+ All Categories
Home > Documents > Ecuaciones Algebraicas lineales

Ecuaciones Algebraicas lineales

Date post: 05-Jan-2016
Category:
Upload: faris
View: 59 times
Download: 0 times
Share this document with a friend
Description:
Ecuaciones Algebraicas lineales. An equation of the form ax+by+c=0 or equivalently ax+by=-c is called a linear equation in x and y variables. ax+by+cz=d is a linear equation in three variables, x, y , and z . Thus, a linear equation in n variables is - PowerPoint PPT Presentation
Popular Tags:
59
Ecuaciones Algebraicas lineales
Transcript
Page 1: Ecuaciones Algebraicas lineales

Ecuaciones Algebraicas lineales

Page 2: Ecuaciones Algebraicas lineales

• An equation of the form ax+by+c=0 or equivalently ax+by=-c is called a linear equation in x and y variables.

• ax+by+cz=d is a linear equation in three variables, x, y, and z.

• Thus, a linear equation in n variables is

a1x1+a2x2+ … +anxn = b

• A solution of such an equation consists of real numbers c1, c2, c3, … , cn. If you need to work more than one linear equations, a system of linear equations must be solved simultaneously.

Page 3: Ecuaciones Algebraicas lineales

Matricesaij = elementos de una matriz

i=número del renglónj=número de la columna

Vector renglón

Vector columna

Page 4: Ecuaciones Algebraicas lineales

Matriz cuadrada m=n

Diagonal principal

Número de incóngnitas

Número deecuaciones

Page 5: Ecuaciones Algebraicas lineales

Reglas de operaciones con matrices

Page 6: Ecuaciones Algebraicas lineales
Page 7: Ecuaciones Algebraicas lineales
Page 8: Ecuaciones Algebraicas lineales
Page 9: Ecuaciones Algebraicas lineales

Representación de ecuaciones algebraicas lineales en forma matricial

Solving for X

Page 10: Ecuaciones Algebraicas lineales

Part 3 10

Noncomputer Methods for Solving Systems of Equations

• For small number of equations (n ≤ 3) linear equations can be solved readily by simple techniques such as “method of elimination.”

• Linear algebra provides the tools to solve such systems of linear equations.

• Nowadays, easy access to computers makes the solution of large sets of linear algebraic equations possible and practical.

Page 11: Ecuaciones Algebraicas lineales

Part 3 11

Gauss EliminationChapter 9

Solving Small Numbers of Equations

• There are many ways to solve a system of linear equations:– Graphical method

– Cramer’s rule

–Method of elimination

– Computer methods

For n ≤ 3

Page 12: Ecuaciones Algebraicas lineales

Part 3 12

Graphical Method

• For two equations:

• Solve both equations for x2:

2222121

1212111

bxaxa

bxaxa

22

21

22

212

1212

11

12

112 intercept(slope)

a

bx

a

ax

xxa

bx

a

ax

Page 13: Ecuaciones Algebraicas lineales

Part 3 13

• Plot x2 vs. x1 on rectilinear paper, the intersection of the lines present the solution.

Fig. 9.1

Page 14: Ecuaciones Algebraicas lineales

Part 3 14

Graphical Method

• Or equate and solve for x1

12

11

22

21

12

1

22

2

12

11

22

21

22

2

12

1

1

22

2

12

11

12

11

22

21

22

21

22

21

12

11

12

112

0

aa

aa

ab

ab

aa

aa

ab

ab

x

a

b

a

bx

a

a

a

a

a

bx

a

a

a

bx

a

ax

Page 15: Ecuaciones Algebraicas lineales

Part 3 15

Figure 9.2

No solution Infinite solutions Ill-conditioned(Slopes are too close)

Page 16: Ecuaciones Algebraicas lineales

Part 3 16

Determinants and Cramer’s Rule

• Determinant can be illustrated for a set of three equations:

• Where A is the coefficient matrix:

bAx

333231

232221

131211

aaa

aaa

aaa

A

Page 17: Ecuaciones Algebraicas lineales

Part 3 17

• Assuming all matrices are square matrices, there is a number associated with each square matrix A called the determinant, D, of A. (D=det (A)). If [A] is order 1, then [A] has one element:

A=[a11]

D=a11

• For a square matrix of order 2, A=

the determinant is D= a11 a22-a21 a12 a11 a12

a21 a22

Page 18: Ecuaciones Algebraicas lineales

Part 3 18

• For a square matrix of order 3, the minor of an element aij is the determinant of the matrix of order 2 by deleting row i and column j of A.

Page 19: Ecuaciones Algebraicas lineales

Part 3 19

223132213231

222113

233133213331

232112

233233223332

232211

333231

232221

131211

aaaaaa

aaD

aaaaaa

aaD

aaaaaa

aaD

aaa

aaa

aaa

D

Page 20: Ecuaciones Algebraicas lineales

Part 3 20

3231

222113

3331

232112

3332

232211 aa

aaa

aa

aaa

aa

aaaD

• Cramer’s rule expresses the solution of a systems of linear equations in terms of ratios of determinants of the array of coefficients of the equations. For example, x1 would be computed as:

D

aab

aab

aab

x 33323

23222

13121

1

Page 21: Ecuaciones Algebraicas lineales
Page 22: Ecuaciones Algebraicas lineales
Page 23: Ecuaciones Algebraicas lineales

Part 3 23

Method of Elimination

• The basic strategy is to successively solve one of the equations of the set for one of the unknowns and to eliminate that variable from the remaining equations by substitution.

• The elimination of unknowns can be extended to systems with more than two or three equations; however, the method becomes extremely tedious to solve by hand.

Page 24: Ecuaciones Algebraicas lineales

Relación con Cramer

Page 25: Ecuaciones Algebraicas lineales

Part 3 25

Naive Gauss Elimination

• Extension of method of elimination to large sets of equations by developing a systematic scheme or algorithm to eliminate unknowns and to back substitute.

• As in the case of the solution of two equations, the technique for n equations consists of two phases:– Forward elimination of unknowns– Back substitution

Page 26: Ecuaciones Algebraicas lineales

Part 3 26

Fig. 9.3

Page 27: Ecuaciones Algebraicas lineales

Generalizando

Multiplicando ec 1

Restando ec2 de la nueva ec1

Reescribiendo ec anterior

a32’/a22’ = nuevo elemento pivote

Elemento pivote

Page 28: Ecuaciones Algebraicas lineales
Page 29: Ecuaciones Algebraicas lineales
Page 30: Ecuaciones Algebraicas lineales
Page 31: Ecuaciones Algebraicas lineales

Part 3 31

Pitfalls of Elimination Methods

• Division by zero. It is possible that during both elimination and back-substitution phases a division by zero can occur.

• Round-off errors.• Ill-conditioned systems. Systems where small changes

in coefficients result in large changes in the solution. Alternatively, it happens when two or more equations are nearly identical, resulting a wide ranges of answers to approximately satisfy the equations. Since round off errors can induce small changes in the coefficients, these changes can lead to large solution errors.

Page 32: Ecuaciones Algebraicas lineales

Part 3 32

• Singular systems. When two equations are identical, we would loose one degree of freedom and be dealing with the impossible case of n-1 equations for n unknowns. For large sets of equations, it may not be obvious however. The fact that the determinant of a singular system is zero can be used and tested by computer algorithm after the elimination stage. If a zero diagonal element is created, calculation is terminated.

Page 33: Ecuaciones Algebraicas lineales

Part 3 33

Techniques for Improving Solutions

• Use of more significant figures.• Pivoting. If a pivot element is zero,

normalization step leads to division by zero. The same problem may arise, when the pivot element is close to zero. Problem can be avoided:– Partial pivoting. Switching the rows so that the

largest element is the pivot element.– Complete pivoting. Searching for the largest

element in all rows and columns then switching.

Page 34: Ecuaciones Algebraicas lineales

Cramer o sustituciòn

Page 35: Ecuaciones Algebraicas lineales
Page 36: Ecuaciones Algebraicas lineales
Page 37: Ecuaciones Algebraicas lineales

Determinant Evaluation Using Gauss Elimination

Page 38: Ecuaciones Algebraicas lineales
Page 39: Ecuaciones Algebraicas lineales

Casi cero !!!Depende del numero de cifras significativas

Page 40: Ecuaciones Algebraicas lineales
Page 41: Ecuaciones Algebraicas lineales

SCALING

Page 42: Ecuaciones Algebraicas lineales
Page 43: Ecuaciones Algebraicas lineales
Page 44: Ecuaciones Algebraicas lineales

Part 3 44

Gauss-Jordan

• It is a variation of Gauss elimination. The major differences are:–When an unknown is eliminated, it is eliminated

from all other equations rather than just the subsequent ones.

– All rows are normalized by dividing them by their pivot elements.

– Elimination step results in an identity matrix.– Consequently, it is not necessary to employ back

substitution to obtain solution.

Page 45: Ecuaciones Algebraicas lineales
Page 46: Ecuaciones Algebraicas lineales
Page 47: Ecuaciones Algebraicas lineales
Page 48: Ecuaciones Algebraicas lineales

Descomposición LU e inversión de Matrices

[A]{X}={B}

[A]{X}-{B}=0

[U]{X}-{D}=0

Gauss Elimination

Page 49: Ecuaciones Algebraicas lineales

De la eliminación hacia delante de Gauss tenemos :

Finalmente

Page 50: Ecuaciones Algebraicas lineales
Page 51: Ecuaciones Algebraicas lineales

Encontrando ‘d’ aplicando la eliminación hacia adelante pero solo sobre el vector ‘B’

Encontrando ‘X’ aplicando la sustitución hacia atrás

Page 52: Ecuaciones Algebraicas lineales
Page 53: Ecuaciones Algebraicas lineales
Page 54: Ecuaciones Algebraicas lineales
Page 55: Ecuaciones Algebraicas lineales
Page 56: Ecuaciones Algebraicas lineales

Matriz Inversa

Page 57: Ecuaciones Algebraicas lineales
Page 58: Ecuaciones Algebraicas lineales
Page 59: Ecuaciones Algebraicas lineales

Homework


Recommended