi]

  • Folded Cascode OTA Unity Gain Feedback Voltage Range

    9

    • With proper (high-value) choice of Vb2, a decent output and input swing range can be achieved

    1

    2 ||

    GSDSATIoutDSATNDSATNCout

    THPbout

    VVVVVV

    VVVMP

    Tail

    OR saturation sourcecurrent tailor cascode NMOSoutput byset V Minimum

    saturation byset V Maximum

    out

    out

    MP

    MNC

  • TAMU-ELEN-474 2009 Jose Silva-Martinez

    - 10 -

    Folded-Cascode OTA: gm, rout and poles?

    VB1 and VB2 must keep M1

    - M5 in saturation region

    VB2 > Vsat,4 + VGS3

    VB1 < VDD - Vsat,5 – VSG2

    Notice that ID5 biases both M2 and M1

    43351221 ; dsmdsdsdsmdsoutmm rgrrrgrrgG

    (for M4 sat)

    (for M5 sat)

  • TAMU-ELEN-474 2009 Jose Silva-Martinez

    - 11 -

    Example: Folded-Cascode OPAMP

    Find the gain and the phase from input to output and from input to node 2.

    The low frequency gain is 77 dB and the unity gain frequency is around 80 MHz.The behavior of the gain from the input to node 2 is interesting: above the dominant pole.

    51

    1

    oo

    m

    ggg

    2

    1

    m

    m

    gg

    Loutoo

    mz Crgg

    g 1

    51

    22

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 12 -

    FOLDED-CASCODE OTAFrequency response:

    Can be approximated as having 4 poles associated

    with nodes Vout, VX/W, VZ, and VY

    The poles at Vy and Vz are associated to

    N-type transistors higher frequencies

    mnc

    Z

    mn

    Y

    mp

    PC

    out

    outoutmV

    gsC

    gsC

    gsC

    gsCRgsA

    1

    1

    1

    1

    1

    1

    1

    11

    vin-

    2ID1

    M1

    MP

    vout

    VB2

    VB1vin+

    2ID1

    VB2iOUT1

    2ID1

    VDD

    -VSSMN

    VB3

    MN

    VB1

    VWVX

    VY

    VZ

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 13 -

    Output referred noiseM1 produces an output current given by

    Each transistor M2 generates a differential output current

    Similarly, for each transistor M5

    At low and medium frequencies, noise contribution of the cascode transistors can be neglected (M3 and M4)

    Vn4

    ro5

    i04

    M405

    4n4n

    054m

    4m04 r

    vv

    rg1g

    i

    For cascode transistors

    1n1m01 vgi

    2n2m02 vgi

    5n5m05 vgi

    vin-

    2ID1

    M1

    M2

    vout

    VB2

    VB1vin+

    2ID1

    VB2iOUT1

    2ID1

    VDD

    -VSSMN

    VB3

    MN

    VB1

    VWVX

    VY

    VZM4

    M5

    M3

    iout2 = 2(ieq12 + ieq22 + ieqn2 )

    meq kTgi 382 Remember

    mnmmout gggkTfi

    212

    316

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 14 -

    Noise level for the folded-cascode OTA

    Let’s find the input rms noise

    Low-noise is associated with large gm1 and relatively small gm2 and gm5

    BW m

    m

    m

    m

    mnoise dfg

    ggg

    gkTv 2

    1

    52

    1

    2

    1

    13

    16

    1

    5

    1

    2

    1

    18

    m

    m

    m

    m

    mnoise g

    gggBW

    gkTv

    Or for a dominant (single) pole system with NBW = (/2)BW

    vin-

    2ID1

    M1

    M2

    vout

    VB2

    VB1vin+

    2ID1

    VB2iOUT1

    2ID1

    VDD

    -VSSM5

    VB3

    M5

    VB1

    VWVX

    VY

    VZ

    Noise of diff pair Noise Factor (due to other transistors)

    21

    212

    22 13

    161

    mmnmm

    m

    outin

    ggggkT

    Gfi

    fv

    Considering thermal noise only

  • Multi-Stage Amplifiers

    15

    • Single-stage amplifiers typically have to trade-off gain and swing range

    • Multi-stage amplifiers allow for higher gain without sacrificing swing range

    • The major challenge with multi-stage amplifiers is achieving adequate phase margin to insure stability in a feedback configuration

  • Two Stage Miller OTA

    16

    42

    2818

    78

    7842

    82

    78

    8

    42

    221

    1

    oo

    mmvmm

    ooout

    outmVDC

    oooo

    mm

    oo

    m

    oo

    mvvVDC

    ggggAgG

    ggR

    RGAgggg

    gggg

    ggg

    gAAA

    Gain DC

  • Two-Stage Miller OTA – Frequency Response

    17

    • Stage 1 is a differential amplifier with an active load

    • Stage 2 is a common-source amplifier with a large miller capacitor

    • Using a Thevenin equivalent for Stage 1, we can use the common-source equations from Lecture 8

  • Two-Stage Miller OTA – Frequency Response

    18

    • The amplifier should be designed to yield one dominant pole, so we use the dominant pole approximation equations

    872421

    8

    21

    22812

    28122811

    and where

    1

    11

    1esCapacitancTransistorNeglecting

    OOoutOOout

    L

    m

    LCoutout

    LCoutCoutmoutp

    CoutmoutLCoutCoutmoutp

    rrRrrRCg

    CCRRCCRCRgR

    CRgRCCRCRgR

  • Jose Silva-Martinez -19- Texas A&M University

    ELEN-474

    VSS

    M1 M1

    01i 01i

    -vd

    01iM2 M2

    02iM3

    012i

    vd

    R1 C1RL CL

    -v0

    VDD

    2

    1

    1

    1

    21

    2

    1

    11

    3

    1

    1

    tantan180arg_

    ,min*

    p

    u

    p

    u

    ppVDC

    L

    Lp

    p

    L

    mmVDC

    inmPhase

    AGBWCgCg

    gg

    ggA

    valid?) system, poledominant (if

    (LHP)

    (LHP)

    Main equations

    p1 p2 GBW

    AVDCPhase Margin < 45 degrees

    Phase

    u

    21

    11pp

    VDC

    ssAsA

    Frequency Response – No Compensation

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 20 -

    VSS

    M1 M1

    01i 01i

    -vd

    01iM2 M2

    02iM3

    012i

    vd

    R1 C1 CMRL CL

    -v0

    VDD

    Phase compensation Pole splitting techniques!!

    p1 p2

    GBW

    AVDCAfter compensation Phase Margin > 45 degrees Bandwidth is reduced!!!

    p1’

    p2’u

    2

    1

    1

    1

    11

    1

    32

    31

    11

    3

    1

    1

    tantan180arg_

    *

    pp

    M

    mpVDC

    L

    mp

    ML

    mp

    L

    mmVDC

    WGBWGBinmPhase

    CgAWGB

    CCg

    CggC

    ggg

    ggA

    (LHP)

    (LHP)

    Frequency Response – Miller Compensation (Ignoring z)

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 21 -

    ZEROpp

    M

    mpVDC

    L

    mp

    ML

    mp

    L

    mmVDC

    WGBWGBWGBinmPhase

    CgAWGB

    CCg

    CggC

    ggg

    ggA

    1

    2

    1

    1

    1

    11

    1

    32

    31

    11

    3

    1

    1

    tantantan180arg_

    *

    (LHP)

    (LHP)

    VSS

    M1 M1

    01i 01i

    -vd

    01iM2 M2

    02iM3

    012i

    vd

    R1 C1 CMRL CL

    -v0

    VDD

    Parasitic (bad) RHP zero!!

    p1 p2

    GBW

    AVDCAfter compensation Phase Margin > 45 degrees Bandwidth is reduced!!!

    p1’

    GBW’ZERO

    (RHP) M

    mZERO C

    g 3

    p2’

    21

    11

    1

    pp

    zVDC

    ss

    sAsA

    Frequency Response – Miller Compensation (Considering z)

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 22 -

    VSS

    M1 M1

    01i 01i

    -vd

    01iM2 M2

    02iM3

    012i

    vd

    R1 C1 CMRL CL

    -v0

    VDD

    ZERO

    u1

    2p

    u1

    1p

    u1 tan'

    tan'

    tan180inargm_Phase

    Parasitic (bad) RHP zero!! Can be catastrophic if close or below wu!

    p1 p2

    GBW

    AVDC After compensation Phase Margin > 45 degrees Bandwidth is reduced!!!

    p1’

    GBW’ZERO

    M

    3mZERO C

    g

    p2’

    p1 p2

    GBW

    AVDC

    After compensation Phase Margin

  • TAMU-Elen-474 Jose Silva-Martinez-08

    - 23 -

    VSS

    M1 M1

    01i 01i

    -vd

    01iM2 M2

    02iM3

    012i

    vd

    R1 C1 CMRL CL

    -v0

    VDD

    M4VBIB1

    IB2

    Adding a series resistance

    RZ

    321

    111

    1

    ppp

    zVDC

    sss

    sAsA

    13

    1CRZ

    p

    MZm

    z

    CRg

    3

    11

    (Generally high frequency & can be ignored)

    p2

    Z

    Z

    cancel can

    LFP to RHP from zero pushes

    infinity to zero RHP the pushes

    )(initially frequencyhigher a to RHP push will R zero-Nonmargin phase improve to R design Can

    Mm

    MLZ

    mZ

    mZ

    CgCCCR

    gR

    gR

    3

    1

    3

    3

    1

    1

  • Two Stage Miller OTA Noise

    24

    2

    42

    82

    784

    22

    22

    2

    42

    84

    2

    42

    8278

    2

    22381

    PSD Voltage Noise Referred-Input

    223

    8

    PSDCurrent NoiseReferred-Output

    oo

    mm

    mmm

    mm

    oi

    oo

    mm

    oo

    mmmm

    o

    gggg

    ggggkT

    Gfi

    fv

    gggg

    ggggggkT

    fi

  • Next Time

    • OpAmp Feedback & Stability• Common-Mode Feedback Techniques

    25


Recommended