+ All Categories
Home > Documents > Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of...

Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of...

Date post: 17-Dec-2015
Category:
Upload: adela-day
View: 215 times
Download: 0 times
Share this document with a friend
104
ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis [email protected] http://www.cs.ucdavis.edu/ ~wu/
Transcript
Page 1: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

ecs289m Spring, 2008

Non-cooperative Games

S. Felix WuComputer Science DepartmentUniversity of California, Davis

[email protected]://www.cs.ucdavis.edu/~wu/

Page 2: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 2

Non-cooperative Game Theory

• The Structure of the Game– Four elements– Extensive versus Strategic/Normalized

forms– The Structure of the Game

• Strategies– Mixed, Rationalizable, Dominance

• Nash Equilibrium• Dynamic Game

Page 3: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 3

Non-cooperative Game Theory

• The Structure of the Game– Four elements– Extensive versus Strategic/Normalized

forms– The Structure of the Game

• Strategies– Mixed, Rationalizable, Dominance

• Nash Equilibrium• Dynamic Game

Page 4: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 4

Four Elements

• A game: Formal representation of a situation of strategic interdependence

– Set of agents, I (|I|=n)• AKA players

– Each agent, j, has a set of actions, Aj• AKA moves

– Actions define outcomes• For each possible set of actions there is an

outcome.

– Outcomes define payoffs• Agents’ derive utility from different outcomes

Page 5: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 5

Matching Pennies

• Agents: {Alice, Bob}• Actions: {Head, Tail}• Outcomes: {Matched, Not}• Payoffs: {(-1, 1), (1, -1)}

Alice gives 1 dollar to Bob!

Page 6: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 6

Matching Pennies

• Agents: {Alice, Bob}• Actions: {Head, Tail}• Outcomes: {Matched, Not}• Payoffs: {(-1, 1), (1, -1)}

Bob gives 1 dollar to Alice!

Page 7: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 7

Matching Pennies

• Simultaneous moves• Sequential moves

Page 8: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 8

Extensive Form (or Game Tree)

Agent Alice

Agent Bob

H

H H

T

TT

Action

Terminal node (outcome)

Payoffs

(-1,+1) (-1,+1)(+1,-1) (+1,-1)

Page 9: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 9

Tick-Tack-Toe

Page 10: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 10

Matching Pennies

• Sequential moves• Simultaneous moves

– “Bob doesn’t know Alice’s move”– Not Perfect Information

Page 11: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 11

Bob can not distinguish…

Agent Alice

Agent Bob

H

H H

T

TT

Action

Terminal node (outcome)

Payoffs

(-1,+1) (-1,+1)(+1,-1) (+1,-1)

Page 12: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 12

Agent Alice

Agent Bob

H

H H

T

TT

Action

Terminal node (outcome)

Payoffs

Another representation …

(-1,+1) (-1,+1)(+1,-1) (+1,-1)

Page 13: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 13

Information Sets

Agent Alice

Agent Bob

H

H H

T

TT

(-1,+1) (-1,+1)(+1,-1) (+1,-1)

Action

Terminal node (outcome)

Payoffs

Page 14: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 14

Matching Pennies

• Sequential moves• Simultaneous moves

– “Bob doesn’t know Alice’s move”– Not Perfect Information

• Assumption: “Perfect Recall”– “remember the history”

Page 15: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 15

Example #1: Perfect Recall?

p q

x x yy

a b ba

Page 16: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 16

Example #2: Perfect Recall?

p q

x x yy

a b ba baba

Page 17: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 17

Example #2: Perfect Recall?

p q

x x yy

a b ba baba

Felix likes that for sure!

Page 18: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 18

Matching Pennies

• Sequential moves• Simultaneous moves

– “Bob doesn’t know Alice’s move”– Not Perfect Information

• Assumption: “Perfect Recall”• Perfect Information: each information

set contains a single decision node.

Page 19: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 19

Matching Pennies

• Sequential moves• Simultaneous moves

– “Bob doesn’t know Alice’s move”

• Assumption: “Perfect Recall”• Perfect Information: each information

set contains a single decision node.• Random moves

– Flip a coin to decide Head or Tail

Page 20: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 20

Common Knowledge

• Structure of the Game• All the players know about the structure

of the game, all players know that their rivals know it, and,…

Page 21: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 21

Strategy

• Let HX denote the collection of agent X’s information sets, A the set of possible actions in the game, and C(h) A the set of actions possible at information set h.

• A strategy for agent X is a function:– €

sX : HX → A

∀h ∈ HX ,sX (h)∈ C(h)

Per player (Info Set => Action)

Page 22: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 22

Strategies for Matching Pennies

• Bob’s four possible strategies:

– S1: Play H if Alice plays H; play H if Alice plays T

– S2: Play H if Alice plays H; play T if Alice plays T

– S3: Play T if Alice plays H; play H if Alice plays T

– S4: Play T if Alice plays H; play T if Alice plays T

Information Sets

Page 23: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 23

Strategies imply…

• A sequence of moves actually taken• A probability distribution over the

terminal nodes of the game

• Strategies ~ Outcomes ~ Payoffs

Page 24: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 24

Strategies imply…

• A sequence of moves actually taken• A probability distribution over the

terminal nodes of the game

• Strategies ~ Outcomes ~ Payoffs– “Strategic/Normal Forms”

ΓN = [I,{Si},{ui(•)}]

Page 25: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 25

Matching Pennies

Alice

Bob

H

H

T

T

-1, +1

-1, +1

+1, -1

+1, -1

ActionOutcome

Payoffs

Page 26: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 26

Bob doesn’t know Alice’s move…

Alice

Bob

H

H

T

T

-1, +1

-1, +1

+1, -1

+1, -1

ActionOutcome

Payoffs

Strategies

Page 27: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 27

Strategies for Matching Pennies

• Bob’s four possible strategies:

– S1: Play H if Alice plays H; play H if Alice plays T

– S2: Play H if Alice plays H; play T if Alice plays T

– S3: Play T if Alice plays H; play H if Alice plays T

– S4: Play T if Alice plays H; play T if Alice plays T

Information Sets

Page 28: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 28

Bob does know Alice’s move…

Alice

Bob

H

S1

T

-1, +1

+1, -1

+1, -1

S2 S3 S4

-1, +1

-1, +1

+1, -1

+1, -1

-1, +1

Page 29: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 29

Alice

Bob

H

S1

T

-1, +1

+1, -1

+1, -1

S2 S3 S4

-1, +1

-1, +1

+1, -1

+1, -1

-1, +1

S2: Play H if Alice plays H; play T if Alice plays T

Page 30: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 30

Non-cooperative Game Theory

• The Structure of the Game– Four elements– Extensive versus Strategic/Normalized

forms– The Structure of the Game

• Strategies– Mixed, Rationalizable, Dominance

• Nash Equilibrium• Dynamic Game

Page 31: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 31

Strategies

• Strategy:– A strategy, sj, is a complete contingency plan; defines

actions agent j should take for all possible information sets of the world

• Strategy profile: s =(s1,…,sn )– s-i = (s1,…,si-1,si+1,…,sn)

• Utility function: ui(s)– Note that the utility of an agent depends on the strategy

profile, not just its own strategy– We assume agents are expected utility maximizers

Page 32: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 32

Mixed Strategy

agent[i] : sij ∈ Si

σ i : Si →[0,1]

σ i(sij ) ≥ 0, σ i(sij

j

∑ ) =1

S = Si

1≤ i≤n

∏ , [s∈S

∑ σ 1(s1)σ 2(s2)...σ n (sn )]ui(s)

Randomization over a set of pure and deterministic strategies for each agent

Page 33: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 33

Mixed Strategy

agent[i] : sij ∈ Si

σ i : Si → [0,1]

σ i(sij ) ≥ 0, σ i(sij

j

∑ ) =1

S = Si

1≤ i≤n

∏ , [s∈S

∑ σ 1(s1)σ 2(s2)...σ n (sn )]ui(s)

Δ(Si) = {(σ 1i,...,σ Mi)∈ ℜM : (σ mi ≥ 0,∀m)∧( σ mi

m=1

M

∑ =1)}

ΓN = [I,{Δ(Si)},{ui(•)}]

Randomization over a set of pure and deterministic strategies for each agent

Page 34: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 34

Dominant/Dominated Strategy

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) > ui( ′ s i,s−i)

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) < ui( ′ s i,s−i)

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≤ ui( ′ s i,s−i)

Page 35: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 35

Dominant/Dominated Strategy

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) > ui( ′ s i,s−i)

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) < ui( ′ s i,s−i)

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≤ ui( ′ s i,s−i)

Strictly dominant

Strictly dominated

Weakly dominated

Page 36: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 36

Dominant Strategies

• Agents’ will play best-response strategies– Rationalizable

• A dominant strategy is– a best response for all s-i

– They do not always exist– Inferior strategies are called dominated

ΓN = [I,{Si},{ui(•)}]

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 37: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 37

Alice

Bob

H

S1

T

-1, +1

+1, -1

+1, -1

S2 S3 S4

-1, +1

-1, +1

+1, -1

+1, -1

-1, +1

S2: Play H if Alice plays H; play T if Alice plays T

Assuming Alice and Bob simultaneously choose a strategy..

Page 38: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 38

Iterated Elimination of “Dominated”

• Let RiSi be the set of removed strategies for agent i

• Initially Ri=Ø• Choose agent i, and strategy si such that siSi\Ri

and there exists si’ Si\Ri such that

• Add si to Ri, continue

ui(si’,s-i)>ui(si,s-i) for all s-i S-i\R-i

Page 39: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 39

Prisoner’s Dilemma

• Art and Bob been caught stealing a car: sentence is 2 years in jail.

• DA wants to convict them of a big bank robbery: sentence is 10 years in jail.

• DA has no evidence and to get the conviction, he makes the prisoners play a “game”.

Page 40: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 40

Rules of the Game

Players cannot communicate with one another.

If both confess to the larger crime, each will receive a sentence of 3 years for both crimes.

If one confesses and the accomplice does not, the one who confesses will receive a sentence of 1 year, while the accomplice receives a 10-year sentence.

If neither confesses, both receive a 2-year sentence.

Page 41: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 41

Another one

Page 42: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 42

Strategies

The strategies of a game are all the possible outcomes of each player.

The strategies in the prisoners’ dilemma are:

Confess to the bank robbery

Deny the bank robberyFour outcomes:

Both confess.

Both deny.

Art confesses and Bob denies.

Bob confesses and Art denies.

Page 43: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 43

How would Bob play?

Page 44: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 44

Iterated Elimination of “Dominated”

• Let RiSi be the set of removed strategies for agent i

• Initially Ri=Ø• Choose agent i, and strategy si such that siSi\Ri

and there exists si’ Si\Ri such that

• Add si to Ri, continue

ui(si’,s-i)>ui(si,s-i) for all s-i S-i\R-i

Page 45: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 45

Iterated Elimination of Dominated Strategies

• Let RiSi be the set of removed strategies for agent i

• Initially Ri=Ø• Choose agent i, and strategy si such that siSi\Ri

and there exists si’ Si\Ri such that

• Add si to Ri, continue

• We might not be able to eliminate many!

ui(si’,s-i)>ui(si,s-i) for all s-i S-i\R-i

Page 46: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 46

Art versus Bob

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

Page 47: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 47

Can Bob eliminate ONE?

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

Page 48: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 48

Dominant Strategy for Bob

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) > ui( ′ s i,s−i)

Page 49: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 49

Dominant Strategy for Bob

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) > ui( ′ s i,s−i)

Page 50: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 50

Best Response for Bob

∀(s−Bob ∈ S−Bob )∧( ′ s Bob ≠ sBob )

uBob (sBob,s−Bob ) ≥ uBob ( ′ s Bob ,s−Bob )

Page 51: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 51

Dominant Strategy for Bob

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) > ui( ′ s i,s−i)

Page 52: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 52

Dominant Strategy for Art

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 53: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 53

Dominant Strategy for both

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 54: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 54

Dominant Strategy for both

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 55: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 55

Stable, Equilibrium

Can we converge into a “stable” strategy such that we satisfy all the players to some degree?

Can we converge into a “stable” strategy such that none of the players wanted to change or deviate “unilaterally”?

Page 56: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 56

Unilateral Change/Deviate

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 57: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 57

Nash Equilibrium

Page 58: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 58

Nash Equilibrium

Given

∀(i)∧( ′ s i ≠ si) ∋ui(si,s−i) ≥ ui( ′ s i,s−i)€

ΓN [I,{Si},{ui(•)}],s = {s1,...,sI }

The strategy s is a Nash Equilibrium if

Page 59: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 59

Dominant Strategy for both

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 60: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 60

3-player Game (1-B, 2-R, 3-G)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 61: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 61

Nash Equilibrium?

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 62: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 62

(u1,s2,s3)?

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 63: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 63

(u1,s2,s3)

0,0,0 3,3,0

3,0,3 3,0,3

3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

3,3,0

3,0,3

4,1,1

Page 64: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 64

(u1,s2,s3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 65: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 65

(u1,s2,s3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

4,1,1 3,3,0

4,1,1

Page 66: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 66

(u1,s2,s3) (s1,u2,t3)?

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 67: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 67

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 68: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 68

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 69: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 69

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Which one will the players converge into?

Page 70: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 70

The Prediction Problem

• Given a game, how can we describe or specify the mechanism(s) behind it such that we will have a better prediction?

– Social network formation– Economical outcomes– Many other applications

– The basic Nash Equilibrium may still be too loose…

Page 71: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 71

Nash Equilibrium Extensions

• Undominated (uNE)• Strong (SNE)• Coalition-Proof (CPNE)

Page 72: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 72

Undominated Nash Equilibrium

• Nash Equilibrium– Strategy s given (and so was s-i)

• Undominated Nash Equilibrium (uNE)– Consider all possible s-i

Page 73: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 73

Undominated Nash Equilibrium

If all agents/players choose the “best response”…

ΓN [I,{Si},{ui(•)}]

∀(i)∧(s−i ∈ S−i)∧( ′ s i ≠ si) ∋ui(si,s−i) ≥ ui( ′ s i,s−i)

• A dominant strategy equilibrium is a strategy profile where the strategy for each player is dominant

• Agents do not need to counter-speculate!

Page 74: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 74

Iterated Elimination of Dominated Strategies

• Let RiSi be the set of removed strategies for agent i

• Initially Ri=Ø• Choose agent i, and strategy si such that siSi\Ri

and there exists si’ Si\Ri such that

• Add si to Ri, continue

• Thm: If a unique strategy profile, s*, survives then it is a Nash Eq.

ui(si’,s-i)>ui(si,s-i) for all s-i S-i\R-i

Page 75: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 75

Dominant Strategy for both

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

∀(s−i ∈ S−i)∧( ′ s i ≠ si),ui(si,s−i) ≥ ui( ′ s i,s−i)

Page 76: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 76

Microsoft versus Yahoo

Y

6-4

N

(7,3) (0,0)

5-5 split7-3

Y N Y N

(6,4) (0,0) (5,5) (0,0)

Page 77: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 77

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Which ONES are Nash Equilibrium?

Page 78: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 78

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Seven!Which ONES are Undominated Nash Equilibrium?

Page 79: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 79

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Seven!Which ONES are Undominated Nash Equilibrium?

Page 80: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 80

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Seven!Which ONES are Undominated Nash Equilibrium?Only YYY for player 2!

Page 81: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 81

Strong Nash Equilibrium

• Nash Equilibrium (NE)– No Coalition allowed

• Strong Nash Equilibrium (SNE)– Works for ALL possible coalitions

Page 82: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 82

Coalition

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

Not Strong NE (SNE)

Not stable/NE at all!!

Page 83: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 83

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Seven!Which ONES are Strong Nash Equilibrium?

Page 84: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 84

The Splitting Game

7,3 7,3 7,3

6,4 6,4 0,0

5,5 0,0 5,5

YYY YYN YNY

7-3

6-4

5-5

7,3 0,0 0,0

0,0 6,4 6,4

0,0 5,5 0,0

YNN NYY NYN

0,0 0,0

0,0 0,0

5,5 0,0

NNY NNN

Seven!Which ONES are Strong Nash Equilibrium?ALL of them!

Page 85: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 85

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 86: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 86

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Coalition:2&3

Page 87: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 87

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Coalition:1&3

Page 88: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 88

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Page 89: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 89

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Is any of them “Strong”? No!!

Page 90: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 90

Coalition-Proof Nash Equilibrium

• NE is too loose & SNE is too restrictive, and CPNE is somewhere in between…

• Under SNE, a coalition can move from a NE to any other cell, but that cell might not be stable…

• Under CPNE, a coalition can be only allowed to move a “self-enforcing” cell (I.e., no further deviation from that cell).

Page 91: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 91

(-2,-2) is not Self-Enforcing

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

Not Strong NE (SNE)

Not stable/NE at all!!

In Prisoner’s Dilemma, therefore, (-3,-3) is NE, uNE, also CPNE(?), but only not SNE!!

Page 92: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 92

(u1,s2,s3) is not SNE, how about CPNE?

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Deviation to [0,3,3] disallowed under CPNE!

Page 93: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 93

(u1,s2,s3) is not SNE, how about CPNE?

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

Deviation to [2,2,2] is, however, allowed, &, therefore [4,1,1]

(u1,s2,s3) is not

CPNE!

Page 94: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 94

The game of

1,1 3,0 1,1

0,3 3,3 1,4

1,1 4,1 2,2

s3 t3 u3

s2

t2

u2

u1

Γ(u1) = Γ(sN \{2,3}* ) = [T = {2,3};(Si)i∈T ;(ui

*)i∈T ]

Γ(u1)

Page 95: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 95

The game of

1,1 3,0 1,1

0,3 3,3 1,4

1,1 4,1 2,2

s3 t3 u3

s2

t2

u2

u1

Γ(u1) = Γ(sN \{2,3}* ) = [T = {2,3};(Si)i∈T ;(ui

*)i∈T ]

Γ(u1)

Page 96: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 96

SNE versus CPNE

• SNE: regardless of any possible coalitions, the NE will survive.– Assuming the agents within the coalition are

selfless

• CPNE: considering any possible coalitions, but also consider the relation between the bigger game and the inner-circle game.– Agents in a coalition might move away from

a NE if the new state will be better for ALL members of the coalition, but then, we need to consider the sub-game.

– Assuming the agents within the coalition are non-cooperative

Page 97: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 97

SNE versus CPNE

• SNE: regardless of any possible coalitions, the NE will survive.– Assuming the agents within the coalition are

selfless

• CPNE: considering any possible coalitions, but also consider the relation between the bigger game and the inner-circle game.– Agents in a coalition might move away from

a NE if the new state will be better for ALL members of the coalition, but then, we need to consider the sub-game.

– Assuming the agents within the coalition are non-cooperative

Page 98: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 98

(u1,s2,s3) (s1,u2,t3) (t1,t2,u3) (u1,u2,u3)

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

4 NEs0 SNE

Page 99: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 99

(u1,u2,u3) is the unique CPNE!

3,3,0 0,0,0 3,3,0

3,0,3 3,0,3 3,0,3

4,1,1 3,0,3 4,1,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

0,0,0 0,3,3 0,3,3

3,3,0 0,3,3 1,4,1

s2 t2 u2

s1

t1

u1

3,3,0 0,3,3 1,4,1

3,0,3 1,1,4 1,1,4

4,1,1 1,1,4 2,2,2

s2 t2 u2

s1

t1

u1

s3 t3

u3

4 NEs0 SNE1 CPNE

Page 100: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 100

Coalition in Prisoner’s Dilemma

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-1, -10

-10, -1

Not Strong NE (SNE)

Not stable/NE at all!!

Page 101: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 101

Updated Prisoner’s Dilemma

Art

Bob

Confess

Confess

Deny

Deny

-3, -3

-2, -2

-2, -10

-10, -2

NE, ~CPNE, ~SNE

NE, CPNE, SNE

Page 102: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 102

Definition of CPNE“Coalition-Proof Nash Equilibria: I. Concept” Berheim/Peleg/Whiston, J. of Economic Theory, 42, 1-12 (1987).

In a single player game is a Coalition-Proof Nash Equilibrium if and only if maximizes .

Let n > 1 and assume that Coalition-Proof Nash Equilibrium has been defined for games with fewer than n players. Then,

• For any game with n players, is self-enforcing if, . , is a Coalition-Proof Nash Equilibrium in the game of .

• For any game with n players, is a Coalition-Proof Nash Equilibrium if it is self-enforcing and if there does not exist another self-enforcing strategy vector such that .

Γ,s* ∈ S

ui(s) > ui(s*),∀ i =1,...,n

s*

u1(s)

s* ∈ S

Γ

∀j ∈ J,s j*

Γ /s− j*

Γ

s* ∈ S

s∈ S

Page 103: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 103

What’s next?

• Many mathematical tools, definitions, and theories…

• Now, let’s try to apply them to online social networks…

Page 104: Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis wu@cs.ucdavis.edu wu

05/06/2008 Non-cooperative Game Theory 104

Materials Mainly Covered…

Chapter 5Chapters 7~9


Recommended