+ All Categories
Home > Documents > Econ1 Mle Notes

Econ1 Mle Notes

Date post: 10-Apr-2018
Category:
Upload: astarkweather3488
View: 223 times
Download: 0 times
Share this document with a friend

of 148

Transcript
  • 8/8/2019 Econ1 Mle Notes

    1/148

    Econometrics I

    Contents

    1 Resuming introductory econometrics 6

    1.1 The basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.1.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.1.3 OLS estimation of the vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    1.1.4 Gauss Markov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    1.1.5 Estimating the variance parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.2 The normal linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.2.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    1.2.2 Interval estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    1.2.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    1

  • 8/8/2019 Econ1 Mle Notes

    2/148

    Econometrics I

    1.2.4 Asymptotic properties of the OLS-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    1.3 The general linear statistical model with unknown covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    1.4 Asymptotic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    1.5 A heteroskedastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    1.6 Autocorrelation (1. order) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    1.7 Testing for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    2 Stochastic Regressors 65

    2.1 Properties of the OLS estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    2.1.1 Stochastic regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    2.1.2 The case of independence of explanatory variables and error terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672.1.3 The case of partial dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    2.2 A general stochastic regressor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    2.3 Testing for autocorrelation in the dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    2.3.1 The hypotheses of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    2.3.2 Alternative test statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    2.4 Instrumental variable estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    2.5 OLS under measurement errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    2.6 Generalized methods of moments (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    2.6.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882.6.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    2.7 Example: Consumption based CAPM (CCAPM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    2.7.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    2.7.2 GMM estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    2

  • 8/8/2019 Econ1 Mle Notes

    3/148

    Econometrics I

    3 Dynamic Models 101

    3.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 01

    3.1.1 Weak stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    3.1.2 Stationary ARMA-processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 02

    3.1.3 Empirical moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    3.1.4 Including deterministic components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 05

    3.2 Nonstationary stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 05

    3.3 Convergence of moments of I(1) variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10

    3.3.1 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10

    3.3.2 Stochastic orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 13

    3.3.3 Sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 14

    3.3.4 Further convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 15

    3.3.5 Random walk with drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    3.3.6 An illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 17

    3.4 Spurious regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 18

    3.5 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 21

    3.6 Testing for unit roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 24

    3.6.1 Dickey Fuller test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 24

    3.6.2 Generalizations of the DF-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 263.6.3 Testing for cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    3.6.4 Testing for weak exogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 34

    3.6.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 35

    3.6.6 An additional note on weak exogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 36

    3

  • 8/8/2019 Econ1 Mle Notes

    4/148

    Econometrics I

    3.6.7 A Monte Carlo Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 39

    4

  • 8/8/2019 Econ1 Mle Notes

    5/148

    Econometrics I

    Reading list

    Banerjee, A., J. Donaldo, J.W. Galbraith, D.F. Hendry (1993): Co-Integration, Error Correction

    and the Econometric Analysis of Non-Stationary Data, Chapter 1. Oxford University Press.

    Greene, W.H. (2003): Econometric Analysis, Philip Allan.

    Hackl, P. (2005): Einfuhrung in die Okonometrie, Munchen.

    Hamilton, J.D. (1994): Time Series Analysis, Princeton University Press, Chapters 17 - 20.

    Johnston, J., J. Dinardo (1997): Econometrics Methods, McGraw Hill.

    Judge, G.G., R.C. Hill, W.E. Griffiths, H.Lutkepohl, T.S. Lee (1988): Introduction to the Theory

    and Practice of Econometrics, John Wiley & Sons.

    Mittelhammer, R.C., G.G. Judge, D.J. Miller (2000): Econometric Foundations, Cambridge Uni-

    versity Press.

    5

  • 8/8/2019 Econ1 Mle Notes

    6/148

    Econometrics I

    1 Resuming introductory econometrics

    1.1 The basic model

    1.1.1 Specification

    The multiple regression model:

    yt = 1 + xt22 + ... + xtKK + et = xt + et, t = 1,.....,T.

    In matrix form:

    y = X + e,

    6

  • 8/8/2019 Econ1 Mle Notes

    7/148

    Econometrics I

    where

    y =

    y1

    y2

    ...

    yT

    (T1)

    , e =

    e1

    e2

    ...

    eT

    (T1)

    , =

    1

    2

    ...

    K

    (K1)

    7

  • 8/8/2019 Econ1 Mle Notes

    8/148

    Econometrics I

    and

    X =

    1 x12 x13 x1K1 x22 x23 x2K... ... ... . . . ...

    1 xT2 xT3 xT K

    (TK)

    =

    x1

    x2...

    xT

    =

    x(1) x(2) x(K)

    .

    Variables:

    yt are observed random variablesxtk are observable nonrandom known variables1, 2,....,K are the unknown scalar parameterset

    are unobservable random variables

    8

  • 8/8/2019 Econ1 Mle Notes

    9/148

    Econometrics I

    1.1.2 Assumptions

    E[et] = 0, E[e2t ] = 2, covariance E[etes] = 0 for t = s

    E[ee] = E

    e1e1 e1e2 e1eTe2e1 e2e2

    e2eT

    ... ... . . . ...

    eTe1 eTe2 eTeT

    =

    2 0... 2

    ...

    ... ... . . . ...

    0 2

    = 2

    1 0... 1

    ...

    ... ... . . . ...

    0 1

    = 2

    IT.

    rank(X) = K (variables in X are not perfectly linearly dependent).

    9

  • 8/8/2019 Econ1 Mle Notes

    10/148

    Econometrics I

    1.1.3 OLS estimation of the vector

    Objective function:

    S() = ee

    = (y X)(y X)

    = (y

    X)(y

    X

    )= yy Xy yX + XX= yy 2Xy + XX

    is to be minimized:S()

    != 0.

    10

  • 8/8/2019 Econ1 Mle Notes

    11/148

    Econometrics I

    Note: Xy = yX

    Xy =

    1 2 K

    1 1 1x12 x22 xT2... ... . . . ...

    x1K x2K xT K

    y1

    y2

    ...

    yT

    =

    1x(1)y + 2x

    (2)y + + Kx(K)y

    = yX.

    11

  • 8/8/2019 Econ1 Mle Notes

    12/148

    Econometrics I

    Moreover

    XX =

    1 2 K

    x(1)x(1) x(1)x(2) x(1)x(K)

    x(2)x(1) x(2)x(2) x(2)x(K)

    ... ... . . . ...

    x(K)x(1) x(K)x(2) x(K)x(K)

    1

    2

    ...

    K

    = 1x(1)x(1)1 +

    1x

    (1)x(2)2 + + 1x(1)x(K)K

    + 2x(2)x(1)1 +

    2x

    (2)x(2)2 + + 2x(2)x(K)K

    + ... ... ... ...

    + Kx(K)x(1)1 +

    Kx

    (K)x(2)2 +

    + Kx

    (K)x(K)K.

    12

  • 8/8/2019 Econ1 Mle Notes

    13/148

    Econometrics I

    Minimizing the objective function

    First order partial derivatives:

    S()

    1=

    (yy)

    1 (2

    Xy)1

    +(XX)

    1= 2x(1)y + 2x(1)X,

    S()

    2=

    (yy)

    2 (2Xy)

    2+

    (XX)

    2=

    2x(2)y + 2x

    (2)X,

    ... ... ... ... ...

    S()

    K=

    (yy)

    K (2

    Xy)K

    +(XX)

    K= 2x(K)y + 2x(K)X,

    or, in compact form

    S()

    = 2Xy + 2XX!

    = 0.

    13

  • 8/8/2019 Econ1 Mle Notes

    14/148

    Econometrics I

    LS-Estimator:

    (XX)1XXb = (XX)1Xy

    b = (XX)1Xy.

    e = y XbXe = Xy

    XXb

    = 0

    Properties of OLS estimator: E[b] = E[(XX)1Xy]

    = E[(XX)1X(X + e)] = .

    Cov[b] =

    2

    (XX)1

    .

    14

  • 8/8/2019 Econ1 Mle Notes

    15/148

    Econometrics I

    1.1.4 Gauss Markov theorem

    b is BLUE Best Linear Unbiased Estimator

    Comparing linear unbiased estimators:

    Let = Ay

    denote a general linear estimator with E[] = .

    Then b is preferred to if:

    Var(ab) Var(a) for all vectors a.

    In this case Cov[] Cov[b], b, is positive semidefinite.

    15

  • 8/8/2019 Econ1 Mle Notes

    16/148

    Econometrics I

    1.1.5 Estimating the variance parameter

    E[ee] = E[e21] + E[e22] + . . . + E[e

    2T] = T

    2.

    However, e is unknown. e is available from OLS-regression

    e = y Xb

    = y X(XX)1

    Xy= [I X(XX)1X](X + e)= [I X(XX)1X]e = Me.

    Properties of M:

    MM = M M is idempotent, M = M symmetric.

    16

  • 8/8/2019 Econ1 Mle Notes

    17/148

    Econometrics I

    Then ee = eMe and

    E[ee] = E[eMe] = E[tr(eMe)]

    = E[tr(eeM)] = tr[2M]

    = (T K)2.

    2

    =

    ee

    T K,E[2] = 2.

    Note:

    tr(AB) = tr(BA), tr(A + B) = tr(A) + tr(B), E[tr(A)] = tr(E[A]).

    17

  • 8/8/2019 Econ1 Mle Notes

    18/148

    Econometrics I

    1.2 The normal linear model

    1.2.1 Maximum likelihood estimation

    Up to now:

    y = X + e, E[e] = 0, E[ee] = 2IT,

    et (0, 2).

    Additional assumption: et N(0, 2)

    e N(0, 2IT), yt N(xt, 2), y N(X, 2IT).

    How does additional information affect estimation of and 2?

    18

  • 8/8/2019 Econ1 Mle Notes

    19/148

    ML-Estimation (An Illustration)

    -

    6

    -

    6

    -

    6

    -

    6

    0 0

    0 0

    1

    2

    z

    f(z, 2z) f(0, 2z)

    f(12

    , 2z)

    maxtTt=1 f(zt, z, 2z)2t known

    19

  • 8/8/2019 Econ1 Mle Notes

    20/148

    Econometrics I

    Density ofet or yt, respectively:

    f(et|2) = f(yt|xt,, 2)= (22)

    1/2exp

    (yt x

    t)

    2

    22

    .

    Joint density:

    f(y1, . . . , yT|X, , 2) = f(y1

    |x1,,

    2)f(y2|x2,,

    2)

    f(yT|xT,,

    2)

    f(y|X, , 2) = ( 22)T/2 exp

    (y X)(y X)

    22

    .

    Likelihood function

    L(2,

    |y, X) = (22)T /2 exp

    (y X)(y X)2

    2 .

    20

  • 8/8/2019 Econ1 Mle Notes

    21/148

    Econometrics I

    Maximum Likelihood estimator: Find , 2 such that L(2,

    |y, X) is maximized.

    Log likelihood function

    l(, 2|y, X) = l n L(2,|y, X)=

    T

    2

    ln(2)

    T

    2

    ln(2)

    (y X)(y X)

    22

    .

    Maximizing l(, 2|y, X) with respect to is equivalent to minimizing (y X)(y X),thus,

    = b = (XX)1Xy.

    21

  • 8/8/2019 Econ1 Mle Notes

    22/148

    Econometrics I

    Moreover,

    E[] = , Cov[] = 2(XX)1

    N(, 2(XX)1).

    Estimating 2

    l

    2 = T

    22 +(y

    X)(y

    X)

    24!

    = 0

    T2

    =(y X)(y X)

    4

    2 =(y X)(y X)

    T=eeT

    =eeT

    =(T K)2

    T.

    Expectation: E[2] = E eeT = (TK)2T .

    22

  • 8/8/2019 Econ1 Mle Notes

    23/148

    Econometrics I

    1.2.2 Interval estimation

    Consider single linear combination of , R1, where R1 is 1 K vector.

    Then

    R1 N(R1, 2R1(XX)1R1)

    andR1 R1

    2R1(XX)1R1 N(0, 1)

    is a so-called pivotal quantity.

    23

  • 8/8/2019 Econ1 Mle Notes

    24/148

    Econometrics I

    Thus

    Prob

    z/2 R1 R1

    2R1(XX)1R1 z1/2

    = 1 ,

    where z is the -quantile of the Standard Normal distribution, z/2 = z1/2.

    Rearranging yields:

    Prob(R1 z1/2

    2R1(XX)1R1 R1 R1 z/2

    2R1(XX)1R1) = 1 .

    24

  • 8/8/2019 Econ1 Mle Notes

    25/148

    Econometrics I

    However, 2 is not known, but 2 is available and independent of .

    Replace 2 by 2:

    R1 R12R1(XX)1R1

    =

    1

    2(R1 R1)

    12

    2R1(XX)1R1

    =

    R1R1

    2R

    1(X

    X)

    1R

    12

    2(TK)(TK)

    N(0, 1)2(TK)

    TK

    t(T K).

    25

  • 8/8/2019 Econ1 Mle Notes

    26/148

    Econometrics I

    1.2.3 Hypothesis testing

    Test:

    Rule to decide if parameter(s) of interest lie in a subspace of admissible parameter(s).

    H0 : R = r vs. H1 : R = r.

    Errors:

    Type I: Reject H0 although H0 is true: P(H0|H0) = ,

    Type II: Accept H0 although H1 is true: P(H0|H1) = .

    26

  • 8/8/2019 Econ1 Mle Notes

    27/148

    Econometrics I

    Testing strategy

    fix determine test-statistic with known distribution under H0 determine critical region compute test statistic

    decide.

    Example:

    H0 : R = r vs. H1 : R = r.

    Recall

    R N(R, 2R(XX)1R).

    27

  • 8/8/2019 Econ1 Mle Notes

    28/148

    Econometrics I

    Under H0

    Q1 =(R r)[R(XX)1R]1(R r)

    2 2(J),

    Q2 =(T K)2

    2 2(T K),

    and Q1 and Q2 are independent.

    Therefore

    =Q1/J

    Q2/(T K)=

    (R r)[R(XX)1R]1(R r)J2

    F(J, T K).

    Decision:

    Reject H0 whenever is too large relative to F(J, T

    K).

    Note: If J = 1 t2(T K).

    28

  • 8/8/2019 Econ1 Mle Notes

    29/148

    Econometrics I

    1.2.4 Asymptotic properties of the OLS-estimator

    BASIC Concepts:

    Convergence in probability

    The sequence of random variables z1, z2, . . . , zT, . . . converges in probability to the random variable

    z, if for all > 0

    limT

    Prob[|zT z| > ] = 0.

    z is called the probability limit of zT

    , short plim zT

    = z or zT

    p

    z. Plim calculus: Consider two

    sequences of random variables zt and wt having plim(zt) = z and plim(wt) = w. Then plim(wtzt) = wz

    and plim(g(zt)) = g(plim(zt)) = g(z) ifg is a continuous function.

    29

  • 8/8/2019 Econ1 Mle Notes

    30/148

    Econometrics I

    Convergence in distribution

    A sequence of random variables z1, z2, . . . , zT, . . . with distribution functions

    F1(z), F2(z), . . . , F T(z), . . . converges in distribution to the random variable z, if at all continuity

    points ofF and for every > 0, there exists T0 such that

    |FT(z) F(z)| < for T > T0.

    Short zTd z.

    Central limit theorem I (Lindeberg-Levy)If w1, w2, . . . , wT are independent and identically distributed random variables with mean and

    variance 2, then

    FZT(z)d

    N(0, 1), where ZT =w

    /T.

    30

  • 8/8/2019 Econ1 Mle Notes

    31/148

    Econometrics I

    Central limit theorem II (Lindeberg-Feller)

    Let w1, w2, . . . , wT be independent random variables with finite means t and variances 2t . Then

    T( wT T) d N(0, 2)

    if

    limT

    max(t)

    T = 0 and lim

    T2T =

    2.

    31

  • 8/8/2019 Econ1 Mle Notes

    32/148

    Econometrics I

    Finite sample properties of OLS-estimator:

    Ifet N(0, 2): b and 2 are BUE.Ifet N(0,

    2):

    b is BLUE not BUE

    2 is not BUE

    b N(, 2(XX)1), (TK)22

    2(T K).

    Issues:

    Consistency ofb

    Inference under et

    (0, 2).

    32

  • 8/8/2019 Econ1 Mle Notes

    33/148

    Econometrics I

    Basic assumption:

    limTXX

    T

    = Q finite nonsingular matrix.

    Counterexamples:

    1. Trending explanatory variables

    yt = 1 + 2t + et

    Then XX = T (T + 1)(T2 )

    (T + 1)(T2 ) (T + 1)(T)(2T+1

    6 )

    and

    limTXX

    T = 1 .

    33

  • 8/8/2019 Econ1 Mle Notes

    34/148

    Econometrics I

    2. Vanishing explanatory variables

    yt = 1 + 2t + et, (|| < 1),

    Note: + 2 + 3 + . . . + T + T+1 + T+2 + . . . =1

    1 1.

    implying + 2 + . . . + T =1

    1

    1 T+1 11

    =1 1 + T+1

    1

    .

    Thus

    XX =

    T Tt=1 tTt=1

    tT

    t=1 2t

    = T T+11

    T+11

    22(T+1)12

    .and

    limXXT = 1 0

    0 0 (singular in the limit).

    34

  • 8/8/2019 Econ1 Mle Notes

    35/148

    Econometrics I

    Consistency of OLS estimator

    E

    XeT

    = 0.

    VarT

    Xe

    T

    =

    1

    T2Var[Xe]

    =1

    T22(XX)

    = 1T

    2XXT 0.

    Thus

    plim

    Xe

    T

    = 0.

    35

  • 8/8/2019 Econ1 Mle Notes

    36/148

    Econometrics I

    plim(b) = plim[(XX)1Xy]

    = + plim

    XX

    T

    1Xe

    T

    = + plim

    XX

    T

    1plim

    Xe

    T

    = + Q10 = .

    plim(2) = plim

    e(I X(XX)1X)e

    1

    T K

    = plimee

    T eX

    T XX

    T 1 Xe

    T TT K= 2.

    36

  • 8/8/2019 Econ1 Mle Notes

    37/148

    Econometrics I

    Interval estimation and hypothesis testing:

    bp is not useful since is a degenerate random variable.

    Consider

    Var

    Xe

    T

    =

    1

    T(XX)2 = Q2 finite even if T .

    Then

    XeT

    d N(0, 2Q),

    and,

    T(b ) =

    XXT

    1Xe

    T.

    Var[

    T(b

    )] =

    XX

    T 1 XX

    T XX

    T 1

    2 = 2Q1.

    Thus

    T(b ) d N(0, 2Q1).

    37

  • 8/8/2019 Econ1 Mle Notes

    38/148

    Econometrics I

    Moreover,

    T(Rb R) d N(0, 2RQ1R),

    T(Rb R)[RQ1R]1(Rb R)2

    d 2(J).

    Replace Q1 by

    XXT

    1, 2 by 2 and obtain:

    =(Rb R)[R(XX)1R]1(Rb R)

    2d 2(J).

    38

  • 8/8/2019 Econ1 Mle Notes

    39/148

    Econometrics I

    1.3 The general linear statistical model with unknown covariance

    matrix

    In practice is often unknown. Then GLS-estimation is not feasible. Estimated GLS (EGLS):

    is replaced by an estimator

    = (X1X)1X1y.

    Remark:

    has T(T+1)2 unknown elements that cannot be estimated from T error estimates e.

    Further assumption on the structure of : Elements in are functions of a small number of unknown

    parameters.

    39

  • 8/8/2019 Econ1 Mle Notes

    40/148

    Econometrics I

    Properties of

    : is not linear,

    in many cases one can show that E[] = ,

    Cov[] cannot be determined,

    is not BLUE.

    40

  • 8/8/2019 Econ1 Mle Notes

    41/148

    Econometrics I

    1.4 Asymptotic results

    Assume

    limT

    X1X

    T

    = V, finite, nonsingular.

    Then

    plim() =

    plim(2g) = 2

    T( ) d N(0, 2V1).

    41

  • 8/8/2019 Econ1 Mle Notes

    42/148

    Econometrics I

    Asymptotic properties of EGLS compared with GLS

    and have the same asymptotic distribution if

    plimX(1 1)X

    T= 0

    and plimX(1 1)e

    T= 0.

    Moreover,

    if plime(1 1)e

    T= 0

    then

    2g

    is consistent estimator for 2.

    42

  • 8/8/2019 Econ1 Mle Notes

    43/148

    Econometrics I

    1.5 A heteroskedastic model

    If E[e] = 0 and E[ee] = 2 = , where the diagonal elements of are not identical,

    error terms are heteroskedastic.

    Consider a model: yt = xt + et, E[et] = 0 and E[e

    2t ] =

    2t .

    Then

    E[ee] =

    21 0 . . . . . . 0

    0 22 0 . . . 0

    ... ... . . . . . . ...

    0 . . . . . . . . . 2T

    = .

    43

  • 8/8/2019 Econ1 Mle Notes

    44/148

    Econometrics I

    Specification of 2t :

    2t = 2x2t ,

    2t =

    2I for t = 1, . . . , T 12II for t = T1 + 1, . . . , T 2t = exp(zt

    ).

    GLS-Estimator:

    = (X1X)1X1y

    = (XX)1Xy,

    44

  • 8/8/2019 Econ1 Mle Notes

    45/148

    Econometrics I

    with

    X =

    11 0 . . . . . . 0

    0 12 0 . . . 0... ... . . . . . . ...

    0 . . . . . . . . . 1T

    x1

    x2...

    xT

    ,

    y =

    11 0 . . . . . . 0

    0 12 0 . . . 0... ... . . . . . . ...

    0 . . . . . . . . . 1T

    y1

    y2

    ...

    yT

    .

    45

  • 8/8/2019 Econ1 Mle Notes

    46/148

    Econometrics I

    Multiplicative heteroskedasticity:

    2t = exp(zt)

    = exp(1 + zt2 2 + . . . + ztS S)

    = exp(1)exp(z

    t2

    2)

    exp(ztS

    S

    )

    = 2exp(zt22) exp(ztSS)= 2exp(zt

    ).

    46

  • 8/8/2019 Econ1 Mle Notes

    47/148

    Econometrics I

    E[ee] =

    =

    exp(z1) 0

    . . .

    0 exp(zT)

    = 2

    exp(z1) 0

    . . .

    0 exp(zT)

    = 2.

    47

  • 8/8/2019 Econ1 Mle Notes

    48/148

    Econometrics I

    The estimated GLS-estimator:

    = (X1X)1X1y

    = (X1X)1X1y

    = (XX)1Xy

    = exp(zt)xtxt

    1

    exp(zt)xtyt.

    = (X

    1X)X

    1y

    =

    exp(zt)xtxt

    1exp(zt)xtyt

    .

    48

  • 8/8/2019 Econ1 Mle Notes

    49/148

    Econometrics I

    Estimation of () 2t = exp(zt)

    ln 2t = zt

    .

    Consider

    ln e2t + ln 2t = zt

    + ln e2t

    ln e2t = zt + ln

    e2t2t

    = zt

    + vt.

    Compactly

    q = Z + v

    = (ZZ)1Zq.

    49

  • 8/8/2019 Econ1 Mle Notes

    50/148

    Econometrics I

    Properties of

    = + (ZZ)1Zv The elements in v are serially correlated, E[vt] = 0, vt are heteroskedastic.= finite sample properties of cannot be determined

    Assume

    lim TXX

    T= Q

    lim TXX

    T= V0

    Q and V0 are finite and nonsingular.

    50

  • 8/8/2019 Econ1 Mle Notes

    51/148

    Econometrics I

    Thene = (I

    X(XX)1X)e, et = et

    x

    t

    (XX)1Xe.

    E[et et] = E[ xt(XX)1XE[e]] = 0E[(et et)2] = [xt(XX)1XX(XX)1xt]

    = 2

    1

    Txt

    XX

    T

    1XX

    T

    XX

    T

    1xt

    0 for T .

    Therefore etp

    et etd

    et. Ifet N(0, 2t ), thenvt = ln

    e2t2t

    d vt = ln

    e2t2t

    and

    e2t2t

    2(1), E[vt ] = 1.2704, Var[vt ] = 4.9348.

    Thus plim() =

    1 1.2704

    2

    ...

    S

    =

    1.2704d;

    T(

    + 1.2704d)

    d

    N(0, 493481ZZ)

    51

  • 8/8/2019 Econ1 Mle Notes

    52/148

    Econometrics I

    Diagnosing heteroskedasticity (variance shifts)

    H0 : 2I =

    2II =

    2 vs. H1 : 2I = 2II

    F-Test

    =2I2II

    H0 F(T1 K, T T1 K),

    where 2I and 2II are LS variance estimators obtained from two separate regressions performed for

    two subsamples. Reject H0 if is either to small or to large w.r.t. F(T1 K, T T1 K).

    52

  • 8/8/2019 Econ1 Mle Notes

    53/148

    Econometrics I

    Lagrange Multiplier (LM) Test

    Perform regression under H0 and obtain residuals et

    Regress e2t on a constant and Dt, a dummy variable Dt =

    1 if t I

    0 if t II T R2 of the latter regression is 2(1) distributed under H0.

    53

  • 8/8/2019 Econ1 Mle Notes

    54/148

    Econometrics I

    1.6 Autocorrelation (1. order)

    The general model with 1. order autocorrelation:

    yt = xt + et, et = et1 + vt, || < 1,

    where

    xt = (xt1, xt2, . . . , xtK),

    E[vt] = 0

    E[v2t ] = 2v

    E[vtvs] = 0, t=s.

    54

  • 8/8/2019 Econ1 Mle Notes

    55/148

    Econometrics I

    Covariance structure in matrix form (E[ee] = 2 = )

    et = vt + vt1 + 2vt2 + . . .

    =

    i=0

    ivti.

    Var[et] = E[e2t ]

    = 2E[e2t1

    ] + 2E[et1

    vt] + E[v2

    t]

    =2v

    1 2 .

    E[etet1] = E[e2t1] + E[vtet1]

    = 2v

    1 2.

    55

  • 8/8/2019 Econ1 Mle Notes

    56/148

    Econometrics I

    General

    E[etets] = s2v

    1 2 .

    Autocorrelation

    E[etets]E[e2t ]E[e

    2ts]

    =s

    2v

    122v

    12

    = s.

    56

  • 8/8/2019 Econ1 Mle Notes

    57/148

  • 8/8/2019 Econ1 Mle Notes

    58/148

    Econometrics I

    1 =

    1 0 . . . . . . 0 1 + 2 0 . . . 0

    0 1 + 2 0 ...... ... . . . . . . . . . ...

    ..

    .

    ..

    .

    ..

    . 1 + 2

    0 . . . . . . . . . 1

    = PP,

    where P =

    1 2 0 0 . . . 0 1 0 . . . 0

    0

    1 . . . 0

    ... . . . . . . ... ...

    0 . . . . . . 1

    ,

    58

  • 8/8/2019 Econ1 Mle Notes

    59/148

    Econometrics I

    Transformation of the model:

    y =

    1 2y1

    y2 y1...

    yT yT1

    X =

    1 2

    1 2x12 . . .

    1 2x1K

    1 x22 x12 . . . x2K x1K... ... . . . ...

    1 xT2 x(T1),2 . . . xT K x(T1),K

    .

    59

  • 8/8/2019 Econ1 Mle Notes

    60/148

    Econometrics I

    Estimation of

    Ifet were known could be estimated from the autoregression

    et = et1 + vt.

    Since plim(et) = et a possible estimator for is

    = Tt=2 etet1Tt=2 e

    2t1

    .

    Iterative EGLS: Cochrane-Orcutt Procedure

    0

    0

    e0

    1

    1

    e1

    . . . until the convergence of i or

    i

    60

  • 8/8/2019 Econ1 Mle Notes

    61/148

    Econometrics I

    1.7 Testing for autocorrelation

    Durbin-Watson Test for 1. order autocorrelation:

    d =

    T2 (et et1)2T

    1 e2t

    =eAeee

    =eMAMeeMe

    ,

    A =

    1 1 0 . . . . . . 01 2 1 0 . . . 00 1 2 1 0 ...... ... . . . . . . . . . ...

    .

    .....

    .

    .. 1 2 10 . . . . . . . . . 1 1

    .

    61

  • 8/8/2019 Econ1 Mle Notes

    62/148

    Econometrics I

    Relation between d and :

    d =

    T2 e

    2t 2

    T2 etet1 +

    T2 e

    2t1T

    1 e2t

    =

    T1 e

    2t +

    T1 e

    2t e21 e2T 2

    T2 etet1

    T1 e

    2t

    = 2 e21 + e

    2TT

    1 e2t

    2T2 etet1T1 e

    2t

    d 2 2, 1 12

    d

    The distribution of d under H0 : = 0 is difficult to determine:

    MAM is not idempotent eMe is not independent ofeMAMe

    62

  • 8/8/2019 Econ1 Mle Notes

    63/148

    Econometrics I

    The distribution ofd is between a known upper (dU) and lower (dL) distribution which depend only

    on T and K.

    H0 : = 0 H1 : > 0

    reject H0, ifd < dL, Prob(dL < dL) = 0.05, accept H0, ifd > dU, Prob(dU > dU) = 0.05,

    the test is inconclusive if dL < d < dU.DW-test requires:

    et normally distributed X fixed, including a constant

    only first order autocorrelation

    63

  • 8/8/2019 Econ1 Mle Notes

    64/148

    Econometrics I

    Reading list

    Banerjee, A., J. Donaldo, J.W. Galbraith, D.F. Hendry (1993): Co-Integration, Error Correction

    and the Econometric Analysis of Non-Stationary Data, Chapter 1. Oxford University Press.

    Greene, W.H. (2003): Econometric Analysis, Chapter 18. Philip Allan.

    Hackl, P. (2005): Einfuhrung in die Okonometrie, Munchen.

    Hamilton, J.D. (1994): Time Series Analysis, Princeton University Press, Chapter 17, 18, 19 and

    20.

    Judge, G.G., R.C. Hill, W.E. Griffiths, H.Lutkepohl, T.S. Lee (1988): Introduction to the Theory

    and Practice of Econometrics, Chapter 13, 14, 15 and 19. John Wiley & Sons.

    Johnston, J., J. Dinardo (1997): Econometrics Methods, Chapter 7, 8 and 9. McGraw Hill.

    Mittelhammer, R.C., G.G. Judge, D.J. Miller (2000): Econometric Foundations, Cambridge Uni-

    versity Press.

    64

  • 8/8/2019 Econ1 Mle Notes

    65/148

    Econometrics I

    2 Stochastic Regressors

    2.1 Properties of the OLS estimator

    2.1.1 Stochastic regressors

    Till now, the regressors are assumed to be fixed or nonstochastic in repeated samples.

    In economics, these variables are often not perfectly controlled i.e. they may be stochastic.

    There is a need to check to which extend the properties of the OLS estimator change

    if the regressors are stochastic.

    65

  • 8/8/2019 Econ1 Mle Notes

    66/148

    Econometrics I

    Consider the model:

    y = Z + e,

    where Z contains stochastic explanatory variables, E[e] = 0, E[ee] = 2IT.

    OLS-estimator:

    b = (ZZ)1Zy may not be unbiased

    E[b] = + E[(ZZ)1Ze].

    Note:

    E[(ZZ)1Ze] = (ZZ)1Z E[e]

    in general.

    66

  • 8/8/2019 Econ1 Mle Notes

    67/148

    Econometrics I

    2.1.2 The case of independence of explanatory variables and error terms

    LS estimator is unbiased:

    E[b] = + E[(ZZ)1Ze]

    = + E[(ZZ)1Z]E[e]

    = .

    Independence of Z and e implies

    E[e|Z] = E[e] = 0E[ee|Z] = E[ee] = 2IT.

    Moreover: If w and v are random variables then E[w] = Ev[E[w|v]].

    67

  • 8/8/2019 Econ1 Mle Notes

    68/148

    Econometrics I

    Therefore,

    Cov[b] = E[(ZZ)1ZeeZ(ZZ)1]

    = E[E[(ZZ)1ZeeZ(ZZ)1] |Z]= E[(ZZ)1Z2ITZ(ZZ)1]

    = 2

    E[(ZZ)1

    ].

    E[2] = E[E[2 |Z]] = E[E[(T K)1 ee |Z]]= E[(T K)1E[ee |Z]]= E[(T K)1(T K) 2]= 2.

    68

  • 8/8/2019 Econ1 Mle Notes

    69/148

    Econometrics I

    Finally

    E[2(ZZ)1] = E[E[2(ZZ)1 |Z]]= E[2(ZZ)1]

    = 2E[(ZZ)1].

    Summary:

    b, 2, 2(ZZ)1 are unbiased estimators b is no longer BLUE b is still efficient (conditional on Z).

    69

  • 8/8/2019 Econ1 Mle Notes

    70/148

    Econometrics I

    2.1.3 The case of partial dependence

    Consider:

    yt = xt + yt1 + et

    yt1 = xt1 + yt2 + et1, t = 1, . . . , T, y0 given.

    Compactly:

    y = Z + e.

    Assumptions:

    plimeeT

    = 2, plimZZ

    T= zz, plim

    ZeT

    = 0.

    70

  • 8/8/2019 Econ1 Mle Notes

    71/148

  • 8/8/2019 Econ1 Mle Notes

    72/148

    Econometrics I

    2 is consistent:

    plim 2 = plim(T K)1ee= plim[T(T K)1](2)= plim[T(T

    K)1]plim(2)

    = 2.

    Summary:

    In the case of partial dependence the classical OLS properties hold asymptotically.

    72

  • 8/8/2019 Econ1 Mle Notes

    73/148

    Econometrics I

    2.2 A general stochastic regressor model

    Example: The AR(1) model with an autocorrelated error:

    yt = yt1 + et,

    et = et1 + vt, || < 1,

    where by assumption E[vt] = 0, E[v2t ] =

    2v, E[vtvs] = 0 for t = s .

    Then

    E[et] = 0 and E[e2t ] =

    2v(1 2).

    Note: vt is not correlated with yt1 but et and the stochastic regressor yt1 are dependent.

    73

  • 8/8/2019 Econ1 Mle Notes

    74/148

    Econometrics I

    Then,

    E[etyt1] = E[(et1 + vt)yt1]

    = E[et1yt1] + E[vtyt1]

    = = [2v /(1 2)]

    i=0ii

    = 0.

    plim(b) = + plim

    ZZ

    T

    1plim

    ZeT

    = .

    The OLS estimator is biased.

    74

  • 8/8/2019 Econ1 Mle Notes

    75/148

  • 8/8/2019 Econ1 Mle Notes

    76/148

    Econometrics I

    2.3.2 Alternative test statistics

    1. The Durbin Watson test

    d =

    Tt=2(et et1)2T

    t=1 e2t

    is invalid due to lagged dependent variables.

    2. Likelihood-ratio test (LR)

    =L(, , = 0|.)

    L(, , |.)

    =(2)T /2(2e )

    T /2 exp(0.5ee/2e)(2)T /2(2v)T /2 exp(0.5vv/2v)

    =

    2e2v

    T /2,

    LR = 2ln() = T(ln(ee) ln(vv))d

    2

    (1).

    3. Lagrange Multiplier test (LM)

    76

  • 8/8/2019 Econ1 Mle Notes

    77/148

    Econometrics I

    Denote = (,,) and d() = ln L(|.) .

    Then:

    E[d() ] = 0

    Cov[d()] = E[d()d()] = E

    2 ln L(|.)

    = I() (Informationmatrix).

    Denote further d(0) = d()|=0 and I(0) = I()|=0.Then,

    LM = d(0)I(0)1d(0)

    d 2(1).

    77

  • 8/8/2019 Econ1 Mle Notes

    78/148

    Econometrics I

    Note: ln L = lt(, 2 | y Z) Max!

    lt = ln

    1

    22

    1

    22(v2t )

    = ln

    1

    22

    1

    22

    yt ( + )yt1 + yt2 xt + xt1

    2.

    First order partial derivatives

    lt

    = 12

    (yt ( + )yt1 + yt2 xt + xt1)(yt1 + yt2 + xt1)

    =1

    2vt(yt1 yt2 xt1) = 1

    2vtet1,

    lt =

    1

    2 vt(yt1 + yt2) =1

    2 vtyt1,lt

    = 12

    vt(xt + xt1) = 12

    vtxt .

    78

  • 8/8/2019 Econ1 Mle Notes

    79/148

    Econometrics I

    Second order partial derivatives

    2lt2

    = 12

    et1(yt1 + yt2 + xt1) = 12

    et1et1,

    2lt2

    =1

    2yt1(yt1 + yt2) =

    1

    2yt1y

    t1,

    2lt2

    =1

    2xt (xt + xt1) =

    1

    2xt x

    t ,

    2lt

    =1

    2yt1(xt + xt1) =

    1

    2yt1x

    t ,

    2lt

    =1

    2{et1(yt1 + yt2) vtyt2} = 1

    2(et1yt1 + vtyt2),

    2lt

    =1

    2{et1(xt + xt1) vtxt1} = 1

    2(et1xt + vtxt1).

    79

  • 8/8/2019 Econ1 Mle Notes

    80/148

    Econometrics I

    In matrix form:

    l

    =

    1

    2ve,

    l

    = 12

    (Z Z)v = 12

    Zv,

    2l

    2= 1

    2ee,

    2l

    = 1

    2(eZ

    + vZ), Z = Z Z,

    2l

    = 12 ZZ.Compactly,

    l

    =

    1

    2 ev

    Zv , 2l

    = 1

    2 ee e

    Z

    + vZ

    Ze + Zv ZZ .

    80

  • 8/8/2019 Econ1 Mle Notes

    81/148

    Econometrics I

    Then,

    LM =1

    2

    evZv

    2 E[ee] E[eZ + vZ]E[Ze + Zv] E[ZZ]

    1 12

    evZv

    .

    Under H0: = 0 or et = vt

    LM = 12 ee

    Ze

    ee eZZe ZZ

    1 eeZe

    d 2(1)

    with

    T explained variation

    observed variation = T 1

    2 ee

    Ze = e(e Z)

    ee T = T R2

    e,[Ze].

    81

  • 8/8/2019 Econ1 Mle Notes

    82/148

    Econometrics I

    An equivalent version of the LM-statistic:

    Perform an OLS regression under H0 and obtain residuals et Run an auxiliary regression of et on xt, yt1 and et1 LM is (numerically) equal to T-times the R2 of the auxiliary regression.

    4. Durbins h

    h = T

    1 T 2

    , =T

    t=2 etet1Tt=2 e

    2t1

    ,

    d N(0, 1)

    where 2

    is the usual variance estimator for in the dynamic model yt = xt + yt1 + et.

    It can be shown that h2 approaches LM asymptotically h2d

    LM.

    82

  • 8/8/2019 Econ1 Mle Notes

    83/148

    Econometrics I

    6

    -

    ln L()d ln L() |d

    c(

    )ln L

    ln LR

    0

    Likelihoodratio

    R MLE

    Maximum Likelihood Estimation

    ln L()

    LangrangeMultiplier

    6

    ?

    6

    ?

    d ln L() |d

    c ()

    6

    ?

    Wald

    83

  • 8/8/2019 Econ1 Mle Notes

    84/148

    Econometrics I

    2.4 Instrumental variable estimation

    Consider a general stochastic linear regression model

    y = Z + e.

    Assume a (T K)-matrix X of instrumental variables such that:

    (i) plimXe

    T

    = 0, (ii) plimXZ

    T

    = xz, (iii) plimXy

    T

    = xy.

    Then

    Xy = XZ + Xe Xy

    T=

    XZT

    +Xe

    T.

    Taking the probability limit xy = xz + 0.The instrumental variable estimator is therefore biv = (X

    Z)1Xy.

    84

  • 8/8/2019 Econ1 Mle Notes

    85/148

    Econometrics I

    Properties of instrumental variable estimator:

    biv is consistent because

    plim biv = + 1xz 0 =

    If XeT

    N0, 2plim(XXT ) thenT(biv )

    d

    N0, 2plimXZT 1XXT ZXT

    1 .Remarks:

    biv is mostly not efficient cov[biv] is the smaller the more X and Z are correlated.

    85

  • 8/8/2019 Econ1 Mle Notes

    86/148

    Econometrics I

    2.5 OLS under measurement errors

    Let z, y be vectors of scalar unobservable variables. Then, the observed or measured values of these

    variables can be given as z = z + u

    y = y + v,

    where u and v are (T 1) error vectors.Assumptions:

    (i) E[u] = E[v] = 0, (ii) E[uu] = 2uI, (iii) E[vv] = 2vI, (iv) E[uv

    ] = 0

    Economic relationship (scalar case) y = z

    or in terms of observed variables y = z+ v u= z+ e.

    86

  • 8/8/2019 Econ1 Mle Notes

    87/148

    Econometrics I

    Properties of the stochastic vector e:

    E[e] = 0 E[ee] = 2vI + 22uI.

    The explanatory variables in z and the error terms in e are not independent:

    E[(z E[z])(e E[e]) ] = E[u(v u)]= E [uu]= 2uIT.

    Bias of OLS-estimator

    plim b = 2

    u2z

    , 2z = Var[zt].

    87

  • 8/8/2019 Econ1 Mle Notes

    88/148

    Econometrics I

    2.6 Generalized methods of moments (GMM)

    2.6.1 Estimation

    The model:

    y = Z + e, yt = zt + et,

    and E[et|xt] = 0, where xt is L 1, L K vector of instruments.Note:

    The nonlinear case E[yt|zt] = f(zt,) is analogous.

    No assumptions are made for the covariance structure ofe, heteroskedastic and/or autocorrelated

    error terms are not excluded.

    88

  • 8/8/2019 Econ1 Mle Notes

    89/148

    Econometrics I

    As special cases the model covers:

    Instrumental variable case, E[ee] = I2

    Standard regression model E[ee] = I2, xt = zt.

    E[et|xt] = 0 implies E[xt(yt zt)] = 0 and, thus,

    E1

    T

    X(y

    Z) = E1

    T

    T

    t=1 xt(yt zt) = E[ m()] = 0.Empirical moment conditions

    1

    TX(y Z) =

    1

    T

    Tt=1

    xt(yt zt)

    = [ m()] = 0 in case L = K.

    A sensible Method of Moments estimator will choose to minimize

    q = m()m().

    89

  • 8/8/2019 Econ1 Mle Notes

    90/148

    Econometrics I

    Consider three cases:

    1. Underidentification: L < K, The number of unknowns exceeds the number of orthogonality

    conditions. A solution for does not exist.

    2. Exact identification: L = K, The number of unknowns is equal to the number of orthogonality

    conditions MM = (XZ)1Xy, m(MM) = 0.

    3. Overidentification: L > K, The number of unknowns is smaller than the number of orthogonalityconditions. Then,

    q

    = 2

    m(MM)

    m(MM) = 2G(MM)m(MM)

    = 2

    1

    TZX

    1

    TXy 1

    TXZMM

    = 0

    MM = [(ZX)(XZ)]1

    (ZX)Xy, m(MM) = 0.

    90

  • 8/8/2019 Econ1 Mle Notes

    91/148

    Econometrics I

    The MM estimator is consistent if

    plim m() = 0 (convergence) plim G() = plim m()

    = plim (1TX

    Z) = xz exists

    and has rank greater or equal to K (identification).

    The MM estimator is asymptotically normal if

    Tm()

    d N(0, V),

    and V denotes the asymptotic covariance of

    Tm().

    91

  • 8/8/2019 Econ1 Mle Notes

    92/148

    Econometrics I

    Covariance of MM:

    Cov[] = 1T

    [xzxz]1(xzVxz)[

    xzxz]

    1

    = T[(ZX)(XZ)]1(ZX)V(XZ)[(ZX)(XZ)]1, where

    standard regression V = 2 X

    XT

    heteroskedasticity V = 1TT

    t=1 e2t xtx

    t

    general V = 1TTt=1 e2t xtxt +Pp=1Tt=p+1 1 pP+1 etetp(xtxtp + xtpxt).

    92

  • 8/8/2019 Econ1 Mle Notes

    93/148

    Econometrics I

    General minimum distance estimators (MDE)

    min

    q = m()Wm(),

    where W is positive definite matrix.

    MDE = [(ZX)W(XZ)]1(ZX)W Xy

    Cov[MDE] =

    1

    T[xzWxz]1xzW V Wxz[xzWxz]1= T

    [ZXW XZ]1ZX W V W X Z[ZXW XZ]1

    .

    The MM estimator discussed above uses W = I. In case of exact identification the choice of W is

    irrelevant. In case of overidentification the efficient MDE is obtained when using W = V1. This

    estimator is the GMM estimator:

    min

    q = m()V1m()

    93

  • 8/8/2019 Econ1 Mle Notes

    94/148

    Econometrics I

    GMM = [(ZX)V1(XZ)]1[(ZX)V1(Xy)]

    Cov[GMM] = 1T[xzV1xz]1

    = T[(ZX)V1(XZ)]1.

    In practice GMM will be obtained in two steps: In the first step W = I is used to obtain (initial)

    estimates for V.

    94

  • 8/8/2019 Econ1 Mle Notes

    95/148

    Econometrics I

    2.6.2 Testing

    1. Testing overidentifying restrictions (model checking in case L > K).

    Since

    Tm()d N(0, V)

    = T q

    = Tm()V1m()

    d 2(L K)

    under the null hypothesis of correct specification.

    95

  • 8/8/2019 Econ1 Mle Notes

    96/148

    Econometrics I

    2. Testing parameter restrictions

    H0 : = 0 R = r vs. H1 : R = r.

    LR: SinceT q0 = Tm

    (0)V1m(0)

    d 2(L (K J))

    = T(q0 q) d 2(J)

    under H0.

    Wald:

    = T(RGMM r)[R[(ZX)V1(XZ)]1R]1(RGMM r)d

    2(J)

    under H0.

    96

  • 8/8/2019 Econ1 Mle Notes

    97/148

    Econometrics I

    LM: Define

    g0(0) =q

    =0 = 2G0(0)V1m(0)Note:

    Cov[g0(0)] =4

    TG0(0)

    V1G0(0)

    Let m0, G0 be short for m(0), G0(0).

    LM-statistic

    = Tm0V1G0[G0V

    1G0]1G0V1m0

    d 2(J)

    under H0.

    97

  • 8/8/2019 Econ1 Mle Notes

    98/148

    Econometrics I

    2.7 Example: Consumption based CAPM (CCAPM)

    2.7.1 The model

    In a single good economy, a representative agent, who has endowment Wt in period t and may invest in

    a single asset with price Pt and dividend Dt+1 at time t+1, maximizes his utility flow from consumption

    (Ct) by choosing the optimal investments t in the asset in time t. Formally,

    maxt U(Ct) + Et[U(Ct+1)]

    s.t Ct = Wt Ptt and Ct+1 = Wt+1 + (Pt+1 + Dt+1)t,

    where denotes the (subjective) time discount factor.

    From FOC, PtU(Ct) = Et[U(Ct+1)(Pt+1 + Dt+1)],

    98

  • 8/8/2019 Econ1 Mle Notes

    99/148

    Econometrics I

    the fundamental asset pricing equation is obtained as: 1 = Et[Mt+1Rt+1], where

    Rt+1 = Pt+1 + Dt+1

    Pt, Mt+1 = U

    (Ct+1)U(Ct)

    .

    With a log utility function:

    U(Ct) = ln(Ct), Mt+1 = Ct

    Ct+1.

    2.7.2 GMM estimation

    Data: Quarterly data from 1965:1 to 2002:1 Ct, Germany real consumption; Pt, DAX price index.Lucas tree model:

    et+1 = Ct

    Ct+1

    Pt+1 + Dt+1Pt

    1.

    Instruments: a constant, lag 1 of consumption, lag 1 of DAX.

    99

  • 8/8/2019 Econ1 Mle Notes

    100/148

    Econometrics I

    2 Dynamic models

    2.1 Stochastic processes

    2.2 Nonstationary stochastic processes

    2.3 Convergence of moments of I(1) variables

    2.4 Spurious regression

    2.5 Cointegration

    2.6 Testing for unit roots

    100

  • 8/8/2019 Econ1 Mle Notes

    101/148

    Econometrics I

    3 Dynamic Models

    3.1 Stochastic processes

    3.1.1 Weak stationarity

    In econometrics an observed time series yt, t = 1, . . . , T , is regarded as one realization of a finite part

    of a stochastic process yt(), t = 0, 1, 2, . . .. A process is called weakly stationary if first andsecond order moments of the process exist and are invariant through time. Thus,

    E[y1] = E[y2] = E[y3] = . . . = E[yT] = ,

    Var[y1] = E[(y1 )(y1 )] = Var[y2] = . . . = Var[yT] = 0,Cov[y1+k, y1] = E[(y1+k )(y1 )] = Cov[y2+k, y2] = . . . = Cov[yT, yTk] = k.

    101

  • 8/8/2019 Econ1 Mle Notes

    102/148

    Econometrics I

    3.1.2 Stationary ARMA-processes

    1. Autoregressive models:

    yt = et + yt1, || < 1, (AR(1)) (1 L)yt = et, Lyt = yt1,

    yt = (1 L)1et.yt = et + 1yt1 + . . . + pytp, (AR(p)),

    where

    (z) = ( 1 1z . . . pzp)= (1

    1z)(1

    2z)

    . . .

    (1

    pz)

    = 0 for

    |z

    |< 1.

    102

  • 8/8/2019 Econ1 Mle Notes

    103/148

    Econometrics I

    Moments of an AR(1)-process:

    E[yt] = 0,

    Var[yt] = 2(1 + 2 + 4 + . . .) = 0,

    Cov[yt, ytk] = k

    = k1, k > 0.

    2. Moving average model:

    yt = et + met1 (MA(1))

    = (1 + mL)et.

    3. ARMA(p,q) model: (L)yt = m(L)et.

    103

    E I

  • 8/8/2019 Econ1 Mle Notes

    104/148

    Econometrics I

    3.1.3 Empirical moments

    Mean = y =

    1

    T

    Tt=1

    yt

    Variance0 =

    1

    T

    T

    t=1(yt y)2

    Covarianceh =

    1

    T

    Tt=h+1

    (yt y)(yth y), h = 1, 2, . . .

    Autocorrelations h = h/0, h = 1, 2, . . .

    Assume h = 0 for h > l . Then Var(h)

    T1(1 + 221

    + 22

    2

    + . . . + 22

    l

    ).

    104

  • 8/8/2019 Econ1 Mle Notes

    105/148

    E i I

  • 8/8/2019 Econ1 Mle Notes

    106/148

    Econometrics I

    Moments ofyt

    E[yt] = y0

    Var[yt] = E[yt y0]2

    = E[(e1 + e2 + . . . + et)2] = t 2,

    Cov[yt, ytk] = E[(e1 + e2 + . . . + et)(e1 + e2 + . . . + etk)]

    = (t k)2.

    Thus,

    limt Var[yt] =

    ,lim

    t

    Cov[yt, ytk] =

    , for finite k

    106

    E t i I

  • 8/8/2019 Econ1 Mle Notes

    107/148

    Econometrics I

    and

    t,k = Cov[yt, ytk]Var[yt]Var[ytk]

    =2(t k)2t2(t k)

    =

    t k

    t.

    Properties of processes with stochastic trends:

    No tendency to return to unconditional mean Variance increases with time

    Persistent autocorrelation.

    107

    E t i I

  • 8/8/2019 Econ1 Mle Notes

    108/148

    Econometrics I

    Random walk with drift yt = + yt1 + et so

    = y0 + t +t

    i=1

    ei

    E[yt] = y0 + t.

    Obtaining a stationary residual process: yt

    yt

    1 = et so

    (1 L)yt = etyt = et.

    A process yt is called integrated of order d (I(d)) if yt is nonstationary and differencing yt d-times

    obtains a stationary residual series.

    108

    E t i I

  • 8/8/2019 Econ1 Mle Notes

    109/148

    Econometrics I

    White noise sequence, stationary AR(1) processes, Random Walks (with drift)

    tt

    et (0, 1) yt = 0.9yt1 + et

    yt = yt1 + et yt = 0.5 + yt1 + et

    109

    E t i I

  • 8/8/2019 Econ1 Mle Notes

    110/148

    Econometrics I

    3.3 Convergence of moments of I(1) variables

    3.3.1 Brownian motion

    Let yt = yt1 + et, et (0, 2), y0 = 0, t = 1, 2, . . . , T . Furthermore [T r], 0 r 1 is the largestinteger smaller or equal to T r. Define

    XT(r) =

    0/

    T for 0

    r < 1/T

    e1/T for 1/T r < 2/T(e1 + e2)/

    T for 2/T r < 3/T

    (e1 + e2 + e3)/

    T for 3/T r < 4/T... ...

    (e1 + e2 + . . . + eT)/T for r = 1.

    110

    E t i I

  • 8/8/2019 Econ1 Mle Notes

    111/148

    Econometrics I

    Then

    XT(r) = y[T r]/T , 0 r 1XT(r)

    d W(r) XT(r)/ d W(r)f(XT(r))

    d f(W(r)), iffcontinuous

    Standard Brownian Motion (Wiener process):

    Initialization W(0) = 0

    Continuity: W(t) is continuous in t with probability 1

    Independent increments: For all time points 0 t1 < t2 < . . . tk 1 (W(t2) W(t1)), (W(t3)

    W(t2)), . . . (W(tk)W(tk1)), are independent multivariate normally distributed with Var[W(s)W(t)] = s t.

    111

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    112/148

    Econometrics I

    Convergence of a Random Walk, yt = yt1 + et, et (o, 2), to a standard Brownian motion

    T = 10

    yt yt/ yt/

    T y2t

    /2T

    T = 100

    T = 1000

    W(r) W2(r)

    t t r r

    112

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    113/148

    Econometrics I

    3.3.2 Stochastic orders

    Let XT denote sequence of random variables

    (a) XT converges in probability if Problim T

    (|XT x| < ) = 1 or plim XT = x, e.g.

    plim

    1

    T

    et

    = 0.

    (b) XT is of smaller order in probability than qT if plimXTqT = 0, short XT = op(qT), e.g.et = op(T).

    (c) XT is of order in probability qT if M exists and for every > 0 Problim T

    XTqT > M < , shortXT = Op(qT), e.g.

    et = Op(T1/2)

    113

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    114/148

    Econometrics I

    3.3.3 Sample mean

    10

    XT(s)ds =T

    t=1

    t/T(t1)/T

    XT(s)ds

    =T

    t=1

    T1XT

    t 1

    T

    = T1T

    t=1 yt1/

    T

    = T3/2T

    t=1

    yt1.

    Thus

    y1/

    T =

    1

    0

    XT(s)dsd

    1

    0

    W(r)dr.

    114

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    115/148

    Econometrics I

    3.3.4 Further convergence results

    T2T

    t=1

    y2t1d 2

    10

    (W(r))2dr

    T1/2T

    t=1

    etd W(1)

    T3/2T

    t=1

    tetd W(1) 1

    0

    W(r)dr

    T5/2T

    t=1

    tyt1d

    10

    rW(r)dr

    T2T

    t=1 ytztd v

    1

    0

    We(r)Wv(r)dr,

    where zt = zt1 + vt.

    115

  • 8/8/2019 Econ1 Mle Notes

    116/148

  • 8/8/2019 Econ1 Mle Notes

    117/148

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    118/148

    Econometrics I

    3.4 Spurious regression

    Consider

    yt = yt1 + et, et iid(0, 2e ),zt = zt1 + vt, vt iid(0, 2v), E[etvs] = 0 for all t,s.

    yt = zt+ t.

    OLS estimator

    b = b =

    T2T

    t=1

    ytzt

    T2

    Tt=1

    z2t

    1

    d ve 10 We(r)Wv(r)dr2v

    10 W

    2v (r)dr

    = 0.118

  • 8/8/2019 Econ1 Mle Notes

    119/148

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    120/148

    Econometrics I

    Remarks:

    Typical economic models delivering versions of the autoregressive distributed lag model (ADL) aree.g. partial adjustment specifications, models with adaptive expectations, etc.

    The interpretation of the model parameters and the properties of its estimators depend crucially

    on the time series properties ofxt and yt.

    The upper case ofxt being a scalar variable is easily generalized towards the vector case.

    120

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    121/148

    Econometrics I

    3.5 Cointegration

    Definition:

    Two stochastic processes yt, zt which are I(1) are cointegrated if a linear combination of yt and zt

    exists which is stationary,

    wt = yt zt I(0).Here measures the long-run impact of zt on yt.

    121

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    122/148

    Econometrics I

    Integrated and cointegrated processes, cointegrating relationship

    I(1), no cointegration I(1), cointegration

    I(1), cointegration

    122

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    123/148

    Econometrics I

    Properties of cointegrated variables:

    Individual series are dominated by stochastic trends

    Cointegrated series evolve somehow similar (parallel)

    Some linear combination(s) of cointegrated series show properties of stationary processes.

    Ifyt and zt are cointegrated and zt is weakly exogenous the dynamics ofyt might be specified according

    to an ADL model, the ADL(1,1) say.

    Then the parameter = (1 1) is known as the error correction coefficient. A reparameterizationof the ADL model has become popular as the so called error correction model. The ECM model

    provides sensible error correcting dynamics if < 0 and the ECM is stable if 0 > > 2.

    123

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    124/148

    Econometrics I

    3.6 Testing for unit roots

    3.6.1 Dickey Fuller test

    The Dickey Fuller statistic is the standard t-ratio for the OLS estimator in the DF regression

    yt = yt

    1 + et.

    The pair of hypotheses is

    H0 : = 0 vs. H1 : < 0.

    H0 : = 1 H1 : < 1

    in yt = yt1 + et in yt = yt1 + et.

    124

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    125/148

    Econometrics I

    Then,

    DF = 1Var[]

    =

    Var[]

    =(yy)1ye

    2(yy)1, y = (y0, y1, . . . , yT1)

    =ye

    (yy)d 1

    2

    2

    W(1)2 12 W(r)2dr

    under H0

    =1

    2

    W(1)2 1W(r)2dr

    Remarks: The asymptotic distribution is called Dickey Fuller distribution It is not symmetric with negative expectation Critical values are determined by simulation.

    125

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    126/148

    Econometrics I

    3.6.2 Generalizations of the DF-test

    1. Augmented Dickey-Fuller (ADF) Test:

    An AR(p) process is integrated of order one if(1) = 1 1 p = 0.ADF regression

    yt = yt1 +p1

    j=1j ytj + et,

    where = (1) and j = (j+1 + + p).Hypotheses of interest:

    H0 : = 0 versus H1 : < 0.

    The standard tratio of obeys a DF-distribution asymptotically.

    126

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    127/148

    2. Another view at the ADF-statistic:

    Consider the ADF regression in compact form

    y = y + + e

    y = y + + e

    where contains lagged values of y.

    Normal equations:

    yy = y

    y + y + y

    e,

    yy = y

    y + y + y

    e,

    y = y + + e,

    y = y + + e.

    127

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    128/148

    Thus,

    yy( ) + y( ) = yey( ) + ( ) = e

    Now observe:

    The estimator is superconsistent and independent of the estimates in . The estimates converge at the usual rate T and exhibit a standard asymptotic distribution.

    128

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    129/148

    Proof

    (i) Determine stochastic order of ( )

    = (yy)1ye (yy)1y( )

    Thus

    (

    ) = ()1

    e

    ()1

    y

    [(y

    y

    )1y

    e

    (y

    y

    )1y

    (

    )]

    [I ()1 Op(T1)

    yOp(T)

    (yy)

    1 Op(T2)

    y

    Op(T)

    Op(T1)]( ) = ()1

    Op(T1)

    eOp(T1/2)

    Op(T1/2) ()1

    Op(T1)

    yOp(T)

    (yy)

    1 Op(T2)

    ye

    Op(T)

    Op(T1)

    129

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    130/148

    T( ) = T 1

    e

    T

    + Op(T1/2) = T 1

    e

    T

    + op(1)

    so, converges at rate

    T to .

    (ii) Determine stochastic order and asymptotic distribution of ( ) since ( ) = Op(T1/2)

    ( ) = (yy)1 Op(T2) yeOp(T)

    Op(T1)

    (yy)1 Op(T2) yOp(T) Op(T

    1/2)

    Op(T3/2)

    T( ) =yy

    T2

    1ye

    T+ Op(T

    1/2) =yy

    T2

    1ye

    T+ op(1)

    130

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    131/148

    3. Deterministic components in DF regression:

    yt = yt1 + et yt = c + yt1 + et yt = c + dt + yt1 + et

    H0 yt RW yt RW yt RW with drift( = c = 0) ( = d = 0, c = 0)

    H1 yt I(0), E[yt] = 0 yt I(0), E[yt] = 0 yt trend stationary( < 0, c = 0) ( < 0, d = 0)

    true model td

    DF t

    d

    DF not sensible

    yt = yt1 + et (no constant, no trend) (constant, no trend)

    yt = + yt1 + et not td N(0, 1) t

    d DF= t+ t1 + et sensible Note: Test regression looks like (constant, trend)

    yt = c + [(t 1)+ t1] + et

    131

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    132/148

    4. Structural breaks in deterministic terms:

    Unit root processes may show similar patterns as trend stationary processes with changing trend

    parameters.

    Distinguish scenarios where time point of structural change is known (e.g. German unification)

    or unknown. In any case the asymptotic distribution of the (A)DF-statistic will depend on the

    specification of (changing) deterministic parts and the point of structural change.

    132

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    133/148

    3.6.3 Testing for cointegration

    The hypotheses

    H0 : No cointegration vs. H1 : yt and zt are cointegrated.

    Note: wt is integrated of order one under H0.

    Test statistics:

    Durbin Watson statistic obtained from the static regression.

    ADF test applied to wt. Remark: The DF distribution is different when testing residuals of thestatic regression.

    Standard t

    ratio for in ECM. Remark: Standard asymptotic theory does not hold under the

    null hypothesis.

    133

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    134/148

    3.6.4 Testing for weak exogeneity

    zt = 2(yt1 zt1) + 1zt1 + 2yt1 + t, t (0, 2)

    H0 : 2 = 0 vs. H1 : 2 = 0.

    The t-ratio for 2 will be asymptotically normally distributed (N(0,1)) under H0 in case yt and zt are

    cointegrated.

    134

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    135/148

    3.6.5 Estimation

    1. Two step LS

    Run a superconsistent static regression

    yt = zt + wt

    and use first step error estimates wt to implement the dynamic model, which in turn is estimated

    by OLS:

    yt = wt1 + 1zt + et.

    2. Nonlinear LS

    yt = yt1 zt1 + 1zt + et.

    135

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    136/148

    3.6.6 An additional note on weak exogeneity

    Consider ytxt

    N(t, ), t = 1, . . . , T , t = t1t2

    , = 11 1212 22

    .For example

    yt = xt + 1,t, xt = 1xt1 + 2yt1 + 2,t.

    An alternative as representation is the conditional model for yt given xt

    yt = xt1 + xt12 + 1yt1 + et, xt = 1xt1 + 2yt1 + 2,t,

    where1 = +

    1222

    , 2 = 1 1222

    , 1 = 2 1222

    .

    andet = 1,t +

    12

    222,t, E[e

    2t ] = 11

    212/22 =

    2

    136

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    137/148

    Then

    = (, 1, 2, 12, 11, 22)

    denotes the parameters of the bivariate model and

    1 = (1, 2, 1, 2) or 2 = (1, 2, 22)

    the parameters of the conditional and marginal process, respectively.

    137

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    138/148

    Definitions:

    xt is weakly exogenous for one (or more) parameters in if first this (these) is (are) only afunction of parameters of the conditional model (1) and second the parameters in 1 and 2

    do not obey any cross restrictions. Then 1 and 2 are called variation free.

    xt is strongly exogenous for one (or more) parameters in if first xt is weakly exogenous andsecond yt is not Granger causal for xt. yt is not Granger causal for xt if an information set

    x,yt = {xt, xt1, . . . , yt, yt1, . . .} will not improve forecasts of xt+h, h = 1, 2, . . . relative to aninformation set xt = {xt, xt1, . . .} .

    xt is super exogenous iffirst xt is weakly exogenous and the parameters of the conditional model1 stay invariant if the parameters of the marginal processes 2 change.

    138

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    139/148

    3.6.7 A Monte Carlo Experiment

    Issues: -Spurious regression-Static regression

    -ECM cointegration test

    -Superconsistency

    Data generating process: et = et1et2

    0, 1 1

    , zt = zt1 + et2, 3 Cases (i) yt = yt1 + et1, = 0; (ii) yt = zt + et1, = 0; (iii) yt = zt + et1, = 0.8

    Regression models: (a) yt = zt + ut

    (b) yt = zt+ (yt1 zt1) + ut.

    139

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    140/148

    CASE (i:)

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    b tb

    140

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    141/148

    CASE (ii:)

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    b tb

    141

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    142/148

    CASE (iii:)

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    b tb

    142

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    143/148

    CASE (i:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    143

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    144/148

    CASE (i:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10t t t t

    144

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    145/148

    CASE (ii:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    145

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    146/148

    CASE (ii:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10t t t t

    146

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    147/148

    CASE (iii:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10

    147

    Econometrics I

  • 8/8/2019 Econ1 Mle Notes

    148/148

    CASE (iii:) Static ECM ECM ECM

    T = 1000

    T = 500

    T = 100

    T = 50

    T = 10t t t t


Recommended