+ All Categories
Home > Documents > Economic Perspectives of Renewable Energy Systems … · Afrika 5,3% World Marine Bunkers 2,7%...

Economic Perspectives of Renewable Energy Systems … · Afrika 5,3% World Marine Bunkers 2,7%...

Date post: 18-Sep-2018
Category:
Upload: phungmien
View: 215 times
Download: 0 times
Share this document with a friend
59
1 Economic Perspectives of Renewable Energy Systems Energy Economics Group (EEG) At the Institute of Energy Systems and Electric Drives, Vienna University of Technology, Lecture 2012/2013 Gerhard Faninger Block 1 and Block 2: State of the Art, Options and Assessment of Renewable Energy Technologies Economic Perspectives of Renewable Energy Systems This lecture provides an overview on future perspectives of Renewable Energy (RE) Technologies, focussing on economic and policy aspects. PART 1 Energy, Energy Sources and Energy Forms, Transformation of Energy Forms, Useful Energy and Energy Systems, Availability of Energy Sources, Potential of Renewable Energy Sources, Energy Technologies on the Market, Impacts of Energy Transformation and Consumption to the Environment, Energy Policy and Market Penetration of Renewable Energy Technologies, Options for Future Energy Systems ENERGY ? ENERGY ? The availability of a physical system to do work in an other physical system What means Energy ?
Transcript

1

Economic Perspectives of Renewable Energy Systems

Energy Economics Group (EEG)At the Institute of Energy Systems and Electric Drives,

Vienna University of Technology, Lecture 2012/2013Gerhard Faninger

Block 1 and Block 2:State of the Art, Options and Assessment

of Renewable Energy Technologies

Economic Perspectives of Renewable Energy Systems

This lecture provides an overview on future perspectives of Renewable Energy

(RE) Technologies, focussing on economic and policy aspects.

PART 1• Energy, Energy Sources and Energy Forms,

• Transformation of Energy Forms,• Useful Energy and Energy Systems,

•Availability of Energy Sources, • Potential of Renewable Energy Sources,

• Energy Technologies on the Market, • Impacts of Energy Transformation and Consumption

to the Environment, • Energy Policy and Market Penetration of Renewable

Energy Technologies,• Options for Future Energy Systems

ENERGY ?ENERGY ?⇒ The availability of a

physical system to do work in an otherphysical system

What means Energy ?What means Energy ?

2

The Total Energycontained in an projectis identified with its

mass:

E = m * c²

E = m * c²

Energy and EvoluationEnergy and Evoluation

Nuclear FusionNuclear Fusion

(1) Energy cannot becreated or destroyed.

(2) Energy can beconverted in otherforms of Energy

Any form of Energymay be transferred in

an other form.

The forms of Energymay be devided intotwo main groups:

Kinetic and Potential Energy

Forms of Energy are:Radiant Energy

(the energy of electromagnetic radiation),Chemical Energy, Electric Energy,

Magnetic Energy, Mechanical Energy,

Thermal Energy, Nuclear Energy, Mass (E = m*c²)

3

Energy is measured in Joules (J),

Kilowatthours (kWh),Kilocalories

Energy(Energie, Arbeit, Wärme)

kWh, Joule

Power / Capacity(Leistung)

kW

Energy and Power Units

Leistungs- und Energie-Einheiten

• Die Einheit der Leistung ist W.

• Die Einheit von Energie (Arbeit) ist Wh bzw. Joule.1 Wh = 3.600 Joule

1 GWh = 3,6 TJ

Auch das Öläquivalent wird als Energieeinheit herangezogen:

1 toe: Tonne Öläquivalent = 41,858 GJ 1 GWh = 3,6 TJ = 0,000086 Mtoe (8,6*10-5)

ENERGIE: EinheitenENERGIE: Einheiten EnergieEnergie-- und und LeistungseinheitenLeistungseinheitenKilo: k = 103 , Mega: = M = 106 , Giga: = G = 109 ,Tera: = T = 1012, Peta: = P = 1015 , Exa: = E = 1018

GW: Gigawatt, GWh: GigawattstundeMW: Megawatt, MWh: Megawattstunde

kW: Kilowatt, kWh: KilowattstundeTJ: Terajoule (1012 Joules)

1 GWh = 3,6 TJ = 0,000086 Mtoe (8,6*10-5)1 TJ = 0,2778 GWh = 0,00002388 Mtoe (2,388*10-5)

1 Mtoe = 41868 TJ = 0,041868 EJ1 TJ = 10-6 EJ

1 TWh = 103 GWh = 3,6*103 TJ = 3,6*10-3 EJ1 GWa = 8.760 GWh = 31,536 TJ

1 SKE (Steinkohleneinheit) = 29,3 MJ1 toe : Tonne Öläquivalent = 41,858 GJ = 107 kcal

Brutto-Energieaufkommen /Total Primary Energy Supply : TPES

From where comes ourEnergy Sources ? Energy Sources on EARTH

are the result of an Interaction between

SUN & EARTH with

The Primary Energy „Solar Energy“

Solar Energy & Energy SourcesSolar Energy & Energy Sources

4

Primary-Energy SUN

Solar Energy from SUN

Geothermal Energy Ocean Energy Nuclear Fusion

The Energy Sources of EARTHThe Energy Sources of EARTH

Nuclear Fission

Fossil Energy Sources:Coal, Oil, Gas

Fossil Energy Sources:Coal, Oil, Gas

Nuclear Energy Sources:Nuclear Fission and Nuclear Fusion (?)

Nuclear Energy Sources:Nuclear Fission and Nuclear Fusion (?)

Renewable Energy Sources:Bio-Energy, Hydropower, Solar Energy,

Wind Energy, Geothermal Energy, Tide Energy, Ocean Energy

Renewable Energy Sources:Bio-Energy, Hydropower, Solar Energy,

Wind Energy, Geothermal Energy, Tide Energy, Ocean Energy

What are Renewables ?What are Renewables ?

Renewable Sources of Energy Renewable Energy is energy that is

derived from natural processes that are replenished constantly at a rate equal to or greater then the rate of consumption.

In its various forms, Renewables derives directly or indirectly from the sun, or from

heat generated deep within the earth.

Included in the definition, Renewables are generated from

solar, wind, biomass, geothermal, hydropower and ocean resources,

and bio fuels and hydrogen derived from renewable resources.

5

Commercial markets for Renewables are today:

Hydropower, Bioenergy, Solar Heating and Cooling,

Solar Thermal Power Plants, Photovoltaic, Wind Energy and

Geothermal Energy.

Renewable Energy Comes in Many FormsRenewable Energy Comes in Many Forms• HEAT from

Solarthermal, Geothermal and Bioenergy

• ELECTRICITY from Solarelectric (PV), Hydropower, Bioenergy, Geothermal, and Ocean Energy

• Bio-SPRIT and HYDROGEN, produced by Renewables

“Renewable” does not mean inexhaustible.

Furthermore the harnessing of Renewables, like all else, relies on

material resources which are finite and non-renewable. In other words they

have their limits and so do their environmental consequences.

Do we need Energy ?Do we need Energy ?

Energy is the base for Life and Survive

ENERGY ? For Life and SurviveENERGY ? For Life and SurviveENERGY is part of the evolution

of our Planet EARTH With Solar Energy and Carbon Dioxide

in the atmosphere and Water on theEarth - Hydro Carbons are produced, which are used as food for man and

animals - as base of Life and Survive.

Energy Production byPhotosynthesis

PhotosynthesisCnHmOn

Solar EnergyCarbon Dioxide

Water Mineral Sources

Useful Energy• For Heat,

• Electricity,• Mobility:

Produced from Energy Sources

6

Fuel (Primary Energy)Fuel (Primary Energy)

End-EnergyEnd-Energy

Useful-EnergyUseful-Energy

Energy-ServiceIncluding Energy-Efficiency

Energy-ServiceIncluding Energy-Efficiency

Oil, Coal, Gas, Bio-Energy, Gasoline

Oil, Coal, Gas, Bio-Energy, Gasoline

Heat, ElectricityHeat, Electricity

Useful Heat, Mobility,Lighting

Useful Heat, Mobility,Lighting

From Fuel to Useful EnergyFrom Fuel to Useful Energy

Energy for• Economic Development

• Power• Political Instability/Crises

• Destruction

Energy and SocietyEnergy and Society

Energy and Development

Evolution in IndustryEvolution in Industry Evolution in the Transport-SectorEvolution in the Transport-Sector

7

Evolution in Mobility / TrafficEvolution in Mobility / Traffic Evolution in the Lighting-SectorEvolution in the Lighting-Sector

Energy forPower and Destruction

Countries withEnergy Sources:

Danger forPolitical Instability !

Nuclear Power for Destruction !

Main Questions to ourPresent EnergyConsumption

8

On the limits of energy consumption

Traffic of TODAYTraffic of TODAY

The Energy Problems of Today

ConflictsConflicts in in EnergyEnergy SupplySupplyResources/Technologies, Environment, Industry, Society

Limited Fossil and NuclearEnergy Sources

World Total Primary Energy Supply 2009Fuel Shares of TPS

Renewables13%

Nuclear6%

Fossil81%

About 90% of the present

energy sourceswill not be available

in the midterm-to longterm future

Welt-Primärenergie-Aufkommen 2008Anteile der Energieträger

Wasserkraft2,2%

Biogene Energie10,0%

Geothermie, Solar, Wind u.a.

0,7%

Kernenergie5,8%

Kohle27,0%

Erdöl33,2%

Erdgas21,1%

Gesamt 2008: 12.267 Mtoe= 513,58 EJIEA-World Energy Statistics 2010

9

Welt-Primärenergie-Aufkommen 2009Anteile der Regionen

Mittlerer Osten4,8%

China17,4%

Nicht-OECD Europa0,9%

Asien11,5%

Lateinamerika4,7%

Afrika5,3%

World Marine Bunkers

2,7%

Ehemalige USSR8,5%

OECD44,2%

Gesamt 2008: 12.267 Mtoe= 513,58 EJ

IEA-World Energy Statistics 2010

AboutAbout 70% 70% -- 80% 80% of of thethe presentpresent

energyenergy resourcesresourceswill will bebe usedused byby20% 20% -- 30% of 30% of

worldworld populationpopulation

Non-Balance of Energy ConsumptionNon-Balance of Energy Consumption

The Greenhouse-Problem

The Greenhouse-Problem

Increasing Impacts to Environment –

With high Potential for fast Climate Change

Increasing Impacts to Environment –

With high Potential for fast Climate Change

Signals for climate ChangeSignals for climate Change

CO2-Emission and Global Warming

CO2-Emission and Global Warming

The natural CO2-CycleThe natural CO2-Cycle

10

• CO2 is a natural emission and non-toxic.

• CO2 has to be in a cycle.

• If not, than CO2 will be absorbedin the atmosphere and will have

consequences for Global Warming(„Greenhouse Effect“).

Greenhouse Effect & Global WarmingGreenhouse Effect & Global Warming

Solar radiation at the high frequencies of visible light passes through the atmosphere to warm the planetary surface, which

then emits this energy at the lower frequencies of infrared thermal radiation. Infrared radiation is absorbed by

atmospheric greenhouse gases, and is re-radiated in all directions. Since part of this re-radiation is back towards the surface, energy is transferred to the surface and the lower

atmosphere.

The greenhouse effect is a process by which thermal radiation from a planetary surface is absorbed by

atmospheric greenhouse gases.

As a result, the temperature there is higher than it would be if direct heating by solar radiation were the only

warming mechanism.

The Greenhouse EffectThe Greenhouse Effect EnergierelevanteEnergierelevante COCO2 2 -- EmissionEmissionenen

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

1970 1980 1990 2000 2010 2020 2030

Mill

ione

n T

onne

n C

O 2

World OECDTransition economies Developing countriesWeltweite CO2-Emissionen nehmen mit 1,8 % pro Jahr zu und

erreichen 38 Milliarden Tonnen im Jahr 2030 –70% über dem Kyoto-Ziel

Quelle: IEA World Energy Outlook 2002

Developing Countries

OECD

World

TransitionEconomies

Greenhouse -Gases WorldwideCO 2 -Equivalent, billion tons/year

14

5512

14

7

4

0

10

20

30

40

50

60

70

80

1990 20501990 and Forecast 2050

CO

2-eq

uiv

alen

t, b

illio

nto

ns/

year

EU-Member States

Non-EU-Member States

Developing Countries

33

73

KLIMAWANDEL: Szenarios für globale Erwärmung

Durchschnittstemperatur weltweit, Abweichung vom Mittel der Jahre 1980 - 1999 in °C

-1,0-0,50,00,51,01,52,02,53,03,54,04,5

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Tem

per

atu

rerh

öh

un

g, °

C Szenario 1Szenario 2Szenario 3

Szenario 1: Einfrieren der Treibhausgas-Emissionen auf Stand 2000

Szenario 2: Weltweite Maßnahmen zur Emissions-Reduktion

Szenario 3: Wenig internationale Maßnahmen

Prognose

UNO-Klimabericht, Januar 2007

Nach Klima-Studien kann eine Klimakatastrophe (mit Abschmelzen der Polkappen, Auftauen von Permaböden mit Methan-Emission etc.) nur vermieden werden,

wenn die Erhöhung der globalen Durchschnittstemperatur unter 2 °C gehalten werden kann.

11

Entwicklung der energiebedingten und umweltrelevanten Treibhausgasemissionen in Österreich

0

10

20

30

40

50

60

70

80

90

100

1955

1957

1959

1961

1963

1965

1967

1969

1971

1973

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

TH

G-E

mis

sio

n, M

io T

on

nen

/Jah

r

CO2, Mio Tonnen/JahrCO2-Äquivalent, Mio Tonnen/Jahr

68,8Kyoto-Ziel 2008

85,2,

2010: 390 CO2(p.p.m.)

CO2 and Consequences !

Treibhausgas-Emission nach Sektoren in Österreich 2009

Abfallwirtschaft2%

Verkehr27%

"Fluorierte Gase"2%

Industrie und produzierendes

Gewerbe29%

Energieaufbringung16%

Raumwärme und sonstige

Kleinverbraucher14%

Landwirtschaft9%

Sonstige Emissionen

1%

Gesamt 2009: 80,1 Millionen Tonnen CO2-Äquivalent (THG-Emission) Quelle: Umweltbundesamt 2011

CO2-Emission byCombustion of

Fossil Fuels and Biomass

0,29 0,290,26

0,35

0,40

0,33

0,19

0,39

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Sp

ezif

isch

e K

oh

len

dio

xid

emis

sio

n,

kg C

O2/

kW

h

ERDÖ

L

Heizöl,

schw

er

Heizöl,

leicht

KOHL

E

Braunk

ohle

Steink

ohle

ERDG

AS

BIOMAS

SE

Kohlendioxidemission bei der Verbrennung fossiler Energieträger und Biomasse

CO2-neutral Combustion of BiomassCO2-neutral Combustion of Biomass

Sustainable Use:Regrowing =

Utilisation + microbiological losses

Carbon Dioxide-Balance

12

Power Plantwith CO2 -Storage

Oil and Gas Yields

Salt-Aquifere

Coal Yields

PipelinePipeline Ocean

Concepts for CO2-StorageConcepts for CO2-Storage

The Danger of CO2-Emissions for Habitat and Climate

The Danger of CO2-Emissions for Habitat and Climate

Mögliche Folgen einer KlimaänderungMögliche Folgen einer KlimaänderungDie möglichen Folgen einer raschen Klimaänderung

-ohne Chance auf eine Anpassung des Menschen an einen neuen Lebensraum – sind vielfältig:

⇒ Extreme Änderungen im Wettergeschehen,Zunahme der Intensität von Unwetter-Katastrophen.

⇒ Rückgang der Gletscher mit Zunahme der Gefahren in den Alpen.

⇒ Abschmelzen der Polkappen mit Anstieg der Meeresoberfläche.

⇒ Noch unvorhersagbare Auswirkungen auf Flora und Fauna.

(1) Abschmelzen der Pole, (2) Auftauen von Permafrostboden,(3) Dürre und Brände, (4) Sintfluten und Stürme,

(5) Ozeane in Not, (6) Artenverlust

1

4

4

5

6

1

34

4

6

222

2

13

Globale Erwärmung durch Klimawandel (1)Globale Erwärmung durch Klimawandel (1)

Bedrohung des Lebensraumes der ERDE:

(1) Abschmelzen des Polareises:

Verlust von Trinkwasserreserven, Überschwemmung von Küstenstädten durch

Meeresanstieg, Austreten von im Eis gespeicherten Methan.

Eisfreie Arktisregion bedeutet aber auch Vorteile für Schifffahrt und leichterer Zugang zu

Bodenschätzen: Erdölquellen über von Eis bedeckten Meeresboden.

Globale Erwärmung durch Klimawandel (2)Globale Erwärmung durch Klimawandel (2)

(2) Auftauen von Permafrostboden:

Geographisch handelt es sich um große Teile Nordkanadas, Alaskas, Grönlands und Ostsibirien.

Dauerfrostboden sind bis zu Tiefen von 1.450 m das ganze Jahr gefroren. Taut die gefrorene aus

voreiszeitlich konservierter Fauna und Flora gebildete Biomasse auf, dann gibt der Morast Methan (CH4) frei, ein Treibhausgas mit noch

größerer Wirkung im Vergleich zu Kohlendioxid (CO2): um bis zu 80-mal stärker.

Globale Erwärmung durch Klimawandel (3)Globale Erwärmung durch Klimawandel (3)

(3) Dürre und Brände:

Verlust von Ackerland, Ernteausfälle und Hungersnöte.

(4) Sintfluten und Stürme:

Warme Luft speichert mehr Wasser – die Gefahr von starken Regenfällen steigt. Je wärmer das

Meerwasser, desto größer die Zerstörungskraftder Hurrikane und Taifune.

Globale Erwärmung durch Klimawandel (4)Globale Erwärmung durch Klimawandel (4)

(5) Artenverlust:

Mit der Temperaturerhöhung sind vieleLandtierarten bedroht. Die frühe Eisschmelze

entzieht den Eisbären die Jagdgründe.

(6) Ozeane in Not:

Fische versuchen dem warmen Wasser zu entgehen, giftige Algen breiten sich aus. Das gesamte

Ökosystem wird gestört.

Der Golfstrom – Gefahren für das Klima (5)Der Golfstrom – Gefahren für das Klima (5)

Im Zusammenhang mit der globalen Klimaerwärmung kommt dem Golfstrom

eine besondere Bedeutung zu.

Durch die Erwärmung des Polargebietes vermindert sich die Abkühlung des Oberflächenwassers, wodurch die

Golfzirkulation geschwächt oder sogar ganz unterbunden werden könnte. Damit

verbunden wäre einer Verschiebung der Klimazonen.

Nuclear Power Accidentsand the unsolved problem to handle

the Nuclear Wastewill have consequences

for the further deployment of Nuclear Energy Power.

Has Nuclear Power a future ??Has Nuclear Power a future ??

14

Nuclear Power Accidents (1)Nuclear Power Accidents (1)

Fukishima, Japan: 11. March 2011

Nuclear Power Accidents (2)Nuclear Power Accidents (2)

Tschernobyl, Ukraine: 26 April 1986

Gefährdungspotential durch radioaktiver AbfälleGefährdungspotential durch radioaktiver Abfälle Entsorgung radioaktiver AbfälleEntsorgung radioaktiver Abfälle• Derzeit werden jährlich etwa 9.500 Tonnen

Kernbrennstoff abgebrannt. Der dabei entstehende radioaktive Abfall enthält Elemente, die

Hunderttausend Jahre lang radioaktive Strahlung abgeben und damit eine potentielle Gefahr für die Umwelt darstellen – sofern ihr Endlager nicht von

der Umwelt abgeschottet bleibt.

• Derzeitige Bemühungen in Forschung und Entwicklung beziehen sich auf einen alternativen Brennstoff-Kreislauf, bei dem die Radioaktivität des anfallenden Atommülls schon nach 1.000

Jahren auf das Niveau einer natürlichen Uranerzlagerstätte fällt.

Are we Responsible for theLong-Term Availability

of Energy Sources ?

Energy & Ethos• Only few generations of human civilisation

consume the energy sources of EARTH –produced by natural processes

in billion years !

• And we are disturbing the Environmentand therefore danger future Human Life !

Is this fair to our following generations ??

15

Do we have enough timeto substitute

Fossil and Nuclear Resourcesby Renewables ?

Open Questions to establish a New Energy Economy

Do we have time enough to substitute fossil and nuclear sources by Renewables ?

Will the market deployment of Renewablesfast enough to come on the market ?

Do we have the willingness to enter in a New Energy Economy ?

Long Time-Period for Market Deployment of New Energy Systems !

Long Time-Period for Market Deployment of New Energy Systems !

The Market deploymentof New Energy Systems

needs some decades !

Lessons Learned

Do we need Renewables ?Do we need Renewables ? TWO important Arguments:• Limited Fossil and Nuclear Energy

Sources• Impacts to Environment by CO2-Emission and Radioactive Emission

(Nuclear Waste and Power Accident)

Yes !!

16

Proven Oil Reserves at End-2002

40 30

50 30

200 50

40 20

0 50 100 150 200 250

Years

Oil

Gas

Coal

Nuclear (Uranium)

Availability of Fossil and Nuclear (Fission) Sources

Existing Yields Expected Yields (??)

Oil resourcesUndiscovered oil resources range from 494 billion

barrels at 95% probability to 1589 billion barrels at 5% probability. Oil reserves growth varies more widely,

from 229 billion barrels to 1230 million barrels. Ultimate oil reserves vary among regions, but, as is the

case for proven reserves, the Middle East and the transition economies hold the majority of them. By

2030, most oil production worldwide will come from capacity that is yet to be built.

Typically Crude-Oil Production in Oil-Yields

0

20

40

60

80

100

120

TIME

Pro

du

ctio

n-R

ate,

%/Y

ear

Increasing Production Constant Production Rate Decline Phase

PEAK-OIL

Crude-Oil Yields in Operation 2007: 780In Decline Phase Yields: 580 (74%)

Average Annual Growth-Rate of Decline-Phase:From 6.7% in 2007 to 8.6% in 2030

Proven Oil Reserves at End-2002 Gas resourcesProven gas resources have outpaced production by a wide margin since the 1970s and are now equal to about 66 years of production at current rates.

With an annual grow rate of 2.3%, reserves would last 40 years.

17

Coal resourcesProven coal reserves worldwide total 907 billion

tonnes are almost 200 years of production at current rates.

Coal production in Europe will continue to decline as subsidies are reduced and uncompetitive

mines are closed. Political instabilities in the main supply countries

of carbon fuels cause additional risks for the security of supply.

Nuclear resources and Power Plants (1)

Nuclear fission with the introduction of Generation IV reactors in combination with

effective waste disposal / recycling was convinced up to now as a good option from

the point of view of operating cost, life cycle emissions, and availability of primary fuel.

Nuclear resources and Power Plants (2)Although there were acceptability problems in some

Member States and since the reactor accident in Fukushima, Japan, in 2011 more States are willing to

cancel the planning of new fission reactors and to close operating reactors when reached the planned lifetime of

30 years in operating. Also unsolved problems with a long-time (more than 1000 years) waste disposal and

the limited fuel resources (uranium, thorium) are important arguments which can not be ignored in planning of long-term sustainable energy systems.

Nuclear ResourcesNuclear Resources

• Uran-Supply 2005: 66 000 tons/yearUran-Production 2005: 40 000 tons/year

The difference of 26 000 tons in 2005 was coming fromsecundary resources: recycelt material from Military sources.

• Proven Resources: 3 million tonnesConsidering the present Supply: Reserves for 45 years

Nuclear Power Plants in Operation (January 2011): 437Operation Time > 20 years: 327Operation Time > 30 years: 87Operation Time < 20 years: 23

State of the ARTState of the ART

The Vision of Nuclear FusionThe Vision of Nuclear Fusion

Research Fusion Reactor ITERin Development

Cadarache, France

Research Fusion Reactor ITERin Development

Cadarache, France

The Nuclear Fusion Processis realized in the SUN,

but is not availableon EARTH - up to now -for Electricity Production.

If Nuclear Fusion will be possible,

than it would takemore decades

to come on the market.

Not before 2100!

Nuclear FusionNuclear Fusion

18

Nuclear Fusion (1)Nuclear fusion energy has long been seen as a

potentially attractive new source of electricity. It tantalisingly offers most of the advantages of fission

power with even more readily available fuels and without the possibility of major reactor accidents

releasing large quantities of radioactive material, and without producing very long-lived radioactive wastes.

For many years even its technical feasibility was in doubt, but that has now been demonstrated with high

confidence.

Nuclear Fusion (2)

The uncertainty which still remains is whether it will be a practical and reliable energy source, given the

complexity of the technology and, in particular, whether the energy will be produced at anything like a

competitive cost. Unfortunately, because fusion technology is complex and inevitably large scale, the research is very expensive; it simply cannot be taken

forward at low cost.

Nuclear Fusion (3)To demonstrate fusion’s technical feasibility with

certainty and gain some experience with the operation of realistic-scale fusion technology and subsystems, the

International Thermonuclear Experimental Reactor (ITER) will be built in Europe, with international collaboration to share the costs, but with the EU

playing an active, leading role. New materials and new technologies have to be developed and demonstrated, which are needed for reactors when are used at high-

load factors. The realisation of nuclear fusion reactors for market introduction will take some decades.

Renewable Energy Sourceshave the potential to meet the

challenges of Climate Change and

Energy Security !

Renewable Energyand Energy Policy

Renewable Energyand Energy Policy

A New View aboutFuture Energy Systems

ENERGIENEUDENKEN

19

ENERGIENEUDENKEN„Das Weltenergiesystem steht an einem Scheideweg. Die derzeitigen weltweiten

Trends von Energieversorgung und Energieverbrauch sind eindeutig nicht

zukunftsfähig. Es braucht nichts Geringeres als eine Energierevolution“.

Internationale Energieagentur, IEA/OECD

Energiestrategie Österreich

Political Goals for Future Energy Consumption and

Energy Sources

EU-Goals for Energy Supply in EU-Member States2000 ? 2020

EU-Goals for Energy Supply in EU-Member States2000 ? 2020

Improvement of Energy-Efficiency

Improved contribution of Renewablesto Energy Supply

Reduction of Energy-relatedCO2-Emission

+ 20%

+ 20%

- 20%

20 / 20 / 20

100 %

80 %

60 %

40 %

20 %

0 %

1990 2000 2010 2020 2030 2040 2050

EU-Roadmap zur THG-Emissionsreduktion

Wege zur Verringerung der Treibhausgas-Emissionen in der EU um 80% (100% = 1990)

17501890

1500

0

200

400

600

800

1000

1200

1400

1600

1800

2000

En

erg

y S

up

ply

, Mto

e

2005 2020 2020

Development of Total Primary Energy Supply in EU-25: 2005 - 2020: "Business as usual" and Goal

Supply GoalBusiness as usual

- 20%

Goals for Energy Efficiency in EU-25

2,7

2,6

2,8

2,2

1,6

1,4

1,5

0,9

1,9

1,3

1,8

0,4

0,0 0,5 1,0 1,5 2,0 2,5 3,0

Industry

Households

Trade, Energy Service

Transportation

%/Year

90 - 00 IST00 -20 Trend00 - 20 Scenario

20

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

En

erg

y, T

Wh

/Yea

r

Heat Demand EU 252004

Heat Demand EU 252030

Solar Thermal 2030 Solar Thermal 2050

Scenario for Contribution of Solar Heat to EU Demand by Sectors

Households

Commerce, Service

IndustryReduction of 40%

20%

50%

ENERGY DEMAND

SOLAR THERMAL

Who is responsible forEnergy Supply and Energy Security ?

Who is responsible forEnergy Supply and Energy Security ?

The STATESIn Europe with

Recommendations and Directivesof EU-Commission

Instruments of Energy PolicyInstruments of Energy Policy• Rules: Building Codes, …

• Financial Support: Subsidies, special tarriff for Renewable electricity

production, and other measures• Public RD&D Budget

• Programs and Initiatives for Market Deployment

The Potential of RenewablesThe Potential of Renewables

Energy from SUNEnergy from SUN

2 – 6 per year2 – 6 per yearWorld energy use16 TW -yrper year

COAL 1,8

Uranium 1,9

900Total reserve

900Total reserve

90 - 300Total

90 - 300Total

Petroleum 1,8

240total

240total

Natural Gas 1,8

215total

215total

WIND 1,2

Waves11,3

0.2-2

25 -70per year

25 -70per year

OTEC 1,4

Biomass 1,5

3 - 11 per year3 - 11 per year

HYDRO 1,6

3 – 4 per year3 – 4 per year

TIDES 1

SOLAR 10

23,000 per year

Geothermal 1,70.3 – 2 per year0.3 – 2 per year

© R. Perez et al.

0.3 per year0.3 per year

A N W R

The Power of Solar EnergyComparing finite and renewable planetary energy reserves (in TWh/year)

Total recoverable reserves are shown for the finite resources.Yearly potential is shown for the renewables.

Source: Richard Perez of the University of Albany, NY, USA and Marc Perez of AltPOWER Inc., New York, NY, USA

21

Solar radiation on collector surface

Solar RadiationSolar Radiation The Solar Energy on EarthThe Solar Energy on Earth

Absorbed Solar Energyon horizontal surface

800 und 2.200 kWh/(m², year).

Solar Radiation on horizontal surface kWh/(m², year)

Global Solar RadiationGlobal Solar Radiation The Solar Energy on EarthThe Solar Energy on Earth

Solar Power/ Capacityon horizontal surface

North: up to 800 W/m²Middle Europe: up to 900 W/m²

South: up to 1.100 W/m²

Solar RadiationkW/m²

Cloudless DayAustria

Global Radiation Direct RadiationkW/m²

Solar Power on EARTHSolar Power on EARTH

Hour

Winter

Summer

Spring

Maximal value when entering theatmosphere:

1.340 W/m²Solar Constant

Maximal Solar Power Maximal Solar Power

≈ 20.000 m above ground

22

On the Surface of EARTH absorbed Solar Energy

On the Surface of EARTH absorbed Solar Energy

About 5,5 - 6,0 Millionen EJ/Year

1 Exa-Joule, EJ = 1018 Joule, J

On the Surface of EARTH absorbed Solar Energy

5,50 – 6,00 Mill. EJ/Jahr

The Potential of Solar Energy UtilisationThe Potential of Solar Energy Utilisation

Considering the lossesin transport and storage of 30%,

the potential of useful solar energy(solar heat and solar electricity)

will amount to

0,039*106 * 0,70 = 0,027*106 EJ/year,58-times of World Energy Consumption 2004 (463 EJ)

Energy Sources – produced by Solar EnergyEnergy Sources – produced by Solar Energy

Solar RadiationDirect TransformationDirect Transformation Indirect TransformationIndirect Transformation

Direct Heat Production(Air, Ground, Water )

Photosynthesis(Hydro Carbons:

Fossil and Bio-Energy Sources)

Solar Systems:Thermal and Electric

(Solar Heat and Solar Electricity)

Hydropower,Windpower,

Ocean Energy,Ambient Heat

(Utilised with Heat Pumps)

• Theoretically Potential⇓⇓

• Technically possible Potential⇓⇓

• Realistically possible Potential⇓⇓

• Economically useful PotentialImportant Criteria‘s:

Ecomomic, Social and Political Framework

Potential of Renewable Energy SourcesPotential of Renewable Energy SourcesSource Potential, EJ/Year

Geothermal energy 500 5000 (?)Solar Electric (Photovoltaic) 5 15Solar Heating and Cooling 15 60

Windpower 200 700Hydropower 400 1200Tidal Energy 30 50

Solar Hydrogen 1 2Ocean Wave 30 300

Marine Current 3Salinity 7

Ocean Thermal (OTEC) 36TOTAL 1227 7400 (?)

Possible Useful Potential of WorldwideRenewable Energy Sources

23

Estimates for Technical Potential of Worldwide Renewable Energy Sources

30

500

15

400

200

5 0,5 20 30 1 3 2050

1000

60

1200

700

15 1 30

300

3 7 360

200

400

600

800

1000

1200

1400

Hydro

-Power

Geothe

rmal

Energ

y

Solar

Heating

and C

ooling Bioe

nergy

Wind-Po

wer

Solar

Elec

tric, P

V

Tidal E

nergy

Solar

Hydrog

en

Ocean W

ave

Ocean M

arine C

urrent

Ocean S

alinity

Ocean T

hermal,

OTEC

Ann

ual C

ontr

ibut

ion,

EJ/

year

Realistic Potential, EJ/year

Optimistic Potential, EJ/year

Proven Technologies not available

Worldwide Total Primary Energy Supply, TPES:2003:443 EJ/year 2030 (Outlook): 691 EJ/year

Renewable Energy Technologies on the Market

Renewable Energy Technologies on the Market

Renewable Energy Technologies

Hydropower

Geothermal Energy

24

Geothermal EnergyGeothermal Energy

Low Temperature HeatGeothermal Heat

until 200 m under the Ground-Surface

• Geothermal Heat Pumps (Soil and Ground Water)

• Thermal Water

Deep Geothermal EnergyFor direct Heat Production and thermal

Electricity (until 3000 m)

Geothermal Systems

Bioenergy

Bio-Energy Systems

Solid Biomass-Products in Austria 2010Solid Biomass-Products in Austria 2010

Brennholz Holzbriketts

PelletsHackgut

41,6 %

50,0%

1,5 %

6,9 %

Fire Wood

Wood Chips

Wood Briquettes

Wood Pellets

Wood PelletsWood Pellets

25

Mit Förderschnecke und Saugturbine

FRÖLINGFahrbarer Aschebehälter

Vollautomatische Beschickung von PelletskesselVollautomatische Beschickung von PelletskesselVollautomatische Beschickung von Pelletskessel

Pellets,Wood Chips,Briquettes

Biomass-Heating SystemsBiomass-Heating Systems

Biomass-Heat-Power-PlantsBiomassBiomass--HeatHeat--PowerPower--PlantsPlantsBio-Sprit from AgricultureBio-Sprit from Agriculture

Windpower

Wind-Energy Systems

26

Onshore-Wind Turbines

Onshore-Wind Turbines

Offshore-Wind TurbinesOffshore-Wind Turbines

Wind TurbinesWind TurbinesEonomic available

Onshore Applications near the Ocean

Under Development / Demonstration

Offshore Applications in the Ocean

Solar Thermal

Solar Heating Systems

CombinedSolar Heating Systems

CombinedSolar Heating Systems

Hot Water PreparationHot Water Preparation

Application Sectors for Solar Thermal Collectors in Austria

Swimming Pool HeatingSwimming Pool Heating

27

Non-Concentrating (a) and Concentrating Collectors (b, c)

Collector TypesCollector Types

Col

lect

or-T

ype

⇒ Concentrating Collector

Advanced Flat-plate Collector, Evacuated Collector

Flat-plate Collector, CPC-Collector

Plastic Absorber

Working-Temperatures, °C

Collector Types and Working Temperatures

0°C 50°C 100°C 150°C 200°C 250°C

Unglazed Collectors

Evacuated Tube-Collector

Plastic Absorber Solarwall (Air-Collector)

Glazed CollectorsFlat-plate Collector

Kollektor

Warmwasser

Evacuated Pipe Collector Collector Installation Today

28

Facade Collectors in Dwellings

Collector

Solar Compact System for Hot Water Preparation

Hot Water

(1),(2) Collector-Pipes

(3) Tank

(6)–(13) Control & Regulation

(5) AuxiliaryHeat

(4) Heat Exchanger

Cold Water

Solar Hot Water Preparation in Dwellings:Guideline for Planning

Solar Hot Water Preparation in Dwellings:Guideline for Planning

1 to 3 Persons:

6 m² Collector Area, 300 Litre Water Storage

3 to 6 Persons:

8 m² Collector Area, 500 Litre Water Storage

Solar Hot Water SystemSolar Heat output

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

Month

Solar heat, kWh/month

Stockholm Zurich Milan

Solar System for Household

Collector area: 8 m²(selective flat plate)

Storage volume: 500 litre

120 litre/day (50°C)

Annual heat output:

Stockholm: 2370 kWh/aZurich: 2569 kWh/aMilan: 2753 kWh/a

6675

80

6168

74

0

10

2030

40

50

60

70

80Solar share, %/a

8 m² / 500 litre 6 m²/ 300 litre

Collector area / storage volume

Solar System for Hot WaterCompact System for Household

Stockholm Zurich Milan

Selective flat plate collector

Azimuth: 0° (south), Inclination: 45°

120 litre/day (50°C)

29

7380

85

6774

79

0102030405060708090

Solar share, %/a

8 m² / 500 litre 6 m²/ 300 litre

Collector area / storage volume

Solar System for Hot WaterCompact System for Household

Stockholm Zurich Milan

Evacuatedcollector

Azimuth: 0° (south),

Inclination: 45°

120 litre/day (50°C)

0

1020

30

4050

60

7080

90

100

Solar share/month, %

1 2 3 4 5 6 7 8 9 10 11 12

Month

Solar Hot Water SystemCompact System for Household, 120 litre/day (50°C), Zurich

Solar Heat Auxiliary Heat

Annual Solar Share:74,8%

Selective flat plate collectorAzimuth: 0° (south)

Inclination: 45°

Collector area: 8 m²

Storage volume: 500 litre

0

10

20

30

40

50

60

70

80

90

100

Solar share/month, %

1 2 3 4 5 6 7 8 9 10 11 12

Month

Solar Hot Water SystemApartment House, 16 flats, 1920 litre/day (50°C), Zurich

Solar Heat Auxiliary Heat

Annual Solar Share:60,6%

Selective flat plate collector

Azimuth: 0° (south)Inclination: 45°

Collector area: 96 m²

Storage volume: 4000 litre

26

3744

34

4654 50

66 72

58

78 82

0

10

20

30

40

50

60

70

80

90

Solar share, %/a

16 m²/1 m³ 25 m²/2 m³ 50 m²/5 m³ 80 m²/10 m³Collector area / storage volume

Solar CombisystemDetached Low Energy Single-Family House

Stockholm Zurich Milan

Selective flat plate collector

80 m² Collector Area und 80 m³ 80 m² Collector Area und 80 m³ WaterWater--Storage, AustriaStorage, Austria

Annual Solar Share : 90% – 100%(Hot Water & Space Heat)

Seasonal Storage for SolarCombi-SystemSeasonal Storage for SolarCombi-System

3242

5041

5563 60

7784

71

8695

010

2030

405060

7080

90100

Solar share, %/a

16 m²/1 m³ 25 m²/2 m³ 50 m²/5 m³ 80 m²/10 m³Collector area / storage volume

Solar CombisystemDetached Low Energy Single-Family House

Stockholm Zurich Milan

Evacuated collector

30

0

10

20

30

4050

60

70

80

90

100Solar share/month,

%

1 2 3 4 5 6 7 8 9 10 11 12

Month

Solar CombisystemDetached Passive House, Zurich

Solar Heat Auxiliary Heat

Annual Solar Share:36,5%

Selective flat plate collectorAzimuth: 0° (south)

Inclination: 45°

Collector area: 16 m²

Storage volume: 2000 litre

Hot Hot WaterWater & & SpaceSpace HeatHeat

Solar Supported District Heatingfor Appartment Buildings

Solar Supported District Heatingfor Appartment Buildings

AnnualSolar Share:

40% - 60%

100 m³ Water Tank

Solar Supported Biomass District HeatingSolar Supported Biomass District Heating

Solar Energy Utilisation in Buildings

Solar Electric Solar Thermal

31

32

33

34

35

High Temperature Solar Energy

Solar High-Temperature-Systems

High Temperature Solar Energy

UtilisationUtilisation of of DirectDirect Solar Solar RadiationRadiation

Parabolic Mirrors, Troughs und Heliostats

Concentrating CollectorsConcentrating Collectors

36

Solar-FurnaceOdeillo, FrankreichSolar-Furnace

Odeillo, Frankreich

Thermal Solar Power Plant in Barstow, USAThermal Solar Power Plant in Barstow, USA Thermal Solar Power Plant in Almeria, SpainThermal Solar Power Plant in Almeria, Spain

Plataforma Solar

Photovoltaic Electricity

Solar Electrical SystemsPhotovoltaic Systems

37

è

Solar Cell and Solar ModuleSolar Cell and Solar Module Materials for Solar CellsMaterials for Solar Cells

Photovoltaic SystemsPhotovoltaic Systems

Grid Connected Stand Alone

Grid-connected PV-SystemsGrid-connected PV-Systems

The PVT-GeneratorThe PVT-Generator

PV-Generator with PV-Cells in combinationwith a heat-exchanger for heat production.

Conversion of Solar Energy in 10% Electricity and 70% Heat.

Stand-alone PV-Systems in Alpine Regions

Stand-alone PV-Systems in Alpine Regions

38

Stand-alone Photovoltaic SystemsStand-alone Photovoltaic Systems Photovoltaic: Symbol for „clean“ Electricity Production

Photovoltaic: Symbol for „clean“ Electricity Production

The actual contribution of PV-Systems to the

world -wide ElectricityProduction is at thebeginning and small.

But the contribution of PV-Systems to improvement of

life-quality in developingcountries is high.

Contribution of PV-Systems to Electricity Production

Contribution of PV-Systems to Electricity Production

Photovoltaic Systems in Developing CountriesPhotovoltaic Systems in Developing Countries

Photovoltaic Systems in Developing CountriesPhotovoltaic Systems in Developing Countries

PV-Electricity for Mobility

39

PV-Electricity for Mobility• Storage Capacity (Lithium-Ionen):

15 bis 20 kWh

• Electricity Consumption: 12 – 15 kWh/100 km

• Distance: 80 – 150 kmGoal (midterm): 300 km

PV-Electricity for MobilityPV-Production: 900 – 1200 kWh/kWpeak

Austria. PV-Module: 9 – 10 m²

Example:10.000 km/a

15 kWh/100 kmElectricity Demand: 1.500 kWh/a

PV-Anlage:1,2 – 1,7 kWpeak (12 - 17 m² PV-Module)

New Developments onPV-Technologies

New Developments onPV-Technologies

Perspectives for Solar Cells

0 10 20 30 40 50 60

Crystalline Solar Cells

Thinfilm Solar Cells

Organic Solar Cells

Coloured Solar Cells

"Tandem"-Solar Cells

New Concepts

Efficiency of Solar Cells, %

30% - 50%

12% - 15%

10% - 15%

6% - 10%

6% - 10%

20% - 40%

Actual on the Market

Potential for Development until 2030

Potential for Development later 2030

Perspectives for Solar Cells

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Crystalline Solar Cells

Thinfilm Solar Cells

Organic Solar Cells

Coloured Solar Cells

"Tandem"-Solar Cells

New Concepts

Electricity Production Costs , Euro/kWh

0,6 - 0,8 €/kWh

= 0,6 €/kWh

0,06 - 0,14 €/kWh

0,06 - 0,14 €/kWh

0,06 - 0,14 €/kWh

0,06 - 0,14 €/kWh

Future Options

Novel Cell Concepts

Stacked Multispectral Solar CellLiquid Electrolyte Solar Cell

MIS – CellMetal Insul . Silicon

New Concepts for Solar CellsNew Concepts for Solar Cells

40

Ambient Heat & Heat PumpAmbient Heat & Heat Pump

StoredSolar Energy

and Geothermal Energy

Heat Pump Systems

Function of Electrical Driven Heat PumpFunction of Electrical Driven Heat Pump

Coefficent of Performance (COP)(Arbeitszahl)

Produced Heat (3) / Driving Energy (1)(Electricity)

Efficiency of Heat PumpsEfficiency of Heat Pumps

1

23

COP = 3

Heat Pump SystemsHeat Pump Systems

Outside AirGround, Soil

Ground Water

Soil-Heat Pump with Verticale BoreholesSoil-Heat Pump with Verticale Boreholes

Waterkotte

41

0

10

20

30

40

50

60

70

12 11 10 9 8 7 6 5 4 3

Leistungszahl e als Funktion der Temperaturdifferenz ? T zwischen Verdampfer und Verflüssiger

Tem

per

atu

rdif

fere

nz

?T,

K

Leistungszahl e

?T = 25 K ? e = 6,0

?T = 40 K ? e = 4,0z.B. 10°C ? 50°C

z.B. 10°C ? 35°C

State of the Art of NewRenewable Energy Technologies

State of the Art of NewRenewable Energy Technologies

Time

Mar

ket D

eplo

ymen

t

Development Commercial MarketDemonstration

Solar-CoolingBio-Heat

Passive-Solar

Solar Hot WaterSolar Space Heating

Bio-Sprit

Solar High Temperature

Deep Geothermal Recources

GeothermalHeat Pumps

Windpower

Hydropower

Ocean Energy

Novel PV-Technologies

PhotovoltaicPV-Plastic Solarcells

Market Situation and Market Deploymentof Renewable Energy Technologies

Market Situation and Market Deploymentof Renewable Energy Technologies

Market Deployment of Solar Thermal SystemsFrom Research and Development to Market Deployment

Market Deployment of Solar Thermal SystemsFrom Research and Development to Market Deployment

Market Deployment

Research and Development Market Introduction Market Deployment

District Heating

Domestic Hot Water

Hot Water in Multi-family Housing

Solar-Combisystems

Facade Collector Systems

Sea Water desalination

Process HeatCooling

Swimming Pool Heating

Economics of Renewable Energy Technologies

Economics of Renewable Energy Technologies

1

10

100

kWh

Ko

sten

in E

uro

cen

ts

Installierte Leistung in kW pro Einwohner1 10 100 1000

Bio-Strom

199820102020

Geothermie

Klein-Wasserkraft

Solar elektrisch, PV

Solar thermisch

Wind

G. Faninger, 2004Quelle: IEA-REWP

Technologische „learning curve“ & Potential für Kostenreduktion

42

Quelle: PSE GmbH, 2005

Preisentwicklung der Silizium-SolarzellenPreisentwicklung der Silizium-SolarzellenKollektor- und Systempreisentwicklung von Solaranlagen zur

Warmwasserbereitung in Österreich

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Eu

ro/m

² Ko

llekt

orf

läch

e 1.140

905

440535Kollektorpreis

Systempreis

Typische PV-Systempreise 1 kWpeak Anlagen, netzgekoppelt in Österreich

2.800

4.216

5.500

3.300

4.4004.984

5.765

6.5007.000

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

2008 2009 2010

Euro/kWpeak (exkl. MWSt.)

Unterer Wert Mittelwert Oberer Wert

Wärme- und StromerzeugungskostenBezogen auf Jahreskosten für Betrachtungszeitraum

0,104

0,109

0,164

0,162

0,179

0,125

0,196

0,000 0,050 0,100 0,150 0,200 0,250

Solaranlage für WW

Solaranlage für WW&RH

Wärmepumpe

Pelletskessel

Heizölkessel

Gaskessel

PV-Anlage

Erzeugungskosten €/kWh

Strom

Wärme

Good NewsGood NewsAutomatisation and Mass-production

in the Solar SectorAutomatisation and Mass-production

in the Solar Sector

43

Solar -RoboterKollektor-ProduktionGREENoneTEC PV-Modul ErzeugungGREENoneTEC

Economics of Renewable Energy Technologies

Economics of Renewable Energy Technologies

Positive Influence• Successful market implementation,

• Mass ProductionNegative Influence

Increase of Material Costs(e.g. Copper, Aluminium for Collector-Absorbers)

Factors for the Cost-Development of New Energy Technologies

Factors for the Cost-Development of New Energy Technologies

Successful market implementation sets up a positive price growth cycle.

Market growth provides learning and reduces price, which makes the product more

attractive, supporting further growth which further reduces price, etc.

Successful Market Implementation of New Energy Technologies

Successful Market Implementation of New Energy Technologies Consequently, the experience effect leads to a

competition between technologies to take advantage of opportunities for learning

provided by the market. To exploit the opportunity, the emerging and

still too expensive technology also has to compete for learning investments.

44

The experience-curve phenomenon presents the policy-maker with both risks and

potential benefits. The risks involve the lock-out of potentially

low-cost and environmentally friendly technologies.

The benefits lie in the creation of new energy technology options by exploiting the learning

effect, e.g., through niche markets.

However, there is also the risk that expected benefits will not materialise. Learning

opportunities in the market and learning investments are both scarce resources.

Policy decisions to support market learning for a technology must therefore be based on

assessment of the future markets for the technology and its value to the energy system.

1

10

100

kWh

Ko

sten

in E

uro

cen

ts

Installierte Leistung in kW pro Einwohner1 10 100 1000

Bio-Strom

199820102020

Geothermie

Klein-Wasserkraft

Solar elektrisch, PV

Solar thermisch

Wind

G. Faninger, 2004Quelle: IEA-REWP

„Learning Curve“& Potential for Cost Reduction

Quelle: PSE GmbH, 2005

Preisentwicklung der Silizium-SolarzellenPreisentwicklung der Silizium-Solarzellen

Increasing Public Budget forEnergy-Efficiency

and Renewables

Increasing Public Budget forEnergy-Efficiency

and Renewables

Ausgaben der Öffentlichen Hand für Energieforschung in Österreich: 1977 - 2009

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

70.000.000

80.000.000

90.000.000

100.000.000

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

Eu

ro/J

ahr

QuerschnittsthemenWasserstoff & Brennstoffzelle

Kraftwerke, Übertragung, Speicher

Kernenergie

Erneuerbare Energieträger

Fossile EnergieträgerEnergieeinsparung

BMVIT

45

Ausgaben der Öffentlichen Hand für Energieforschung in Österreich: 1977 - 2009

0%

20%

40%

60%

80%

100%

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

2005

2007

2009

An

teil

in %

Energieeinsparung Fossile EnergieträgerErneuerbare Energieträger KernenergieKraftwerke, Übertragung, Speicher Wasserstoff & BrennstoffzelleQuerschnittsthemen

BMVIT

Kollektor- und Systempreisentwicklung von Solaranlagen zur Warmwasserbereitung in Österreich

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Eu

ro/m

² Ko

llekt

orf

läch

e 1.140

905

440535Kollektorpreis

Systempreis

Typische PV-Systempreise 1 kWpeak Anlagen, netzgekoppelt in Österreich

2.800

4.216

5.500

3.300

4.4004.984

5.765

6.5007.000

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

2008 2009 2010

Euro/kWpeak (exkl. MWSt.)

Unterer Wert Mittelwert Oberer Wert

Market Deployment of NewRenewable Energy Technologies

Market Deployment of NewRenewable Energy Technologies

Der Kollektor-Markt in Österreich: 1975 - 2011Jährlich installierte Kollektorfläche

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1989

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Ko

llekt

orf

läch

e, m

²/Jah

r

Kunststoff-KollektorVakuumrohr-Kollektor

Verglaster Kollektor

Source: 1975 - 2006: Gerhard Faningerseit 2007: EEG-TU Wien

Quelle: BMVIT 2012

In Österreich jährlich installierte Flachkollektor-Fläche1975 - 2011

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1989

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Ko

llekt

orf

läch

e, m

²/Jah

r

Selbstbau-KollektorIndustriell gefertigter Kollektor

Erster Solar-BoomÖlpreis-Krise

Zweiter Solar-BoomBegünstigt durch"Treibhausgase"-Diskussion

Dritter Solar-BoomBegünstigt durch

markterprobte Technik und mit finanzieller Unterstützung

?

Source: 1975 - 2006: Gerhard Faningerseit 2007: EEG-TU Wien

Quelle: BMVIT 2012

46

Installierte Kollektorfläche in Österreich: 1975 - 2011Kumulierte Werte

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1989

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Inst

allie

rte

Ko

llekt

orf

läch

e, m

² Kunststoff-AbsorberVakuum-KollektorVerglaster Kollektor

Source: 1975 - 2006: Gerhard FaningerSeit 2007: AEE INTEC Quelle: BMVIT 2012

Photovoltaik-Markt in Österreich:1991 - 2011Jährlich installierte Leistung in kW (peak)

0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Inst

allie

rte

Leis

tung

, kW

(pea

k)/J

ahr

NetzgekoppeltAutark

Netzgekoppelt 187 159 107 133 245 365 452 541 1.030 1.044 4.094 6.303 3.755 2.711 1.290 2.061 4.553 19.961 42.695 90.984

Autark 338 85 167 165 133 104 201 200 256 186 127 169 514 250 274 55 133 248 207 690

bis 1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Source: 1975 - 2006: Gerhard Faningerseit 2007: EEG-TU Wien Quelle: BMVIT 2012

Photovoltaik-Markt in Österreich: 1992 - 2011Kumulierte installierte Leistung in kW (peak)

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

Inst

allie

rte

Lei

stu

ng

, kW

(pea

k)

NetzgekoppeltAutark

Netzgekoppelt 187 346 453 586 831 1.196 1.648 2.189 3.219 4.263 8.357 14.660 18.415 21.126 22.416 24.477 29.010 48.971 91.666 182.65

Autark 338 423 590 755 888 992 1.193 1.393 1.649 1.835 1.962 2.131 2.645 2.895 3.169 3.224 3.357 3.605 3.812 4.502

bis 1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Source: 1975 - 2006: Gerhard Faningerseit 2007: EEG-TU Wien Quelle: BMVIT 2012

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1.000.000

1.100.000

1.200.000

Nennwärmeleistung, kW

Marktentwicklung der Biomasse-Heizungen in Österreich Installierte Heizleistung pro Jahr

Großanlagen über 1 MW 130.613 71.400 124.950 221.810 336.500 320.430 197.900 105.900 115.750 67.800

Mittlere Anlagen 101 bis 1000 kW 70.272 66.407 93.885 90.002 222.400 226.946 157.663 195.191 193.250 151.480

Kleinanlagen bis 100 kW 359.211 318.838 348.708 388.364 539.670 603.328 345.742 615.496 597.748 515.019

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

560 MW

907 MW917 MW

701 MW

1.151 MW1.099 MW

700 MW

568 MW

457 MW

Grafik: Gerhard Faninger

734 MW

-1.000

1.000

3.000

5.000

7.000

9.000

11.000

13.000

15.000

17.000

19.000

21.000

23.000

25.000

Stückzahl pro Jahr

Marktentwicklung der Biomasse-Heizungen in Österreich Stückzahl pro Jahr

Großanlagen über 1 MW 54 26 36 43 78 82 88 57 52 32

Mittlere Anlagen 101 bis 1000 kW 301 223 332 369 653 777 522 639 652 531

Kleinanlagen bis 100 kW 12.590 11.160 11.895 13.487 18.808 21.353 11.806 22.602 21.304 17.998

2001 2002 2003 2.004 2.005 2.006 2.007 2.008 2.009 2.010

12.945

22.00823,298

12.416

22.212

19.539

13.899

12.26314.409

Grafik: Gerhard Faninger

18.561

Der Wärmepumpen-Markt in Österreich: 1975 - 2011 Jährlich installierte Anlagen

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

An

lag

en/J

ahr

SchwimmbadentfeuchtungWohnraumlüftungHeizungBrauchwasser

Quelle: BMVIT 2012

Phase 1

Phase 3

Phase 2

?

Source: 1975 - 2006: Gerhard Faningerseit 2007: EEG-TU Wien

47

Der Wärmepumpen-Markt in Österreich: 1975 - 2011Installierte Anlagen (kumulierte Werte)

0

50.000

100.000

150.000

200.000

250.000

300.000

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

An

lag

en

SchwimmbadentfeuchtungWohnraumlüftungHeizungBrauchwasser

Quelle: BMVIT 2012Source: 1975 - 2006: Gerhard Faninger

seit 2007: EEG-TU Wien

Marktentwicklung der Windkraft in Österreich

77 94139

415

606

819

965 982 995 995 1.011

0

100

200

300

400

500

600

700

800

900

1.000

1.100

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Inst

allie

rte

Lei

stu

ng

, MW

Ende 2010Installierte Leistung: 1.011 MW

Installierte Anlagen: 625

IG Windkraft Grafik: Gerhard Faninger

Bruttoinlandsverbrauch fester Biobrennstoffe in den Jahren 2007 bis 2010 in Petajoule

Quellen: Biomasseverband (2009), ProPellets Austria (2011a), EEG (Hochrechnungen für 2008 bis 2010)

Source: IEA SHC, 2006

Worldwide Market Development of Solar Thermal Systems1999 - 2004

Worldwide Market Development of Solar Thermal Systems1999 - 2004

Yearly Installed Capacityof Glazed and evacuated tube collectors [MW/a]

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

1999 2000 2001 2002 2003 2004

Inst

alle

dC

apac

ity[

MW

/a]

China + Taiwan

Europe

OthersAustralia + New Zealand

Japan

United States+Canada

IEA- SHC-2006

Entwicklung des weltweiten PV-Marktes

Quelle: IEA

48

Electricity Productionin Austria

Electricity Productionin Austria

Inländische Stromaufbringung in Österreich: 1960 - 2009

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

GW

h/J

ahr

WasserkraftWärmekraft

Sonst. Erneuerbare Energie

Quelle: E-Control

Stromzuwachs und Ökostromertrag

-3.000

-2.000

-1.000

0

1.000

2.000

3.000

4.000

5.000

6.000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

GW

h/J

ahr

Stromzuwachs Ökostrom

Quelle: E-Control

Ökostromanteil an der Stromaufbringung und am Stromendverbrauch in Österreich: 2009 - 2010

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

%/J

ahr

Ökostrom/Wasserkraft & Wärmekraft

Ökostrom/Stromendverbrauch

Renewable Energy Technologies in

Development and Demonstration

Oceanpower

49

Energy from OceanEnergy from OceanCommercial Available

• Tide-Power Stations

Under Development / Demonstration• Energy from Waves,

• Energy from Thermal GradientOTEC-Power Plants

Hydrogen&

Fuel Cells

Hydrogen&

Fuel Cells

Solar-Hydrogen Energy Economy The Vision of Solar-Hydrogen EconomyThe Vision of Solar-Hydrogen Economy

Function of Fuel Cell

50

Function of Fuel Cell Solar Electricity from the Desert

Solarthermal Powerplants– Tower- and Parabolic Collector-Concept -since 1981 under development and allready

available for the market.

European „Solar Desert Project“ in the planning phase

Goal of DESERTEC15% contribution to the European

Electricity Consumption 2050 - with solar electricity, produced in Sahara.

Estimated Investment Costs: 400 Billion Euro

Potentially Investors: Large firms in Europe

Fuel Cell & HydrogenFuel Cell & Hydrogen

Function of Fuel Cell Function of Fuel Cell

51

The Energy System of Tomorrow

The „Intelligent“ Energy System for Utilisation of

Renewable Energy Sources

Combination of Centralized and Dezentralized Systems

With Energy Management

The Energy System of TomorrowThe Energy System of TomorrowProduction

Grid

Distribution

Consumer

Production

Production

Heat and Electricityfrom Solar, Biomass,

PV, Wind⇓

The Energy System of Tomorrow ?The Energy System of Tomorrow ?

Solar City of Tomorrow ?An Example of TODAY

Solar City of Tomorrow ?An Example of TODAY

SOLAR CITY AMERSFOORT, NLSOLAR CITY AMERSFOORT, NL Management ofRenewable EnergyManagement of

Renewable Energy

52

En

erg

yS

ou

rce

En

erg

yS

ou

rce

En

erg

yD

eman

dE

ner

gy

Dem

and

Management of Fluctuating Energy Sourceand Energy Demand

Management of Fluctuating Energy Sourceand Energy Demand

Back-Up-System

Energy Storage

StratifiedStorage

Solar-Storages for Hot Water and Space HeatingSolar-Storages for Hot Water and Space Heating

Tank in TankBivalent Heat Storage

DensitySensible Heat Low

SolidLiquid

Latent Heat

SorptionThermochemical Heat High

CriteriasMaterial, Volume, Energy Density

ENERGY MANAGEMENT with STORAGEBalance between Energy Supply and Energy Demand

Storage-TypesShort-term, Mid-term, Long-term (Seasonal Storage)

• Sensible Heat

≈ 100 MJ/m³

• Latent Heat

≈ 300 - 500 MJ/m³

• Thermo-chemical Heat

≈ 1000 MJ/m³

Seasonal Storage for Solar HeatDevelopment of new Storage MaterialsSeasonal Storage for Solar Heat

Development of new Storage Materials

1 kg Water

0°C1 kg ice

0 °C1 kg Water

0 °C1 kg Water

80°C

335 kJ

Latent heat

335 kJ

Sensible heat

Heat Q

Temperature T

T1

Tmelt

T2

solid melting liquid

latent

sensiblesensible

53

Fig. 2: Principle PCM or chemical reaction storage

SENSIBLE HEATwater, ground, rock, ceramics

T = 60°C - 400 oC

PHASE-CHANGE•inorganic salts, inorganic and organic compounds; classical

examples :•Na2SO4 × 10 H20 +heat (24 oC) ↔ Na2SO4 + 10H20

•CaCla × 6 H20 (30 oC)•Paraffin (melting at 20°C - 60 oC)

CHEMICAL REACTIONS•S × n G +heat ↔ S × m G + (n-m) × G ; G (g) ↔ G(liqu)

G=working fluid/gas S=sorption material

Medium Temperature Capacity[C-deg] [kWh/m3]

Water DT=50 °C 60Rock 40

Na2SO4x10H20 24 70CaCl2x6H20 30 47

paraffine 20 - 60 56lauric acid 46 50

stearic acid 58 45pentaglycerine 81 59butyl stearate 19 39

propyl palmiate 19 52Silica gel N+H20 60 - 80 250

Zeolite 13 X +H20 100-180 180Zeolite + methanol 100 300

CaCl2 + ammonia 100 1000MeHx + H2 50 - 400 200 - 1500Na2S + H20 50 - 100 500

The Building of TomorrowThe Building Envelope as Collector and Seasonal-Storage

The Building of TomorrowThe Building Envelope as Collector and Seasonal-Storage

Sensible Heat≈ 100 MJ/m³

Latent Heat≈ 300 - 500 MJ/m³

Thermo-chemical Heat Storage

≈ 1000 MJ/m³

.

Friedrichshafen, Deutschland

Pit StoragePit Storage

12000 m³

5600 m² Collector Area

54

Storage for Photovoltaic ElectricityStorage for Photovoltaic Electricity

Grid-connected

Stand-alone

Present Contributionof Renewables

to Energy Supply and Forecast

Present Contributionof Renewables

to Energy Supply and Forecast

Beitrag von Erneuerbaren Energieträgern zum weltweiten Energieaufkommen 2009

Bio-Energie, Nachhaltig

42%

Wasserkraft17%

Geothermie, Solar, Wind

2%Bio-Energie, Nicht-nachhaltig *

39%

Beitrag von Erneuerbaren Energieträgern zum weltweiten Energieaufkommen 2009: 13%

* aus nicht-nachhaltiger Forstwirtschaft

Anteil erneuerbarer Energieträger am Energieaufkommen (TPES) in Europa 2004

5,8

21,3

1,5 2,9

13,7

22,9

5,93,9 5,2 3,6

70,7

1,85,9

1,1 1,9

40,1

4,9

14,2

3,76,2

24,7

14,9

1,30

10

20

30

40

50

60

70

80

EU-19

Austria

Belgium

Czech R

epub

licDen

mark

Finlan

dFra

nce

German

yGree

ce

Hunga

ry

Icelan

dIrla

nd Italy

Luxem

bourg

Netherla

nds

Norw

ayPo

land

Portu

gal

Slova

k Rep

ublic Sp

ain

Swed

en

Switze

rland

United

Kingdo

m

Ern

euer

bar

e E

ner

gie

/TP

ES

, %

IEA Statistics 2005

Anteil erneuerbarer Energieträger bei der Stromerzeugung in Europa 2004, %

13,7

65,0

1,7 3,0

24,429,3

11,3 9,2 9,82,8

99,9

5,5

17,5

6,8 5,4

99,4

1,9

27,2

13,719,2

45,8

54,6

3,4

0

20

40

60

80

100

120

EU-19

Austria

Belgium

Czech R

epub

licDen

mark

Finlan

dFra

nce

German

yGree

ce

Hunga

ry

Icelan

dIrla

nd Italy

Luxe

mbourg

Netherl

ands

Norway

Polan

d

Portu

gal

Slova

k Rep

ublic Sp

ain

Swed

en

Switze

rland

United

King

dom

Ant

eil

erne

uerb

arer

Ene

rgie

träg

er,

%

IEA Statistics 2005

14,9 15,1 16,9 18,215,1 14,8

62,9 65,0

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

Sha

re o

f R

enew

able

s, %

OECD, Gesamt OECD, Europa OECD, Nord Amerika Österreich

Stromerzeugung aus erneuerbaren Energieträgernin OECD und in Österreich: 2003 and 2004

20032004

IEA Statistics 2005

55

Energy Scenarios??? Bad NewsBad News

Towards a World-wide Future Sustainable Energy System:Problems to be solved

Towards a World-wide Future Sustainable Energy System:Problems to be solved

Substitution of Fossil & Nuclear Energy Sources for Energy SupplyAbout 87% of the present worldwide Energy Supply!

Additional Energy Sourcesfor the expected increase of Energy Demand:

• Development of Population: From 6 billion to 15 billion or more in 2050 (?) •Increasing Energy Demand in Developing Countries

and countries in Transition (China, Asia, South Africa, Latin America…)•Additional Energy Demand for the production of New Energy Technologies,

including a new infrastructure,

World Total Primary Energy Supply 2009Fuel Shares of TPS

Renewables13%

Nuclear6%

Fossil81%

Welt-Primärenergie-Aufkommen 2009Anteile der Regionen

Mittlerer Osten4,8%

China17,4%

Nicht-OECD Europa0,9%

Asien11,5%

Lateinamerika4,7%

Afrika5,3%

World Marine Bunkers

2,7%

Ehemalige USSR8,5%

OECD44,2%

Gesamt 2008: 12.267 Mtoe= 513,58 EJ

IEA-World Energy Statistics 2010

Development of World-Population ?

56

Development of World-Population

0

1

2

3

4

5

6

7

8

9

10

11

1700

1720

1740

1760

1780

1800

1820

1840

1860

1880

1900

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

Bill

ion

Inh

abit

ants

World-Population, billion: 1800: 1; 1930: 2; 1960: 3; 1974: 4;

1987: 5; 1999: 6; 2011: 7; 2024: 8 (?); 2045: 9 (?); 2050: 10 billion (?).

Per Year 83Per Day 228.200

Per Minute 158Per second 2,6

Growth of World Population, million inhabitants2010

Towards a World-wide Future Sustainable Energy System:Tasks to be done

Towards a World-wide Future Sustainable Energy System:Tasks to be done

Fast Market Deployment of efficient, emission-free, economic and social acceptableRenewable Energy Technologies

Further Research, Development and Demonstration in the sectors of Energy-Efficiency and

New Renewable Energy Sources and Technologies

Towards a World-wide Future Sustainable Energy System:The Challenges

Towards a World-wide Future Sustainable Energy System:The Challenges

To meet a Sustainable Energy System until 2050 many actions have do be done.

„Business as Usual“ will not be the right way.

A Revolution in the Energy Economyis neccessary.

Towards a World-wide Future Sustainable Energy System:The Challenges

Towards a World-wide Future Sustainable Energy System:The Challenges

Hopefully, the time for the beginningof a Sustainable Energy Economy could beextended with expected, but undiscovered

Oil- and Gas-Recources and withthe existing Coal Recources in combination

with CO2-Storage until 2100.

IEA World-Energy ScenarioInternationaal Energy Agency

IEA World-Energy ScenarioInternationaal Energy Agency

Welt-Primärenergie-Aufkommen 2008Anteile der Energieträger

Wasserkraft2,2%

Biogene Energie10,0%

Geothermie, Solar, Wind u.a.

0,7%

Kernenergie5,8%

Kohle27,0%

Erdöl33,2%

Erdgas21,1%

Gesamt 2008: 12.267 Mtoe= 513,58 EJIEA-World Energy Statistics 2010

57

Total Primary Energy Supply (TPES) in 2030450 Policy Scenario

Share of Fuels

Hydropower3,4%

Geothermal, Solar, Wind, Biomass,

etc.18,6%

Nuclear9,9%

Coal/Peat18,2%

Oil29,5%

Gas20,4%TOTAL 2030:

14 389 Mtoe= 602.43 EJIEA-World Energy Outlook 2010

World Total Primary Energy Supply (TPES)Share of Fuels

46,1

33,2 29,7 29,5

16

21,121,2 20,4

24,5

2729,1

18,2

5,8 5,7

9,9

3,4

10,7 10,7 11,918,6

0,92,42,21,8

0

10

20

30

40

50

60

70

80

90

100

1973 2009 RS 2030 "450" 2030

Sha

re o

f Fu

els,

% Other RenewablesHydropowerNuclearCoal/PeatGasOil

Energy Scenarios with Priorityfor

Energy-Efficiency and Renewables

Energy Scenarios with Priorityfor

Energy-Efficiency and Renewables

Gerhard Faninger, 2011

World-Energy-Scenario 2050Priorities for Energy-Efficiency and RenewablesWorld-Energy-Scenario 2050

Priorities for Energy-Efficiency and Renewables

Data: 2002 (Starting Point)Energy Supply: 433,121 EJ; Renewables: 58,531 EJ

Share of Renewables: 13,3%Annual Production Capacity for Renewables: 1,8 EJ

Average Annual Growth of Energy Consumption (1970 – 2004): 2%/a

Assumption and Results for 2050Average Annual Growth of Energy Consumption: 1%/a and 2%/a

Average Annual Growth of Renewable Production : 5%/aShare of Renewables in 2050:

Energy ConsumptionGrowth 1%/a: 33,4%Energy ConsumptionGrowth 2%/a: 20,8%

WORLD Energy ScenarioPriority for Energy-Efficiency and Renewables

0

200

400

600

800

1.000

1.200

2003

2005

2007

2009

2011

2013

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

En

erg

y S

up

ply

, PJ/

a

Assumptions:Average Annual Growth-rate:

Energy Supply: 1%/a & 2%/a.Renewables Production-rate:

5%/a

Energy Supply

Growth-rate: +2%/a

Growth-rate: +1%/a

Renewables Supply

AUSTRIA Energy ScenarioPriority for Energy-Efficiency and Renewables

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

2003

2005

2007

2009

2011

2013

2015

2017

2019

2021

2023

2025

2027

2029

2031

2033

2035

2037

2039

2041

2043

2045

2047

2049

En

erg

a S

up

ply

, PJ/

a

Assumptions:Average Annual Growth-rate:

Energy Supply: 1%/a & 2%/a.Renewables Production-rate:

5%/a

Energy Supply

Growth-rate: +2%/a

Growth-rate: +1%/a

Renewables Supply

58

Energy Supply Energy Supply Share Annual CapacityTotal Renewables Renewables RenewablesEJ/a EJ/a % EJ/a

443 59 13,3 1,8

Energy Supply Renewables 2020 2030 2040 20505%/a 17,4 21,5 27,2 35,210%/a 22,4 40 77,3 100

0,5 - 1%/a

Share of Renewables to Energy Supply, %/a

WORLD

2,0%/a

Energy Scenario2003 ⇒ 2020 ⇒ 2030 ⇒ 2040 ⇒ 2050

Data 2003Average Annual Growth 1970 - 2004

Energy Supply, %/a Renewables, %/a ~2%/a

Assumptions and ResultsAnnual Average Grow-rate, %/a

Energy Supply Energy Supply Share Annual CapacityTotal Renewables Renewables RenewablesPJ/a PJ/a % PJ/a

1.395 305 21,9 13

Energy Supply Renewables 2020 2030 2040 20502,68%/a 25,7 28,4 31,4 34,75%/a 36,3 49,1 67,1 92,010%/a 48,8 95,1 100 100

1%/a 38,4 57,2 80,8 1002%/a 32,8 44,3 56,7 75

2,68 %/a

Share of Renewables to Energy Supply, %/a

AUSTRIA

1,66%/a

5%/a

Energy Scenario2003 ⇒ 2020 ⇒ 2030 ⇒ 2040 ⇒ 2050

Data 2003Average Annual Growth 1970 - 2004

Energy Supply, %/a Renewables, %/a1,66 %/a

Assumptions and ResultsAverage Annual Growth-rate, %/a

Assumptions:Average Annual Growth of Energy Consumption:

2%/a and 1%/a

Average Annual Growth of Renewable EnergyProduction Capacity: 5%/a

Austria: 77% ( =90%)OECD: 12% (19%)World: 21% (33%)

Results of Energy Scenarios for 2050Results of Energy Scenarios for 2050

Goal 2050:Total Substitution of Fossil Energy Sources

for Heating and Cooling in Buildings

The Austria Energy Strategy 2050 for the Energy Consumption in Buildings

The Austria Energy Strategy 2050 for the Energy Consumption in Buildings

Strategy 2050 for Heat Production in Buildings in Austria

82

86

103

85

38,24

51,12

34,39

32,11

6,854,97

0

50

100

150

200

250

300

350

2009 2050

En

d-u

se E

ner

gy,

PJ

Electricity

Ambient Heat

Solar Heat

Biomass

Gas

Oil

317 PJ

206 PJ

- 35%

25,9

27,1

32,5

2,21,610,8

41,2

18,5

24,8

15,6

0

10

20

30

40

50

60

70

80

90

100

Sh

are

to E

ner

gy

Co

nsu

mp

tio

n in

%

2009 2050

Strategy 2050 for the Share of Energy Sources for Heat Production in Buildings in Austria

ElectricityAmbient HeatSolar HeatBiomassGasOil

100% 100%

Strategy 2050 for Heating of Buildings in Austria

2,67

21,44

5

3

27

5

0,312,080

5

10

15

20

25

30

35

40

2009 2050

En

du

se-E

ner

gy,

PJ

Electricity for Space Heat & Hot Water

Electricity for Cooling & E-Equipment

Electricity for Heat Pumps

Electricity for Solar Thermal Systems

34,39 PJ32,11 PJ Electricity Consumption

59

0,96,0

14,5

78,5

8,3

66,8

9,3

15,6

0

1020

304050

607080

90100

Sh

are,

%

2009 2050

Strategy 2050 for Electricity Consumption in Buildings in Austria

Electricity for Space Heat & Hot Water

Electricity for Cooling & E-Equipment

Electricity for Heat Pumps

Electricity for Solar Thermal Systems

100%100%

Energy Outlook

Worst-Case Scenario for Future Energy System(1) Fossil energy resources will not be available

for energy supply.(2) Climate change will not allow the utilisation of fossil resources

for energy production.(3) Further marketdeployment of nuclear power plants will bestopped because of nuclear accidents and problems with long-term

nuclear waste disposal.(4) Nuclear Fusion could not be realised for

Electricity production.(5) The market deployment of Renewables was not fast enough to

substitute fossil resources.Result: The „Fossil Energy Period“ was only a short time period of

about 200 years of Evolution.

Forecast of Energy SupplyForecast of Energy Supply

Renewable Energy Renewables &Nuclear Fusion ?

Fossil Energy

Nuclear Fission

NuclearFusionFossil

Energy

RenewableEnergy

Solar /Hydrogen

Year


Recommended