+ All Categories
Home > Documents > Ecuatia lui Bernoulli

Ecuatia lui Bernoulli

Date post: 04-Jun-2018
Category:
Upload: mihai-nan
View: 257 times
Download: 1 times
Share this document with a friend

of 47

Transcript
  • 8/13/2019 Ecuatia lui Bernoulli

    1/47

    The paper will appear in Discrete Mathematics.CONGRUENCES INVOLVING BERNOULLI POLYNOMIALS

    Zhi-Hong Sun

    Department of Mathematics, Huaiyin Teachers College,Huaian, Jiangsu 223001, P.R. China

    E-mail: [email protected]: http://www.hytc.edu.cn/xsjl/szh

    Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some

    congruences for Bj(x) (mod pn), where p is an odd prime and x is a rational p-integer.

    Such congruences are concerned with the properties ofp-regular functions, the congru-ences for h(

    sp) (mod p) (s = 3, 5, 8, 12) and the sum

    kr (mod m)

    p

    k

    , where h(d) is

    the class number of the quadratic field (

    d) of discriminant d and p-regular func-tions are those functions f such that f(k) (k = 0, 1, . . . ) are rational p-integers and n

    k=0

    n

    k

    (1)kf(k) 0 (mod pn) for n = 1, 2, 3, . . . We also establish many congru-ences for Euler numbers.

    MSC: Primary 11B68, Secondary 11A07, 11R29.

    Keywords: Congruence, Bernoulli polynomial, p-regular function, class number, Eulernumber

    1. Introduction.

    The Bernoulli numbers{Bn} and Bernoulli polynomials{Bn(x)} are defined by

    B0= 1,n1k=0

    n

    k

    Bk = 0 (n2) and Bn(x) =

    nk=0

    n

    k

    Bkx

    nk (n0).

    The Euler numbers{En} and Euler polynomials{En(x)} are defined by

    2et

    e2t + 1=

    n=0

    Entn

    n! (|t|<

    2) and

    2ext

    et + 1=

    n=0

    En(x)tn

    n! (|t|< ),

    which are equivalent to (see [MOS])

    E0 = 1, E2n1= 0,n

    r=0

    2n

    2r

    E2r = 0 (n1)

    and

    (1.1) En(x) +n

    r=0

    n

    r

    Er(x) = 2x

    n (n0).1

  • 8/13/2019 Ecuatia lui Bernoulli

    2/47

    It is well known that([MOS])

    (1.2)

    En(x) = 1

    2n

    nr=0

    n

    r

    (2x 1)nrEr

    = 2n+ 1

    Bn+1(x) 2n+1Bn+1x2.LetZ and N be the set of integers and the set of positive integers respectively. Let

    [x] be the integral part ofxand{x} be the fractional part ofx. Ifm, sN and pisan odd prime not dividing m, in Section 2 we show that

    (1)s mp

    p1k=1

    ksp(mod m)

    p

    k

    Bp1 (s1)pm Bp1 spm (modp) if 2|m,12

    (1)[ (s1)pm ]Ep2

    (s1)pm

    (1)[ spm]Ep2 spm (mod p) if 2m.For a discriminant d let h(d) be the class number of the quadratic field Q(

    d) (Q

    is the set of rational numbers). Ifp >3 is a prime of the form 4m+3, it is well knownthat (cf. [IR])

    (1.3) h(p) 2Bp+12

    (mod p).

    Ifp is a prime of the form 4m+ 1, according to [Er] we have

    (1.4) 2h(4p)Ep12

    (mod p).

    Let ( an) be the Kronecker symbol. For odd primes p, in Section 3 we establish thefollowing congruences:

    h(8p)Ep12

    14

    (mod p);

    h(3p) 4

    p

    3Bp+1

    2 1

    3(mod p) forp1 (mod 4);

    h(12p)8p3

    Bp+12

    112

    (mod p) for p7, 11, 23 (mod 24);

    h(5p) 8Bp+12

    15

    (mod p) forp11, 19 (mod 20).

    For m N let Zm be the set of rational numbers whose denominator is coprimetom. For a prime p, in [S5] the author introduced the notion ofp-regular functions.If f(k) Zp for any nonnegative integers k and

    nk=0

    nk

    (1)kf(k) 0 (mod pn)

    2

  • 8/13/2019 Ecuatia lui Bernoulli

    3/47

    for all n N, then f is called a p-regular function. Iff is a p-regular function andk,m,n,tN, in Section 4 we show that

    (1.5) f(ktpm1)n1

    r=0

    (1)n1rk 1 rn

    1

    r

    k

    rf(rtpm1) (mod pmn),

    which was annouced by the author in [S5, (2.4)]. We also show that

    (1.6) f(kpm1)(1 kpm1)f(0) +kpm1f(1) (mod pm+1) for p >2.

    Let p be a prime, x Zp and let b be a nonnegative integer. Lettp be theleast nonnegative residue oft modulopand x = (x+ xp)/p. From [S4, Theorem3.1] we know that f(k) = p(pBk(p1)+b(x) pk(p1)+bBk(p1)+b(x)) is a pregularfunction. If p 1 b, in [S5] the author showed that f(k) = (Bk(p1)+b(x)

    pk(p1)+b1

    Bk(p1)+b(x

    ))/(k(p 1) + b) is also a pregular function. Using such re-sults in [S4, S5] and (1.5), in Section 5 we obtain general congruences for pBk(ps)+b(x),pBk(ps)+b, (mod p

    sn), where k,n, s N, is Eulers totient function and is aDirichlet character modulo a positive integer. As a consequence of (1.6), if 2|b and

    p 1b, we have

    Bk(ps)+b

    k(ps) +b (1 kps1)(1 pb1) Bb

    b +kps1

    Bp1+bp 1 +b (mod p

    s+1).

    In Section 6 we establish some congruences fornk=0

    nk(1)

    kpBk(p1)+b(x) mod-

    ulopn+1

    , where pis an odd prime,nN,xZp andb is a nonnegative integer.Let p be an odd prime and b {0, 2, 4, . . . }. In Section 7 we show that f(k) =(1(1) p12 pk(p1)+b)Ek(p1)+b is apregular function. Using this and (1.5) we givecongruences for Ek(pm)+b (mod p

    mn), where k, mN. By (1.6) we have

    Ek(pm)+b(1 kpm1)(1 (1)p12 pb)Eb+kp

    m1Ep1+b (mod pm+1).

    We also show that f(k) =E2k+b is a 2regular function and

    E2mkt+bn1r=0

    (1)n1rk 1 rn 1 rkrE2mrt+b (mod 2mn+n),

    wherek,m,n,tN and N is given by 21 n

  • 8/13/2019 Ecuatia lui Bernoulli

    4/47

    Theorem 2.1. Letp, mN andk, rZ withk0. Then

    p1x=0

    xr(mod m)

    xk = mk

    k+ 1

    Bk+1

    pm

    +r p

    m

    Bk+1

    rm

    and

    p1x=0

    xr(mod m)

    (1)xrm xk =mk

    2

    (1)[ rpm ]Ek

    pm

    +r p

    m

    (1)[ rm ]Ek

    rm

    .

    Proof. For any real number t and nonnegative integer n it is well known that (cf.[MOS])

    (2.1) Bn(t+ 1) Bn(t) =ntn1 (n= 0) and En(t+ 1) +En(t) = 2tn.

    Hence, for xZ we have

    Bk+1

    x+ 1m

    +r x 1

    m

    Bk+1

    xm

    +r x

    m

    =

    Bk+1

    x+1m +

    rxm

    1m Bk+1 xm + rxm = 0 if m x r,Bk+1

    x+1m +

    m1m

    Bk+1 xm= (k+ 1) xmk ifm|x r.Thus

    Bk+1

    pm

    +

    r pm

    Bk+1

    rm

    =

    p1x=0

    Bk+1

    x+ 1m

    +r x 1

    m

    Bk+1

    xm

    +r x

    m

    =k+ 1

    mk

    p1x=0

    xr(mod m)

    xk.

    Similarly, ifxZ, by (2.1) we have

    (1)[ rx1m ]Ekx+ 1

    m +

    r x 1m

    (1)[ rxm ]Ek

    xm

    +r x

    m

    =

    (1)[ rxm ]Ekx+1m + rxm} 1m Ek xm + rxm = 0ifmx r,

    (1) rxm 1Ekx+1m +

    m1m

    (1) rxm Ek xm=(1) rxm 2( xm)kifm|x r.

    4

  • 8/13/2019 Ecuatia lui Bernoulli

    5/47

    Thus

    (1)[ rpm ]Ekp

    m+r p

    m

    (1)[ rm ]Ek

    rm

    =

    p1

    x=0(1)[ rx1m ]Ek

    x+ 1

    m +

    r x 1

    m (1)[ rxm ]Ek

    xm

    +r x

    m

    = 2mk

    p1x=0

    xr(mod m)

    (1)xrm xk.

    This completes the proof.

    Corollary 2.1. Let p be an odd prime and k {0, 1, . . . , p2}. Let r Z andmN withpm. Then

    p1x=0

    xr(mod m)

    xk mk

    k+ 1

    Bk+1

    r pm

    Bk+1

    rm

    (mod p)

    and

    p1x=0

    xr(mod m)

    (1)xrm xk

    mk

    2(1)

    [ rpm

    ]Ekr pm

    (1)[ rm

    ]Ekrm(mod p).

    Proof. Ifx1, x2 Zp and x1 x2 (mod p), by [S5, Lemma 3.1] and [S3, Lemma3.3] we have

    (2.2) Bk+1(x1) Bk+1(x2)

    k+ 1 x1 x2

    p pBk0 (mod p)

    and

    (2.3) Ek(x1)Ek(x2) (mod p).

    Thus the result follows from Theorem 2.1.Remark 2.1 Putting k = p 2 in Corollary 2.1 and then applying Fermats littletheorem we see that ifpis an odd prime not dividing m, then

    (2.4)

    p1x=1

    xr(mod m)

    1

    x 1

    m

    Bp1

    r pm

    Bp1

    rm

    (mod p)

    5

  • 8/13/2019 Ecuatia lui Bernoulli

    6/47

    and

    (2.5)

    p1x=1

    xr(mod m)

    (1)xrm 1x

    12m

    (1)[ rpm ]Ep2r p

    m

    (1)[ rm ]Ep2rm

    (mod p).

    Here (2.4) and (2.5) are due to my brother Z.W. Sun. See [Su2, Theorem 2.1]. Inspiredby his work, the author established Theorem 2.1 and Corollary 2.1 in 1991.

    Corollary 2.2. Letp be an odd prime. Letk {0, 1, . . . , p 2} andm, sN withpm. Then

    (1)kk+ 1

    Bk+1

    (s 1)pm

    Bk+1

    spm

    (s1)p

    m

  • 8/13/2019 Ecuatia lui Bernoulli

    7/47

    Corollary 2.3. Letp be a prime.

    (i) (Karpinski[K, UW]) Ifp3 (mod 8), then(p3)/4x=1

    xp

    = 0.

    (ii) (Karpinski[K, UW]) Ifp5 (mod 8), then[p/6]

    x=1 xp = 0.

    (iii) (Berndt[B, UW]) Ifp5 (mod 24), then(p5)/12

    x=1

    xp

    = 0.

    Proof. By Corollary 2.2 and the known fact B2n+1 = 0, for mN with pm wehave

    (2.8)

    [p/m]x=1

    xp

    [p/m]x=1

    xp12 (1)

    p12

    p+12

    B p+1

    2 B p+1

    2

    pm

    2B p+1

    2

    pm

    (mod p) ifp1 (mod 4),

    2Bp+12 + 2B

    p+12 p

    m

    (mod p) ifp3 (mod 4).It is well known that B2n(

    34 ) = B2n(

    14 ) = ( 122n1)B2n/24n1. Thus, if p

    3 (mod 8), by (2.8) we see that

    p34

    x=1

    xp

    2Bp+1

    2+ 2B p+1

    2

    34

    =

    1

    2p1

    1 2p12 Bp+12

    2Bp+12

    1 2

    p

    2

    B p+1

    2= 0 (mod p).

    Asp34 p34x=1 xp p34 , we must have(p3)/4x=1 (xp ) = 0. This proves (i).Now we consider (ii). For n {0, 1, 2, . . . } and m N it is well known that (cf.

    [IR], [MOS])

    (2.9) Bn(1 x) = (1)nBn(x) andm1k=0

    Bn

    x+

    k

    m

    = m1nBn(mx).

    Thus

    Bp+12

    12n

    +B p+1

    2

    12n

    +1

    2

    = 2

    p12 Bp+1

    2

    1n

    and so

    (2.10) B p+12

    12n

    2

    p

    Bp+1

    2

    1n

    (1) p+12 Bp+1

    2

    n 12n

    (mod p).

    Since p5 (mod 8), taking n= 3 in (2.10) we find

    (2.11) B p+12

    16

    Bp+1

    2

    13

    +B p+1

    2

    13

    = 0 (mod p).

    7

  • 8/13/2019 Ecuatia lui Bernoulli

    8/47

    This together with (2.8) and (2.9) yields

    [p/6]x=1

    xp

    2Bp+1

    2

    p6

    =2

    p3

    Bp+1

    2

    16

    0 (modp).

    As|[p/6]x=1 xp| [p6 ] we have[p/6]x=1 xp= 0. This proves (ii).Finally we consider (iii). Assume p5 (mod 24). By (2.10) and (2.11) we have

    Bp+12

    112

    2

    p

    Bp+1

    2

    16

    +B p+1

    2

    512

    B p+1

    2

    512

    (mod p).

    On the other hand, by (2.9) we have

    B p+12

    112

    +B p+1

    2

    512

    = 3

    p12 Bp+1

    2

    14

    Bp+1

    2

    912

    3

    p

    B p+1

    2

    14

    (1) p+12 B p+1

    2

    14

    = 0 (mod p).Thus B p+1

    2

    112

    B p+12

    512

    0 (mod p). Now applying (2.8) we see that[p/12]x=1

    xp

    2Bp+1

    2

    p12

    =2Bp+1

    2

    512

    0 (mod p).

    This yields (iii) and so the corollary is proved.

    Corollary 2.4. Supposep, q,mN, nZ, gcd(p, m) = 1 andqm. ForrZ letAr(m, p) be the least positive solution of the congruencepxr (mod m). Then

    r: Ar

    (m, p)

    q, rZ,

    n

    r

    p

    1

    n= pq+nm

    n

    m.

    Proof. Using Theorem 2.1 we see thatr: Ar(m, p)q, rZ,nrp 1 n=

    qx=1

    p1nr=n

    rpx (mod m)

    1 =

    qx=1

    p1s=0

    spx+n (mod m)

    1

    =

    qx=1

    B1 p

    m+px+n p

    m

    B1

    px+nm

    =

    qx=1

    pm

    +

    p(x 1) +nm

    px+nm

    =pq

    m+ n

    m

    pq+n

    m

    =

    pq+n

    m

    pq+nm

    n

    m n

    m

    =pq+n

    m

    n

    m

    .

    This proves the corollary.8

  • 8/13/2019 Ecuatia lui Bernoulli

    9/47

    Theorem 2.2. Letm, sN and letp be an odd prime not dividingm. Then

    (1)s mp

    p1k=1

    ksp(mod m)

    p

    k

    (s1)pm

  • 8/13/2019 Ecuatia lui Bernoulli

    10/47

    and

    (1)[ (s1)pm ]Ep2 (s 1)p

    m

    (1)[ spm]Ep2

    spm

    2

    (s1)pm

  • 8/13/2019 Ecuatia lui Bernoulli

    11/47

    Proof. From [UW, p. 58] we know that

    (3.2) h(8p) = 2p1a=1

    a1(mod 4)

    8pa

    .

    Thus applying Corollary 2.1 in the case r= 1, m = 4 and k= p12 we see that

    h(8p) = 2p1a=0

    a1(mod 4)

    2a

    ap

    2

    p1a=0

    a1(mod 4)

    (1) a14 a p12

    4p12

    (1)[ 1p4 ]Ep12

    1 p4

    Ep1

    2

    14

    (mod p).

    Since E2n(0) = 22n+1 (B2n+1 22n+1B2n+1) = 0 by (1.2), we see that

    Ep12

    1 p

    4

    =

    E2n(0) = 0 if p = 4n+ 1,E2n1(

    12 ) = 2

    12nE2n1= 0 if p = 4n 1.Thus

    h(8p)4 p12 Ep12

    14

    Ep1

    2

    14

    (mod p).

    LetSn= 4nEn(

    14 ). Now we show that Sn= S

    n forn0. By (1.1) we have

    4nSn+n

    k=0

    n

    k

    4kSk = 2 4n and so Sn+

    nk=0

    n

    k

    4nkSk = 2.

    That is, Sn = 1n1

    k=0

    nk

    22n2k1Sk. Since S

    0 = S0 = 1 we see that S

    n = Sn.

    That is,

    (3.3) Sn= 4nEn

    14

    .

    HenceSp12

    = 4p12 Ep1

    2( 14 )h(8p) (mod p).This proves the theorem.

    Corollary 3.1. Letp be an odd prime. ThenpSp12

    .

    Proof. From (3.2) we have 1 < h(8p)< p. Thus the result follows from Theorem

    3.1.

    Remark 3.1Since Sn = 4nEn(

    14 ), by (1.2) and the binomial inversion formula we

    have

    (3.4) Sn=

    nr=0

    n

    r

    (1)nr2rEr and

    nr=0

    n

    r

    Sr = 2

    nEn.

    11

  • 8/13/2019 Ecuatia lui Bernoulli

    12/47

    Theorem 3.2. Letp be a prime greater than3.(i) Ifp1 (mod 4), then

    h(3p)4Bp+1

    2

    13

    (mod p) ifp1 (mod 12),

    4Bp+12 13 (mod p) ifp5 (mod 12).

    (ii) Ifp3 (mod 4), then

    h(12p)

    8B p+12

    112

    (mod p) ifp7 (mod 24),

    8Bp+12

    112

    (mod p) ifp11 (mod 12),

    8B p+12

    112

    + 8Bp+1

    2(mod p) ifp19 (mod 24)

    and

    h(5p)8B p+1

    2( 15 ) (mod p) ifp11, 19 (mod 20),

    8Bp+12

    ( 15 ) + 4Bp+12(mod p) ifp

    3, 7 (mod 20).

    .

    Proof. We first assume p1 (mod 4). From [UW, p. 40] or [B] we have

    h(3p) = 2[p/3]x=1

    px

    .

    Thus applying (2.8), (2.9) and the quadratic reciprocity law we see that

    h(

    3p) = 2

    [p/3]

    x=1

    x

    p

    4Bp+12

    p

    3=

    4p

    3Bp+12

    1

    3 (mod p).

    This proves (i).Now let us consider (ii). Assume p3 (mod 4). From [UW, pp. 3-5] we have

    h(12p) =

    4 p

    12

  • 8/13/2019 Ecuatia lui Bernoulli

    13/47

    Thus

    h(12p)

    8B p+12

    512

    B p+12

    16

    (mod p) ifp7 (mod 24),

    8

    B p+12

    112

    B p+1

    2 16

    (mod p) ifp11 (mod 12),

    8B p+12 13 B p+12 112 (mod p) ifp19 (mod 24).By (2.10) we have

    Bp+12

    112

    2

    p

    Bp+1

    2

    16

    B p+1

    2

    512

    (mod p).

    Thus, if p 7 (mod 24), then h(12p) 8(B p+12

    16

    B p+12

    512

    ) 8B p+1

    2

    112

    (mod p). It is well known that ([GS])

    B2n1

    3= 312n

    1

    2 B

    2n and B

    2n1

    6= (212n

    1)(312n

    1)

    2 B

    2n.

    Thus

    B p+12

    13

    =

    1

    2

    3

    p12 1

    Bp+1

    2 1

    2

    3p

    1

    Bp+1

    2(mod p)

    and

    Bp+12

    16

    =

    (2p12 1)(3 p12 1)

    2 Bp+1

    2 1

    2

    2p

    1

    3p

    1

    Bp+1

    2(modp).

    Ifp

    11 (mod 12), then 3p = 1 and so B p+12 16 0 (mod p). Hence h(12p)8Bp+12

    112

    (mod p). If p 19 (mod 24), then 3p =1 and so Bp+12 13

    Bp+12

    (mod p). Thus h(12p)8(B p+12

    112

    +B p+1

    2) (mod p).

    Finally we consider h(5p) (mod p). From [UW, p. 40] or [B] we have

    h(5p) = 2

    p

    5

  • 8/13/2019 Ecuatia lui Bernoulli

    14/47

    From (2.9) we see that

    Bp+12

    + 2Bp+12

    15

    + 2B p+1

    2

    25

    =

    4k=0

    B p+12

    k5

    = 5

    p12 Bp+1

    2

    and so

    B p+12

    15

    +B p+1

    2

    25

    1

    2

    p5

    1

    B p+1

    2(mod p).

    Thus

    h(5p) 4p

    5

    2Bp+1

    2

    15

    +

    1

    2

    1

    p5

    Bp+1

    2

    =

    8Bp+12

    15

    (mod p) ifp11, 19 (mod 20),

    8Bp+12

    15

    + 4Bp+1

    2(mod p) ifp3, 7 (mod 20).

    The proof is now complete.When d is a negative discriminant, it is known that 1 h(d) < p. Thus, from

    Theorem 3.2 we deduce the following result.

    Corollary 3.2. Letp be a prime.(i) Ifp1 (mod 4), thenBp+1

    2( 13 )0 (mod p).

    (ii) Ifp7, 11, 23 (mod 24), thenBp+12

    ( 112 )0 (mod p).(iii) Ifp11, 19 (mod 20), thenBp+1

    2( 15 )0 (mod p).

    Remark 3.2Forn= 0, 1, . . . it is well known that nk=0 nk 1nk+1 Bk(x) = xn. From

    this we deduce that ifmN and an= mnBn( 1m), thennk=0 n+1k mnkak =n + 1.4. p-regular functions.

    For a prime p, in [S5] the author introduced the notion ofp-regular functions. Iff(k) is a complex number congruent to an algebraic integer modulo p for any givennonnegative integer k and

    nk=0

    nk

    (1)kf(k) 0 (mod pn) for all n N, then f

    is called a p-regular function. Iff and g are p-regular functions, in [S5] the authorshowed that f g is also a p-regular function. Thus we see thatp-regular functionsform a ring. In the section we discuss further properties ofp-regular functions.

    Suppose nN andk {0, 1, . . . , n}. Let s(n, k) be the unsigned Stirling numberof the first kind and S(n, k) be the Stirling number of the second kind defined by

    x(x 1) (x n+ 1) =n

    k=0

    (1)nks(n, k)xk

    and

    xn =

    nk=0

    S(n, k)x(x 1) (x k+ 1).14

  • 8/13/2019 Ecuatia lui Bernoulli

    15/47

    For our convenience we also define s(n, k) = S(n, k) = 0 for k > n. FormN it iswell known that

    (4.1)n

    r=0

    n

    r

    (1)nrrm =n!S(m, n)

    In particular, taking m = n we have the following Eulers identity

    (4.2)n

    r=0

    n

    r

    (1)nrrn =n!.

    Lemma 4.1. Letx, d be variables, m, nN and iZ withi0. Thenn

    r=0

    n

    r

    (1)nr

    rx+d

    m

    ri

    =

    n!

    m!

    mj=ni

    mk=j

    kj

    (1)mk

    s(m, k)dkj

    S(i+j, n)xj

    .

    In particular we have

    nr=0

    n

    r

    (1)nr

    rx

    m

    ri =

    n!

    m!

    mj=ni

    (1)mjs(m, j)S(i+j, n)xj .

    Proof. Since

    m!rx+d

    m = (rx+d)(rx+d 1) (rx+d m+ 1)=

    mk=0

    (1)mks(m, k)(rx+d)k

    =

    mk=0

    (1)mks(m, k)k

    j=0

    k

    j

    (rx)jdkj

    =mj=0

    mk=j

    k

    j

    (1)mks(m, k)dkj

    rjxj ,

    we have

    nr=0

    n

    r

    (1)nr

    rx+d

    m

    ri

    = 1

    m!

    mj=0

    mk=j

    k

    j

    (1)mks(m, k)dkj

    xj

    nr=0

    n

    r

    (1)nrri+j .

    Now applying (4.1) we obtain the result.15

  • 8/13/2019 Ecuatia lui Bernoulli

    16/47

    Lemma 4.2. Letp be a prime andm, nN. Thenm!s(n, m)

    n! pnm Zp and m!S(n, m)

    n! pnm Zp.

    Moreover, ifm < n, we have

    m!s(n, m)

    n! pnm m!S(n, m)

    n! pnm 0 (mod p) forp > 2

    andm!s(n, m)

    n! 2nm

    m

    n m

    (mod 2).

    Proof. It is well known that

    (ex 1)mm!

    =

    n=m

    S(n, m)xn

    n!.

    Thus, applying the multinomial theorem we see that

    (ex 1)m = k=1

    xk

    k!

    m=

    n=m

    k1+k2++kn=mk1+2k2++nkn=n

    m!

    k1!k2! kn!n

    r=1

    1

    r!kr

    xn

    and so

    (4.3) S(n, m) = k1+k2++kn=mk1+2k2++nkn=n

    n!

    1!k1k1!2!k2k2!

    n!knkn!.

    Hence

    m!S(n, m)

    n! pnm =

    k1+k2++kn=mk1+2k2++nkn=n

    (k1+k2+ +kn)!k1!k2! kn!

    nr=1

    pr1r!

    kr.

    From [S5, pp. 196-197] we also have

    (4.4) s(n, m) = k1+k2++kn=mk1+2k2++nkn=n

    n!

    1k1k1!2k2k2! nknkn!

    and

    m!s(n, m)

    n! pnm =

    k1+k2++kn=mk1+2k2++nkn=n

    (k1+k2+ +kn)!k1!k2! kn!

    nr=1

    pr1r

    kr.

    16

  • 8/13/2019 Ecuatia lui Bernoulli

    17/47

    It is known that (k1+ +kn)!/(k1! kn!)Z. ForrN we know that ifp r!(thatis p | r! but p+1 r!), then =i=1 rpi rp. Thus pr1/r, pr1/r!Zp. For

    p >2 we see that pr1/rpr1/r!0 (mod p) for r >1. Hence the result followsfrom the above. For p = 2 we see that 2r1/r0 (mod 2) forr >2. Thus

    m!s(n, m)

    n! 2nm

    k1+k2=mk1+2k2=n

    (k1+k2)!

    k1!k2! = m

    n m

    (mod 2).

    Summarizing the above we prove the lemma.From Lemma 4.1 we have the following identities, which are generalizations of

    Eulers identity.

    Theorem 4.1. Letx, d be variables andm, nN.(i) Ifmn, then

    n

    r=0

    n

    r

    (1)nr

    rx+d

    m

    rnm =

    n!

    m!xm.

    In particular, whenm= n we haven

    r=0

    n

    r

    (1)nr

    rx+d

    n

    = xn.

    (ii) Ifmn+ 1, thenn

    r=0

    n

    r

    (1)nr

    rx+d

    m

    rn+1m =

    n!

    m!

    n(n+ 1)2

    xm m(m 1 2d)2

    xm1

    .

    In particular, whenm= n+ 1 we haven

    r=0

    nr

    (1)nrrx+d

    n+ 1

    =

    d+

    n(x

    1)

    2

    xn

    .

    Proof. Observe thats(m, m) = 1 and S(n, n) = 1. Putting i = n m in Lemma4.1 we obtain (i). By (4.3) and (4.4) we have

    s(n, n 1) =S(n, n 1) =n(n 1)/2 for n= 2, 3, 4, . . .Thus applying Lemma 4.1 we see that ifmn+ 1, then

    nr=0

    n

    r

    (1)nr

    rx+d

    m

    rn+1m

    = n!

    m!

    m

    j=m1

    m

    k=j

    kj(1)

    mks(m, k)dkjS(n+ 1 m+j, n)xj

    = n!

    m!

    S(n+ 1, n)xm +

    mk=m1

    k

    m 1

    (1)mks(m, k)dk(m1)xm1

    = n!

    m!

    n(n+ 1)2

    xm +

    dm m(m 1)2

    xm1

    .

    This yields (ii) and so the theorem is proved.17

  • 8/13/2019 Ecuatia lui Bernoulli

    18/47

    Corollary 4.1. Let p be an odd prime, m Z and d {0, 1, . . . , p1}. Thenmp m (mod p) and

    mp mp

    p1k=1

    1

    k

    km+dp

    +m

    dk=1

    1

    k (mod p).

    Proof. From Theorem 4.1(i) we have

    mp =

    pk=0

    p

    k

    (1)pk

    km+d

    p

    =

    mp+d

    p

    +

    p1k=1

    p

    k

    (1)pk

    km+d

    p

    .

    Asp1

    k=11k 0 (modp), we see that

    mp+d

    p = (mp+d)(mp+d 1) (mp+d p+ 1)

    p!

    = mp

    p (mp+ 1) (mp+d)((m 1)p+d+ 1) ((m 1)p+p 1)

    (p 1)!

    m

    1 +mpd

    k=1

    1

    k+ (m 1)p

    p1k=d+1

    1

    k

    m

    1 +mpd

    k=1

    1

    k (m 1)p

    dk=1

    1

    k

    =m1 +pd

    k=1

    1

    k (mod p2).

    Letrkbe the least nonnegative residue ofkm+dmodulop. Fork {1, 2, . . . , p1}we see that

    p

    k

    =

    p(p 1) (p k+ 1)k!

    (1)k1

    k p(mod p2).

    Thus,p1k=1

    p

    k

    (1)pk

    km+d

    p

    p1

    k=1

    p

    k(km+d)(km+d 1) (km+d p+ 1)

    p!

    =p

    p1k=1

    1

    k km+d rk

    p 1

    (p 1)!p1i=0i=rk

    (km+d i)

    pp1k=1

    1

    k km+d rk

    p =p

    p1k=1

    1

    k

    km+dp

    (modp2).

    18

  • 8/13/2019 Ecuatia lui Bernoulli

    19/47

    Now putting all the above together we obtain the result.Remark 4.1 In the case d = 0, Corollary 4.1 was first found by Lerch [Ler]. For adifferent proof of Lerchs result, see [S5].

    Theorem 4.2. Letp be a prime. Let f be ap-regular function. Supposem, n Nandd, tZ withd, t0. Then

    nr=0

    n

    r

    (1)rf(pm1rt+d)0 (mod pmn).

    Moreover, ifAk =pkk

    r=0

    kr

    (1)rf(r), then

    n

    r=0

    n

    r

    (1)rf(pm1rt+d)

    pmntnAn (mod pmn+1) ifp >2 orm= 1,

    2mntnn

    r=0

    nr

    Ar+n (mod 2

    mn+1) ifp= 2 andm2.

    Proof. Since f is a p-regular function, we have AkZp for k0. Set

    a0=A0 and ai = (1)inr=i

    s(r, i)pr

    r!Ar for i= 1, 2, . . . , n.

    Aspr/r!

    Zp and Ar

    Zp we have a0, . . . , an

    Zp. From [S5, p. 197] we have

    f(k)ni=0

    aiki (mod pn+1) for k= 0, 1, 2, . . . .

    Thus applying (4.1) and (4.2) we see that

    nr=0

    n

    r

    (1)rf(rt+d)

    nr=0

    n

    r

    (1)r

    ni=0

    ai(rt+d)i

    =

    nr=0

    nr

    (1)r(antnrn +bn1rn1 + +b1r+b0)

    =an(t)nn! = (1)ns(n, n)pn

    n!An (t)nn!

    =pntnAn (mod pn+1),

    whereb0, b1, . . . , bn1Zp. Thus the result is true form= 1.19

  • 8/13/2019 Ecuatia lui Bernoulli

    20/47

    Now assume m2. By the binomial inversion formula we have f(k) =ks=0 ks(p)sAs.Thus

    n

    r=0

    n

    r

    (1)rf(pm1rt)

    =

    nr=0

    n

    r

    (1)r

    pm1rtk=0

    pm1rt

    k

    (p)kAk

    =

    pm1ntk=0

    (p)kAkn

    r=0

    n

    r

    (1)r

    pm1rt

    k

    =

    pm1ntk=n

    (p)kAk (1)n n!k!

    kj=n

    (1)kjs(k, j)S(j, n)pm1tj (by Lemma 4.1)

    =

    pm1ntk=n

    (p)n(1)kAkk

    j=n(1)kj

    s(k, j)j!

    k! pkj

    S(j, n)n!

    j! pjn pm1tj

    =Antnpmn +

    pm1ntk=n+1

    (p)n(1)kAk (1)kns(k, n)n!

    k! pkn p(m1)ntn

    +k

    j=n+1

    (1)kjs(k, j)j!k!

    pkj S(j, n)n!j!

    pjn (pm1t)j

    .

    By Lemma 4.2, for j, k, nN we haves(k, j)j!

    k! pkj Zp and S(j, n)n!

    j! pjn Zp.Hence, by the above, Lemma 4.2 and the fact (m 1)(n + 1 ) + nmn + 1 we obtain

    nr=0

    n

    r

    (1)rf(pm1rt)

    pmntn

    An+

    pm1ntk=n+1

    s(k, n)n!

    k! pknAk

    pmntnAn (mod p

    mn+1) ifp >2,

    2mntn2m

    1ntk=n

    nkn

    Ak = 2

    mntnn

    r=0

    nr

    Ar+n (mod 2

    mn+1) ifp = 2.

    Thus the result holds for d= 0.Now suppose g(r) =f(r+d). By the previous argument,

    nr=0

    n

    r

    (1)rg(r)pnAn (mod pn+1).

    20

  • 8/13/2019 Ecuatia lui Bernoulli

    21/47

    Thus g is also a p-regular function. Note thatn

    r=0

    n

    r

    (1)rf(pm1rt+d) =

    nr=0

    n

    r

    (1)rg(pm1rt).

    By the above we see that the result is also true for d >0. The proof is now complete.

    Theorem 4.3. Let p be a prime, k,m,n,t N and d {0, 1, 2, . . . }. Let f be ap-regular function. Then

    f(ktpm1 +d)n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(rtpm1 +d) (mod pmn).

    Moreover, settingAs = pss

    r=0

    sr

    (1)rf(r) we then have

    f(ktpm1 +d) n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(rtpm1 +d)

    pmnkn(t)

    nAn (mod pmn+1) ifp >2 orm= 1,

    2mnkn

    (t)nnr=0 nrAr+n (mod 2mn+1) ifp= 2 andm2.

    Proof. From [S4, Lemma 2.1] we know that for any function F,

    (4.5)

    F(k) =

    n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    F(r)

    +k

    r=n

    k

    r

    (1)r

    rs=0

    r

    s

    (1)sF(s),

    where the second sum vanishes when k < n.Now taking F(k) =f(ktpm1 +d) we obtain

    f(ktpm1 +d) =n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(rtpm1 +d)

    +k

    r=n

    k

    r

    (1)r

    rs=0

    r

    s

    (1)sf(stpm1 +d).

    By Theorem 4.2 we havek

    r=n

    k

    r

    (1)r

    rs=0

    r

    s

    (1)sf(stpm1 +d)

    (1)n

    kn

    ns=0

    ns

    (1)sf(stpm1 +d)

    kn

    pmn(t)nAn (modpmn+1) ifp >2 or m = 1,

    kn

    2mn(t)nnr=0 nrAr+n (mod 2mn+1) ifp = 2 and m2.

    Now combining the above we prove the theorem.Puttingn = 1, 2, 3 and d= 0 in Theorem 4.3 we deduce the following result.

    21

  • 8/13/2019 Ecuatia lui Bernoulli

    22/47

    Corollary 4.2. Letp be a prime, k,m, tN. Letf be ap-regular function. Then(i) ([S5, Corollary 2.1]) f(kpm1)f(0) (mod pm).(ii) f(ktpm1)kf(tpm1) (k 1)f(0) (mod p2m).(iii) We have

    f(ktpm1)k(k 1)2

    f(2tpm1) k(k 2)f(tpm1)

    +(k 1)(k 2)

    2 f(0) (mod p3m).

    (iv) We have

    f(kpm1)

    f(0) k(f(0) f(1))pm1 (mod pm+1) ifp > 2 orm= 1,f(0) 2m2k(f(2) 4f(1) + 3f(0)) (mod 2m+1) ifp= 2 andm2.

    Theorem 4.4. Letp be a prime and letf be ap-regular function. LetnN.(i) Ford, xZp andm {0, 1, . . . , n 1} we have

    nk=0

    n

    k

    (1)k

    kx+d

    m

    f(k)0 (mod pnm).

    (ii) We have

    n

    k=1

    n

    k(1)kf(k 1) f(pn1 1) (mod pn).

    Proof. From [S5, Theorem 2.1] we know that there are a0, a1, . . . , anm1 Zsuch that

    f(k)anm1knm1 + +a1k+a0 (mod pnm) for k= 0, 1, 2, . . .

    Thus applying Lemma 4.1 and (4.1) we have

    n

    k=0

    n

    k

    (1)k

    kx+d

    m

    f(k)

    n

    k=0

    n

    k

    (1)k

    kx+d

    m

    nm1i=0

    aiki

    =nm1i=0

    ai

    nk=0

    n

    k

    (1)k

    kx+d

    m

    ki = 0 (mod pnm).

    This proves (i).22

  • 8/13/2019 Ecuatia lui Bernoulli

    23/47

    Now we consider (ii). By [S5, Theorem 2.1] there are a0, a1, . . . , an1 Zp suchthats!as/p

    s Zp (s= 0, 1, . . . , n 1) and

    f(k)an1kn1 + +a1k+a0 (mod pn) for k= 0, 1, 2, . . .

    Note that ps1

    /s!Zp for sN. We then have a1 an10 (modp). Letan1(k 1)n1 + +a1(k 1) +a0 = bn1kn1 + +b1k+b0.

    Then clearlyb1 bn10 (mod p) and

    f(k 1)bn1kn1 + +b1k+b0 (mod pn) for k= 1, 2, 3, . . .

    Thusf(pn1 1)bn1(pn1)n1 + +b1pn1 +b0b0 (mod pn).

    Hence, applying (4.1) we haven

    k=1

    n

    k

    (1)kf(k 1)

    nk=1

    n

    k

    (1)k(bn1kn1 + +b1k+b0)

    =

    n1i=1

    bi

    nk=0

    n

    k

    (1)kki +b0

    nk=1

    n

    k

    (1)k

    =b0 f(pn1 1) (mod pn).

    So the theorem is proved.

    5. Congruences for pBk(pm)+b(x) and pBk(pm)+b, (mod pmn).For given prime p and t Zp we recall thattp denotes the least nonnegative

    residue oftmodulo p.

    Theorem 5.1. Letp be a prime, and k,m,n,t,bZ withm, n1 andk,b, t0.LetxZp andx = (x+ xp)/p. Then

    pBkt(pm)+b(x) pkt(pm)+bBkt(pm)+b(x

    )

    n1

    r=0(1)n1r

    k 1 rn 1 r

    k

    r

    pBrt(pm)+b(x) prt(p

    m)+bBrt(pm)+b(x)

    (b,n,p)kn

    (t)npmn1 (mod pmn) ifp >2 orm= 1,

    0 (mod 2mn) ifp= 2 andm2,

    where

    (b,n,p) =

    1 ifp= 2 andn {1, 2, 4, 6, . . . }or ifp >2, p 1|b andp 1|n,

    0 otherwise.23

  • 8/13/2019 Ecuatia lui Bernoulli

    24/47

    Proof. From [S4, Theorem 3.1] we know that

    nk=0

    n

    k

    (1)k

    pBk(p1)+b(x) pk(p1)+bBk(p1)+b(x)

    pn1(b,n,p) (mod pn).

    Set f(k) =ppBk(p1)+b(x) pk(p1)+bBk(p1)+b(x)

    . Then

    nk=0

    nk

    (1)kf(k)

    (b,n,p)pn (mod pn+1).Thusf is ap-regular function. Hence appealing to Theorem4.3 we have

    f(ktpm1) n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(rtpm1)

    pmnkn

    (t)n(b,n,p) (mod pmn+1) ifp >2 or m = 1,

    2mn

    kn

    (t)n

    nr=0

    nr

    (b, n+r, 2) (mod 2mn+1) ifp = 2 and m2.

    Note that(b, n+r, 2) =

    1 ifn+r {1, 2, 4, 6, . . . },0 ifn+r {3, 5, 7, . . . }.

    We then have

    nr=0

    n

    r

    (b, n+r, 2)

    =

    (b, 1, 2) +(b, 2, 2) = 1 + 10 (mod 2) ifn = 1,n

    r=02|n+r

    nr= 2

    n1 0 (mod 2) if n >1.

    Thusf(ktpm1)

    p

    n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(rtpm1)

    p

    pmn1kn

    (t)n(b,n,p) (modpmn) ifp >2 orm= 1,

    0 (mod 2mn) ifp= 2 and m2.This is the result.

    Corollary 5.1. Let p be a prime, and k,m, b Z with k, m 1 and b 0. LetxZp andx

    = (x+ xp)/p. Supposep >2 orm >1. Then

    pBk(pm)+b(x)

    3 (mod 4) ifp= m = 2, k= 1 andb= 0,

    pBb(x) pbBb(x) (mod pm) otherwise.Proof. Putting n= t = 1 in Theorem 5.1 we see that

    pBk(pm)+b(x) pk(pm)+bBk(pm)+b(x

    )pBb(x) pbBb(x) (mod pm).24

  • 8/13/2019 Ecuatia lui Bernoulli

    25/47

    Ifp = m = 2, k = 1 and b = 0, then pBk(pm)+b(x) = 2B2(x) = 2(x2 x+ 16 )

    3 (mod 4). Otherwise, we havek(pm) + bm + 1 and sopk(pm)+bBk(pm)+b(x)0 (mod pm). Thus the result follows from the above.

    In the case p >2, Corollary 5.1 has been proved by the author in [S4].Let be a primitive Dirichlet character of conductor m. The generalized Bernoulli

    number Bn, is defined bymr=1

    (r)tert

    emt 1 =n=0

    Bn,tn

    n!.

    Let0 be the trivial character. It is well known that (see [W])

    B1,0 = 1

    2, Bn,0 =Bn(n= 1) and Bn,= mn1

    mr=1

    (r)Bn r

    m

    .

    If is nontrivial and nN, then clearlymr=1(r) = 0 and so

    Bn,n

    =mn1mr=1

    (r)Bn( rm ) Bn

    n +

    Bnn

    = mn1

    mr=1

    (r)Bn( rm) Bn

    n .

    When p is a prime with pm, by [S4, Lemma 2.3] we have (Bn(rm ) Bn)/n Zp.

    Thus Bn,/nis congruent to an algebraic integer modulo p.

    Lemma 5.1. Letp be a prime and letb be a nonnegative integer.(i) ([S5, Theorem 3.2], [Y2]) Ifp1b,xZp andx = (x+xp)/p, thenf(k) =

    (Bk(p1)+b(x) pk(p1)+b1Bk(p1)+b(x))/(k(p 1) +b) is apregular function.(ii) ([S5, (3.1), Theorem 3.1 and Remark 3.1]) If a, b N andp a, then f(k) =

    (1

    pk(p1)+b1)(ak(p1)+b

    1)Bk(p1)+b/(k(p

    1) +b) is ap-regular function.

    (iii) ([Y3, Theorem 4.2], [Y1, p. 216], [F], [S5, Lemma 8.1(a)]) If b, m N, p mand is a nontrivial primitive Dirichlet character of conductor m, then f(k) =(1 (p) pk(p1)+b1)Bk(p1)+b,/(k(p 1) +b) is apregular function.

    (iv) ([S5, Lemma 8.1(b)]) If m N, p m and is a nontrivial Dirichlet char-acter of conductorm, thenf(k) = (1 (p)pk(p1)+b1)pBk(p1)+b, is apregularfunction.

    From Lemma 5.1 and Theorem 4.3 we deduce the following theorem.

    Theorem 5.2. Letp be a prime, k,n,s, tN andb {0, 1, 2, . . . }.(i) Ifp 1b, xZp andx = (x+ xp)/p, then

    Bktps1(p1)+b(x) pktps1

    (p1)+b1Bktps1(p1)+b(x)ktps1(p 1) +b

    n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    Brtps1(p1)+b(x) prtps1(p1)+b1Brtps1(p1)+b(x

    )

    rtps1(p 1) +b (mod psn).

    25

  • 8/13/2019 Ecuatia lui Bernoulli

    26/47

    (ii) Ifa, bN andpa, then

    1 pktps1(p1)+b1aktps1(p1)+b 1 Bktps1(p1)+b

    ktps1(p 1) +b

    n1r=0

    (1)n1rk 1 rn 1 rkr1 prtps1(p1)+b1 artps1(p1)+b 1 Brtps1(p1)+b

    rtps1(p 1) +b (mod psn).

    (iii) If b, m N, p m and is a nontrivial primitive Dirichlet character ofconductorm, then

    (1 (p)pktps1(p1)+b1)Bktps1(p1)+b,ktps1(p

    1) +b

    n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    (1 (p)prtps1(p1)+b1)Brtps1(p1)+b,

    rtps1(p 1) +b (mod psn).

    (iv) IfmN, p m and is a nontrivial Dirichlet character of conductorm, then

    1 (p)pktps1(p1)+b1

    pBktps1(p1)+b,

    n1r=0

    (1)n1rk 1 rn 1 rkr 1 (p)prtps1(p1)+b1pBrtps1(p1)+b, (mod psn).

    Remark 5.1 Theorem 5.2 can be viewed as generalizations of some congruencesin [S5]. In the case n = 1, Theorem 5.2(i) was given by Eie and Ong [EO], andindependently by the author in [S5, p. 204]. In the case s = t = 1, Theorem 5.2(i)was announced by the author in [S4] and proved in [S5], and Theorem 5.2(iii) (in thecase p 1 b) and Theorem 5.2(iv) were also given in [S5]. When n = 1, Theorem5.2(iii) was given in [W, p. 141].

    Combining Lemma 5.1 and Corollary 4.2(iv) we obtain the following result.

    Theorem 5.3. Letp be an odd prime, k, sN andb {0, 1, 2, . . . }.(i) Ifp 1b, xZp andx = (x+ xp)/p, then

    Bk(ps)+b(x)

    k(ps) +b (1 kps1) Bb(x) p

    b1Bb(x)

    b +kps1

    Bp1+b(x)

    p 1 +b (mod ps+1).

    26

  • 8/13/2019 Ecuatia lui Bernoulli

    27/47

    (ii) If b, m N, p m and is a nontrivial primitive Dirichlet character ofconductorm, then

    Bk(ps)+b,

    k(ps) +b(1 kps1)

    1 (p)pb1

    Bb,

    b +kps1

    Bp1+b,

    p 1 +b (mod ps+1).

    (iii) IfmN, p m and is a nontrivial Dirichlet character of conductorm, then(1 (p)pk(ps)+b1)pBk(ps)+b,(1 kps1)1 (p)pb1pBb,

    +kps1

    1 (p)pp2+bpBp1+b, (mod ps+1).Corollary 5.2. Letp be an odd prime andk,s, bN with2|b andp 1b. Then

    Bk(ps)+bk(ps) +b

    (1 kps1)(1 pb1) Bbb

    +kps1 Bp1+bp

    1 +b

    (mod ps+1).

    Theorem 5.4. Letp be a prime, a, nN andpa.(i) There are integersb0, b1, , bn1 such that

    1 pk(p1)1ak(p1) 1 Bk(p1)

    k(p 1)bn1kn1 + +b1k+b0 (mod pn) for k= 1, 2, 3, . . .

    (ii) Ifp >2 orn >2, then

    nk=1

    nk

    (1)k

    (1 pk(p1)1

    )(ak(p1)

    1)Bk(p1)

    k(p 1) 1

    a(p

    n)

    pn (mod pn

    ).

    Proof. Suppose bN. From Lemma 5.1(ii) we know that

    f(k) =

    1 pk(p1)+b1

    ak(p1)+b 1 Bk(p1)+b

    k(p 1) +bis a p-regular function. Hence taking b = p 1 and applying [S5, Theorem 2.1] weknow that there exist integers a0, a1, . . . , an1 such that

    1 p(k+1)(p1)1a(k+1)(p1)

    1 B(k+1)(p1)

    (k+ 1)(p 1)an1kn1 + +a1k+a0 (modpn) for k= 0, 1, 2, . . .That is,

    1 pk(p1)1ak(p1) 1 Bk(p1)

    k(p 1)an1(k 1)n1 + +a1(k 1) +a0 (mod pn) for k= 1, 2, 3, . . .

    27

  • 8/13/2019 Ecuatia lui Bernoulli

    28/47

    On setting

    an1(k 1)n1 + +a1(k 1) +a0=bn1kn1 + +b1k+b0we obtain (i).

    Now we consider (ii). Supposep >2 or n >2. Since f(k) is a p-regular function,

    by Theorem 4.4(ii) we have

    nk=1

    n

    k

    (1)k(1 p(k1)(p1)+b1)(a(k1)(p1)+b 1) B(k1)(p1)+b

    (k 1)(p 1) +b

    (1 p(pn11)(p1)+b1)(a(pn11)(p1)+b 1) B(pn11)(p1)+b(pn1 1)(p 1) +b (mod p

    n).

    Substitutingbbyp 1 +b we see that for b0,

    (5.1)

    n

    k=1

    n

    k(1)k(1 pk(p1)+b1)(ak(p1)+b 1) Bk(p1)+b

    k(p

    1) +b

    (1 p(pn)+b1)(a(pn)+b 1)B(pn)+b(pn) +b

    (mod pn).

    By Corollary 5.1 we have pB(pn)p 1 (mod pn). Thus taking b= 0 in (5.1) andnoting that (pn)n+ 1 we obtain

    nk=1

    n

    k

    (1)k(1 pk(p1)1)(ak(p1) 1)Bk(p1)

    k(p 1)

    (1 p(pn)1)(a(pn) 1) B(pn)(pn)

    =(1 p(pn)1) a(pn) 1

    pn pB(pn)

    p 1 a(p

    n) 1pn

    (mod pn).

    This completes the proof of the theorem.

    6. Congruences forn

    k=0

    nk

    (1)kpBk(p1)+b(x) (mod pn+1).

    ForaN and bZ we define (a|b) = 1 or 0 according as a|b orab.Lemma 6.1. Letp be an odd prime andnN. Then

    n

    s=1sn+1 (mod p1)

    n

    s (p 1|n) (mod p).Proof. Let n0 {1, 2, . . . , p 1} be such that nn0 (modp 1). Since Glaisher

    (see [D]) it is well known that

    ns=0

    sr (mod p1)

    n

    s

    n0s=0

    sr (mod p1)

    n0s

    (mod p) for rZ.

    28

  • 8/13/2019 Ecuatia lui Bernoulli

    29/47

    From [S1] we know that

    ns=0

    sr (mod p1)

    n

    s

    =

    ns=0

    snr (mod p1)

    n

    s

    .

    Thusn

    s=0sn+1 (mod p1)

    n

    s

    =

    ns=0

    s1 (mod p1)

    n

    s

    n0s=0

    sp2 (mod p1)

    n0s

    =

    p 1 1 (mod p) ifn0 = p 1,1 (mod p) ifn0 = p 2,0 (mod p) ifn0 < p 2.

    Hence

    ns=1

    sn+1 (mod p1)

    ns

    =

    ns=0

    sn+1 (mod p1)

    ns

    (p1|n+1) (p1|n) (modp).

    This proves the lemma.

    Proposition 6.1. Letp be an odd prime, nN andxZp. Letb be a nonnegativeinteger. Then

    nk=0

    n

    k

    (1)k

    pBk(p1)+b(x) pk(p1)+bBk(p1)+b

    x+ xpp

    p1j=0

    j=xp

    (x+j)bnpnBn

    (x+j)p (x+j)p(p 1)

    +pn(b,n,p) (mod pn+1),

    where

    (b,n,p) =

    (n b)T n ifp 1|b andp 1|n,(n b)T ifp 1b andp 1|n,b n ifp 1|b andp 1|n+ 1,0 otherwise

    and

    T =p1j=0

    j=xp

    (x+j)p1+b (x+j)bp

    .

    Proof. Let

    Sn=

    nk=0

    n

    k

    (1)k

    pBk(p1)+b(x) pk(p1)+bBk(p1)+b

    x+ xpp

    .

    29

  • 8/13/2019 Ecuatia lui Bernoulli

    30/47

    From [S4, p.157] we know that

    Sn=

    n(p1)+br=0

    prBr

    p1j=0

    j=xp

    nk=0

    n

    k

    (1)k

    k(p 1) +b

    r

    (x+j)k(p1)+br.

    By [S5, p.199] we know that for any functionsf and g we have

    (6.1)

    nk=0

    n

    k

    (1)kf(k)g(k)

    =n

    s=0

    n

    s

    nsi=0

    n s

    i

    (1)if(i+s)

    sj=0

    s

    j

    (1)jg(j).

    Now taking f(k) =k(p1)+b

    r

    and g(k) = ak(p1)+br (a= 0) in (6.1) we obtainn

    k=0

    n

    k

    (1)k

    k(p 1) +b

    r

    ak(p1)+br

    =n

    s=0

    n

    s

    nsi=0

    n s

    i

    (1)i

    (i+s)(p 1) +b

    r

    sj=0

    s

    j

    (1)jaj(p1)+br

    =n

    s=0

    n

    s

    abr(1 ap1)s

    nsi=0

    n s

    i

    (1)i

    i(p 1) +s(p 1) +b

    r

    .

    Thus applying the above and Lemma 4.1 we have

    Sn=

    n(p1)+br=0

    prBr

    p1j=0

    j=xp

    ns=0

    n

    s

    (x+j)br

    1 (x+j)p1s

    nsi=0

    n s

    i

    (1)i

    i(p 1) +s(p 1) +b

    r

    =

    p1j=0

    j=xp

    ns=0

    ns1 (x+j)

    p1

    psn(p1)+b

    r=nspr+sBr (x+j)br

    nsi=0

    n s

    i

    (1)i

    i(p 1) +s(p 1) +b

    r

    .

    SincepBrZp and sopr+sBr0 (mod pn+1) forrn s + 2, by Theorem 4.1 we30

  • 8/13/2019 Ecuatia lui Bernoulli

    31/47

    have

    n(p1)+br=ns

    (x+j)brpr+sBr

    nsi=0

    n s

    i

    (1)i

    i(p 1) +s(p 1) +b

    r

    (x+j)b(ns)pnBnsnsi=0

    n s

    i

    (1)ii(p 1) +s(p 1) +b

    n s

    + (x+j)b(ns+1)pn+1Bns+1

    nsi=0

    n s

    i

    (1)i

    i(p 1) +s(p 1) +b

    n s+ 1

    = (x+j)b(ns)pnBns (1 p)ns + (x+j)b(ns+1)pn+1Bns+1 (s(p 1) +b+ (n s)(p 2)/2)(1 p)ns

    (x+j)b(ns)(1 p)nspnBns+ (x+j)b(ns+1)(b

    n)pn+1Bns+1 (mod p

    n+1).

    Thus,

    Snp1j=0

    j=xp

    ns=0

    n

    s

    1 (x+j)p1p

    s(x+j)bn+s(1 p)nspnBns

    + (x+j)bn+s1(b n)pn+1Bns+1

    =

    p1j=0

    j=xp

    (x+j)bn(1 p)npnn

    s=0

    n

    s

    1 (x+j)p1p

    x+j1 p

    sBns

    +

    p1j=0

    j=xp

    ns=0

    n

    s

    1 (x+j)p1p

    s(x+j)bn+s1(b n)pn+1Bns+1

    p1j=0

    j=xp

    (x+j)bn(1 p)npnBn(xj) +p1j=0

    j=xp

    ns=0

    p1|ns+1

    n

    s

    1 (x+j)p1p

    s

    (x+j)bn+s1(n b)pn (modpn+1),

    where

    xj = (x+j)p (x+j)

    p(p 1) .

    In the last step we use the facts

    Bn(t) =

    ns=0

    n

    s

    tsBns and pBk (p 1|k) (mod p) (k1).

    31

  • 8/13/2019 Ecuatia lui Bernoulli

    32/47

    ForaZ, using Lemma 6.1 and Fermats little theorem we see thatn

    s=0sn+1 (mod p1)

    n

    s

    as =

    ns=1

    sn+1 (mod p1)

    n

    s

    as +(p 1|n+ 1)

    an+1n

    s=1sn+1 (mod p1)

    n

    s

    +(p 1|n+ 1)

    (p 1|n)an+1 +(p 1|n+ 1)

    =

    an+1 a (modp) ifp 1|n,1 (mod p) ifp 1|n+ 1,0 (mod p) ifp 1n and p 1n+ 1.

    We also note that (see [S5, (5.1)])

    (6.2)

    p1j=0

    j=xp

    (x+j)b p1r=1

    rb (p 1|b) (mod p).

    Thus

    p1j=0

    j=xp

    ns=0

    p1|ns+1

    n

    s

    1 (x+j)p1p

    s(x+j)bn+s1(n b)pn

    pn(n b) p1j=0

    j=xp

    (x+j)bn

    s=0sn+1 (mod p1)

    ns

    1 (x+j)p1

    p

    s

    pn(n b)p1j=0

    j=xp

    (x+j)b((x+j)p1 1)/p(mod pn+1)

    ifp 1|n,

    pn(n b)p1

    j=0j=xp(x+j)b (p 1|b)(n b)pn (mod pn+1)

    ifp 1|n+ 1,0 (mod pn+1) ifp 1n and p 1n+ 1.

    On the other hand, fortZp we have Bn(t) BnZp (cf. [S4, Lemma 2.3]) and so

    (np)pnBn(xj) npn+1Bn

    npn (mod pn+1) ifp 1|n,0 (mod pn+1) ifp 1n.

    32

  • 8/13/2019 Ecuatia lui Bernoulli

    33/47

    Thus applying (6.2) we get

    p1j=0

    j=xp

    (x+j)bn (np)pnBn(xj)

    p1j=0

    j=xp

    (x+j)b npn npn(p 1|b) (modpn+1) ifp 1|n,

    0 (mod pn+1) ifp 1n.

    Hence, by the above and the fact (1 p)n 1 np(mod p2) we obtainp1

    j=0j=xp

    (x+j)bn(1 p)npnBn(xj) p1

    j=0j=xp

    (x+j)bnpnBn(xj)

    p1j=0

    j=xp

    (x+j)bn (np)pnBn(xj)

    npn (mod pn+1) ifp 1|b and p 1|n,

    0 (mod pn+1) ifp 1b or p 1n.

    Now combining the above we see that

    Snp1j=0

    j=xp

    (x+j)bnpnBn(xj)

    npn + (n b)pnT (mod pn+1) ifp 1|b andp 1|n,pn(n b)T (modpn+1) ifp 1b andp 1|n,pn(b n) (mod pn+1) ifp 1|b andp 1|n+ 1,0 (mod pn+1) otherwise.

    This is the result.Remark 6.1 When p= 2, b1 and n2, setting (b,n,p) =b n we can showthat the result of Proposition 6.1 is also true.Theorem 6.1. Letp be a prime greater than3, xZp, nN, n0, 1 (mod p 1)andb {0, 1, 2, . . . }. Letn0 be given bynn0 (modp1)andn0 {2, 3, . . . , p2}.Set

    Sn=

    nk=0

    n

    k

    (1)k

    pBk(p1)+b(x) pk(p1)+bBk(p1)+b

    x+ xpp

    .

    33

  • 8/13/2019 Ecuatia lui Bernoulli

    34/47

    Then

    Sn

    nn0

    Sn0pn0 + (n+2)b2pn (mod pn+1) ifp 1|b andp 1|n+ 1,

    nn0

    Sn0pn0pn (mod pn+1) ifp 1b orp 1n+ 1.

    Proof. Sincep 1 n we know that Bn/nZp. FortZp, by [S4, Lemma 2.3]we have (Bn(t) Bn)/nZp. Thus

    Bn(t)

    n =

    Bn(t) Bnn

    +Bn

    n Zp.

    Asn0, 1 (mod p 1), by [S5, Corollary 3.1] we have

    Bn(t)

    n Bn0(t) p

    n01Bn0

    (t+ tp)/p

    n0 Bn0(t)

    n0(mod p).

    Set xj = ((x+j)p (x+j))/(p(p 1)). Then xj Zp. ThusBn(xj)/n Zp andBn(xj)/nBn0(xj)/n0 (mod p). From Proposition 6.1 and the above we see that

    Snpn

    p1j=0

    j=xp

    (x+j)bnBn(xj) + (b n)(p 1|b)(p 1|n+ 1)

    np1j=0

    j=xp

    (x+j)bn0Bn0(xj)

    n0+ (b n)(p 1|b)(p 1|n+ 1) (mod p)

    and so

    Sn0pn0

    n0p1j=0

    j=xp

    (x+j)bn0Bn0(xj)

    n0+ (b n0)(p 1|b)(p 1|n+ 1) (mod p).

    Thus

    Snpn

    nn0

    Sn0pn0

    (b n0)(p 1|b)(p 1|n+ 1)+ (b n)(p 1|b)(p 1|n+ 1)

    = n

    n0 Sn0

    pn0+b

    1 n

    n0

    (p 1|b)(p 1|n+ 1)

    nn0

    Sn0pn0

    +b

    1 +n

    2

    (p 1|b)(p 1|n+ 1) (mod p).

    This proves the theorem.34

  • 8/13/2019 Ecuatia lui Bernoulli

    35/47

    Theorem 6.2. Let p be an odd prime, x Zp, b, n Z with n 1 and b 0. Ifp|n andp 1n, then

    n

    k=0

    n

    k

    (1)k

    pBk(p1)+b(x) pk(p1)+bBk(p1)+b

    x+ xp

    p

    bpn (mod pn+1) ifp 1|b andp 1|n+ 1,0 (mod pn+1) ifp 1b orp 1n+ 1.

    Proof. As p1 n and p| n, for t Zp we see that Bn(t)/n Zp and soBn(t) =nBn(t)/n0 (modp). Thus the result follows from Proposition 6.1.Theorem 6.3. Letp be an odd prime, nN andb {0, 2, 4, . . . }. Ifp(p 1)| n,then

    nk=0

    n

    k

    (1)k(1 pk(p1)+b1)pBk(p1)+b

    pn1

    2pn (mod pn+1) ifp

    1|

    b,

    0 (mod pn+1) ifp 1b.Proof. From Proposition 6.1 we see that

    nk=0

    n

    k

    (1)k(1 pk(p1)+b1)pBk(p1)+b

    p1j=1

    jbnpnBn

    jp jp(p 1)

    bT pn (modpn+1),

    where

    T =

    p1j=1

    jp1+b jbp

    .

    For p >3 and mN, from [S5, (5.1)] we havep1j=1

    jm pBm+ p2

    2mBm1+

    p3

    6m(m 1)Bm2 (mod p3).

    Ifm4 is even, then Bm1 = 0 andpBm2Zp. Thus

    (6.3)

    p1j=1j

    m

    pBm (mod p2

    ) for m= 2, 4, 6, . . .

    Hence

    T

    pBp1+bpBbp (mod p) ifp > 3 and b >0,

    pBp1(p1)p (mod p) ifp > 3 and b = 0,

    22+b2b

    3 = 2b (1)b = 1 3B223 (mod 3) ifp= 3.

    35

  • 8/13/2019 Ecuatia lui Bernoulli

    36/47

    Ifp >3 and b = k(p 1) for some kN, by [S4, Corollary 4.2] we have

    (6.4) pBb = pBk(p1)kpBp1 (k 1)(p 1) (mod p2)

    and

    pBp1+b=pB(k+1)(p1)(k+ 1)pBp1 k(p 1) (mod p2).Thus

    T pBp1+bpBbp

    pBp1 (p 1)p

    (mod p).

    Ifp >3 and p 1b, by Kummers congruences we have

    Bp1+bp 1 +b

    Bbb

    (mod p) and so Bp1+b(b 1) Bbb

    (mod p).

    Thus

    T pBp1+bpBbp

    b 1b

    Bb Bb=Bbb

    (mod p).

    Summarizing the above we have

    (6.5) T

    pBp1(p1)p (modp) ifp 1|b,

    Bbb (mod p) ifp 1b.

    Asp(p 1)|n, from Corollary 5.1 we have pBn(x)p 1 (mod p2) for xZp.Note that jn 1 (mod p2) forj = 1, 2, . . . , p 1. Combining the above we obtain

    nk=0

    n

    k

    (1)k(1 pk(p1)+b1)pBk(p1)+b

    p1j=1

    jbnpn1 pBn jp j

    p(p 1)

    bT pn

    p1j=1

    jbpn1(p 1) bT pn (mod pn+1).

    From (6.3) and (6.4) we see that

    p1j=1

    jb

    pBb bp1pBp1 ( bp1 1)(p 1) (mod p2)ifp >3, b >0 and p 1|b,

    pBb (mod p2) ifp >3 and p 1b,

    p 1 (mod p2) ifp >3 and b = 0,1 + (1 + 3)

    b2 2 + 3b2 2 + 6b (mod 9) ifp= 3.

    36

  • 8/13/2019 Ecuatia lui Bernoulli

    37/47

    That is,

    p1

    j=1jb

    bp1 (pBp1 (p 1)) +p 1 (mod p2) ifp 1|b,pBb (mod p2) ifp

    1b.

    Hence

    nk=0

    n

    k

    (1)k(1 pk(p1)+b1)pBk(p1)+b

    pn1(p 1)p1j=1

    jb bT pn

    pn1

    (b(pBp1 (p 1)) + (p 1)2

    ) pn1

    b(pBp1 (p 1))=pn1(p 1)2 pn1 2pn (mod pn+1) ifp 1|b,

    pn1(p 1) pBb bpn (Bbb ) =pn+1Bb0 (mod pn+1) ifp 1b.

    This completes the proof.

    Theorem 6.4. Letp be a prime greater than3, xZp, nN, n0, 1 (mod p 1)andb {0, 1, 2, . . . }. Letn0 be given bynn0 (modp1)andn0 {2, 3, . . . , p2}.Let

    f(k) =pBk(p1)+b(x) pk(p1)+bBk(p1)+b

    x+ xpp

    .

    Then fork= 0, 1, 2, . . . we have

    f(k)n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(r) +

    n

    n0n0

    s=0

    n0s

    (1)sf(s)

    pn0

    k

    n

    (p)n

    +(p 1|n+ 1)(p 1|b)(n+ 2)b

    2 k

    n k

    n+ 1 (p)n (modpn+1).

    Proof. From [S4, Theorem 3.1] we have

    mk=0

    m

    k

    (1)kf(k)pm1(p 1|m)(p 1|b) (mod pm) for mN.

    37

  • 8/13/2019 Ecuatia lui Bernoulli

    38/47

    Thus applying [S4, Lemma 2.1], Theorem 6.1 and the above we see that

    f(k) n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    f(r)

    =

    kr=n

    kr

    (1)rr

    s=0

    rs

    (1)sf(s)

    k

    n

    (1)n

    ns=0

    n

    s

    (1)sf(s) +

    k

    n+ 1

    (1)n+1

    n+1s=0

    n+ 1

    s

    (1)sf(s)

    k

    n

    (1)npn

    nn0

    n0

    s=0

    n0s

    (1)sf(s)

    pn0+

    (n+ 2)b

    2 (p 1|n+ 1)(p 1|b)

    +

    k

    n+ 1

    (1)n+1pn(p 1|n+ 1)(p 1|b) (mod pn+1).

    This yields the result.

    Corollary 6.1. Letk, nN.(i) Ifn2 (mod 4), then

    (5 54k)B4kn1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    (5 54r)B4r

    + 3n

    k

    n

    5n (mod 5n+1)

    and

    (5 54k+2)B4k+2n1r=0

    (1)n1rk 1 rn 1 rkr(5 54r+2)B4r+2 n

    k

    n

    5n (mod 5n+1).

    (ii) Ifn3 (mod 4), then

    (5 54k)B4kn1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    (5 54r)B4r

    + k

    n+ 15n (mod 5n+1)

    and

    (5 54k+2)B4k+2n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    (5 54r+2)B4r+2

    +n

    k

    n

    5n (mod 5n+1).

    38

  • 8/13/2019 Ecuatia lui Bernoulli

    39/47

  • 8/13/2019 Ecuatia lui Bernoulli

    40/47

    Theorem 7.1. Letp be an odd prime, k,m,n,tN andb {0, 2, 4, . . . }. Then

    1 (1) p12 pktpm1(p1)+bEktpm1(p1)+b

    n1

    r=0

    (

    1)n1r

    k 1 r

    n 1 rk

    r1

    (

    1)

    p12 prtp

    m1(p1)+b Ertpm1(p1)+b (mod pmn).

    Puttingn = 1, 2, 3 and t= 1 in Theorem 7.1 we obtain the following result.

    Corollary 7.1. Letp be an odd prime, k, mN andb {0, 2, 4, . . . }. Then(i) ([C, p. 131]) Ek(pm)+b

    1 (1) p12 pbEb (mod pm).

    (ii) Ek(pm)+bkE(pm)+b (k 1)

    1 (1) p12 pbEb (mod p2m).(iii) We have

    Ek(pm)+b

    k(k 1)2

    E2(pm)+b

    k(k

    2)1 (1)

    p12 p(p

    m)+bE(pm)+b+

    (k 1)(k 2)2

    1 (1)p12 pbEb (mod p3m).

    From Lemma 7.1 and Corollary 4.2(iv) we have:

    Theorem 7.2. Letp be an odd prime, k, mN andb {0, 2, 4, . . . }. Then

    Ek(pm)+b(1 kpm1)(1 (1)p12 pb)Eb+kp

    m1Ep1+b (mod pm+1).

    Corollary 7.2. Letp be an odd prime andk, mN. Then

    Ek(pm)

    kpm1Ep1 (mod pm+1) ifp1 (mod 4),2 +kpm1(Ep1 2) (mod pm+1) ifp3 (mod 4).

    From [S5, Theorem 2.1] and Lemma 7.1 we have:

    Theorem 7.3. Letp be an odd prime, nN andb {0, 2, 4, . . . }. Then there areintegersa0, a1, . . . , an1 such that

    (1 (1) p12 pk(p1)+b)Ek(p1)+ban1kn1 + +a1k+a0 (mod pn)for every k = 0, 1, 2, . . . Moreover, if p n, then a0, a1, . . . , an1 (mod pn) areuniquely determined.

    As examples, we have

    (1 + 32k)E2k 12k+ 2 (mod 33),(7.2)(1 54k)E4k 750k3 + 1375k2 620k (mod 55),(7.3)(1 54k+2)E4k+21000k3 + 1500k2 + 540k+ 24 (mod 55).(7.4)

    40

  • 8/13/2019 Ecuatia lui Bernoulli

    41/47

    Theorem 7.4. LetnN andb {0, 2, 4, . . . }. Supposen N and2n1 n 1

    and thusf(k) =E2k+b is a2regular function.Proof. Suppose nN and 2n1 n n, thus n < nand hence 2n n n+ 1. Therefore, forn 3 we have

    nk=0

    nk

    (1)kE2k+b

    0 (mod 2n+1). AsE0 E2 = 1 (1) = 2 and E0 2E2+E4 = 1 2(1) + 5 = 8,applying (7.6) and the above we see that E

    bE

    b+2 E

    0E

    2 = 2 (mod 8) and

    Eb 2Eb+2+Eb+40 (mod 8).So the result follows.Theorem 7.5. Suppose k,m,n,tN andb {0, 2, 4, . . . }. ForsN letsN begiven by2s1 s

  • 8/13/2019 Ecuatia lui Bernoulli

    44/47

    From Corollary 7.3 and the proof of Theorem 4.2 we know that

    nr=0

    n

    r

    (1)rE22m1rt+b

    =Antn 2mn +2m1ntr=n+1

    (2)n(1)rAr (1)rns(r, n)n!r!

    2rn 2(m1)ntn

    +r

    j=n+1

    (1)rjs(r, j)j!r!

    2rj S(j, n)n!j!

    2jn (2m1t)j

    .

    By Lemma 4.2, for n + 1jr we haves(r, j)j!

    r! 2rj ,

    S(j, n)n!

    j! 2jn Z2 and s(r, n)n!

    r! 2rn

    n

    r n

    (mod 2).

    As 2n+1n+1

    |Ar forr

    n+ 1, by the above we obtain

    (7.7)

    nr=0

    n

    r

    (1)rE2mrt+b2mnAntn 2mntnen (mod 2mn+n+1n+1)

    and so

    (7.8)n

    r=0

    n

    r

    (1)rE2mrt+b0 (mod 2mn+nn).

    Forrn + 1 we havemr+ r rm(n + 1 ) + n + 1 n+1mn + n + 2 n+1.Thus, ifrn+ 1, by (7.8) we have

    (7.9)r

    s=0

    r

    s

    (1)sE2mst+b0 (mod 2mn+n+2n+1).

    By (4.5) we have

    E2mkt+b =

    n1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    E2mrt+b

    +k

    r=n

    k

    r

    (1)r

    r

    s=0

    r

    s

    (1)sE2mst+b.

    Hence, applying (7.9) we obtain

    (7.10)

    E2mkt+bn1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    E2mrt+b

    k

    n

    (1)n

    ns=0

    n

    s

    (1)sE2mst+b (mod 2mn+n+2n+1).

    44

  • 8/13/2019 Ecuatia lui Bernoulli

    45/47

    In view of (7.7), we get

    E2mkt+bn1r=0

    (1)n1r

    k 1 rn 1 r

    k

    r

    E2mrt+b

    +k

    n

    (1)n

    2mn

    tn

    en (mod 2mn+n+1n+1

    ).

    Now assume m2. Then (m 1)(n+ 1) +nmn+ 1. From the above we seethat

    nr=0

    n

    r

    (1)rE2mrt+b

    2mnAntn +2m1ntr=n+1

    (2)n(1)rAr(1)rns(r, n)n!

    r! 2rn 2(m1)ntn

    2mntnAn+ 2m1ntr=n+1

    nr n

    Ar2mntn n+2

    r=n

    nr n

    Ar

    2mntn

    en+nen+1+

    n

    2

    en+2

    (mod 2mn+n+2n+1).

    This together with (7.10) yields the remaining result. Hence the proof is complete.As 2nn |en and n + 1 n+1n n, by Theorem 7.5 we have:

    Corollary 7.4. Let k,m,n,t N and b {0, 2, 4, . . . }. Let N be given by21 n

  • 8/13/2019 Ecuatia lui Bernoulli

    46/47

    Corollary 7.6. Letk, mN, m2 andb {0, 2, 4, . . . }. Then

    E2mk+bkE2m+b (k 1)Eb+ 22mk(k 1) (mod 22m+2).

    Taking m = 2 and b = 0, 2 in Corollary 7.6 we get:

    Corollary 7.7. ForkN we have

    E4k

    4k+ 1 (mod 64) ifk0, 1 (mod 4),4k+ 33 (mod 64) ifk2, 3 (mod 4)

    and

    E4k+2

    4k 1 (mod 64) ifk0, 1 (mod 4),4k 33 (mod 64) ifk2, 3 (mod 4).

    Corollary 7.8. Letk, mN, m2 andb {0, 2, 4, . . . }. Letk = 0 or1 accordingas4k 3 or4|k 3. Then

    E2mk+b

    k

    2

    E2m+1+b k(k 2)E2m+b+

    k 1

    2

    Eb+ 2

    3m+1k (mod 23m+2).

    Proof. Observe thate3 = 10, e4 = 104, e5 = 1816 andk3

    k (mod 2). Takingn= 3 and t = 1 in Theorem 7.5 we obtain the result.

    Taking m = 2, b = 0, 2 in Corollary 7.8 and noting that E8 105 (mod 256),E10 89 (mod 256) we deduce:Corollary 7.9. LetkN andk = 0 or1 according as4k 3 or4|k 3. Then

    E4k48k244k+1+128k (mod 256)andE4k+216k276k1+128k (mod 256).

    Remark 7.2 Let{Sn} be given by (3.1). From Remark 3.1 we know that (1)kSkis a 2-regular function and hence f(k) = (1)k+bSk+b is also a 2-regular function,where b {0, 1, 2, . . . }. Thus, by Corollary 4.2, for m 2, k 1 and b 0 we haveS2m1k+bSb(mod 2m) andS2m1k+bSb2m2k(Sb+2+4Sb+1+3Sb) (mod 2m+1).

    References

    [B] B.C. Berndt, Classical theorems on quadratic residues, Enseign. Math. 22 (1976), 261-304.

    [C] K.W. Chen, Congruences for Euler numbers, Fibonacci Quart. 42 (2004), 128-140.[D] L.E. Dickson, History of the Theory of Numbers, Vol.I, Chelsea Publ., 1999, p. 271.[EO] M. Eie and Y.L. Ong, A generalization of Kummers congruences, Abh. Math. Sem. Univ.

    Hamburg 67 (1997), 149-157.[Er] R. Ernvall, A congruence on Euler numbers, Amer. Math. Monthly 89 (1982), 431.[F] G.J. Fox, Kummer congruences for expressions involving generalized Bernoulli polynomials,

    J. Theor. Nombres Bordeaux 14 (2002), 187-204.[GS] A. Granville and Z.W. Sun, Values of Bernoulli polynomials, Pacific J. Math. 172 (1996),

    117-137.

    46

  • 8/13/2019 Ecuatia lui Bernoulli

    47/47

    [IR] K. Ireland and M. Rosen,A Classical Introduction to Modern Number Theory(2nd edition),Springer, New York, 1990, pp. 238,248.

    [K] L.C. Karpinski, Uber die Verteilung der quadratischen Reste, J. Reine Angew. Math. 127(1904), 1-19.

    [L] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat andWilson, Ann. Math. 39 (1938), 350-360.

    [Ler] M. Lerch, Zur Theorie des Fermatschen Quotienten ap1

    1p =q(a), Math. Ann. 60 (1905),

    471-490.[MOS] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Func-

    tions of Mathematical Physics (3rd edition), Springer, New York, 1966, pp. 25-32.[St] M.A. Stern, Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math. 79 (1875), 67-98.

    [S1] Z.H. Sun, Combinatorial sumn

    k=0kr(mod m)

    n

    k

    and its applications in number theory I, J.

    Nanjing Univ. Math. Biquarterly 9 (1992), 227-240.

    [S2] Z.H. Sun, Combinatorial sumn

    k=0kr(mod m)

    n

    k

    and its applications in number theory II, J.

    Nanjing Univ. Math. Biquarterly 10 (1993), 105-118.

    [S3] Z.H. Sun, Combinatorial sum

    kr(mod m)

    n

    k

    and its applications in number theory III, J.

    Nanjing Univ. Math. Biquarterly 12 (1995), 90-102.[S4] Z.H. Sun, Congruences for Bernoulli numbers and Bernoulli polynomials, Discrete Math.

    163 (1997), 153-163.[S5] Z.H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete

    Appl. Math. 105 (2000), 193-223.[SS] Z.H. Sun and Z.W. Sun, Fibonacci numbers and Fermats last theorem, Acta Arith. 60

    (1992), 371-388.[Su1] Z.W. Sun, On the sum

    kr(mod m)

    n

    k

    and related congruences, Israel J. Math. 128 (2002),

    135-156.

    [Su2] Z.W. Sun, Binomial coefficients and quadratic fields, Proc. Amer. Math. Soc. 134 (2006),2213-2222.

    [UW] J. Urbanowicz and K.S. Williams,Congruences for L-Functions, Kluwer Academic Publish-ers, Dordrecht, Boston, London, 2000, pp. 3-8, 28, 40, 55.

    [W] L.C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982, pp. 30-31,141.

    [Y1] P.T. Young, Congruences for Bernoulli, Euler, and Stirling numbers, J. Number Theory 78(1999), 204-227.

    [Y2] P.T. Young,Kummer congruences for values of Bernoulli and Euler polynomials, Acta Arith.

    99 (2001), 277-288.

    [Y3] P.T. Young,Degenerate andn-adic versions of Kummers congruences for values of Bernoullipolynomials, Discrete Math. 285 (2004), 289-296.


Recommended