+ All Categories
Home > Documents > ediss.sub.uni-hamburg.deIndex I Index ABSTRACT...

ediss.sub.uni-hamburg.deIndex I Index ABSTRACT...

Date post: 03-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
145
Live cell imaging of meiosis in anthers of Arabidopsis thaliana Dissertation with the aim of achieving a doctoral degree at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology of Universität Hamburg Submitted by Maria Ada Prusicki 2018 in Hamburg
Transcript
  • Livecellimagingofmeiosisinanthers

    ofArabidopsisthaliana

    Dissertationwiththeaimofachievingadoctoraldegreeat

    theFacultyofMathematics,InformaticsandNaturalSciences

    DepartmentofBiology

    ofUniversitätHamburg

    Submittedby

    MariaAdaPrusicki

    2018inHamburg

  • Supervisor:Prof.Dr.ArpSchnittger

    1stExaminer:Prof.Dr.ArpSchnittger

    2ndExaminer:Jun.Prof.Dr.WimWalter

    Date of oral defense: 22.02.2019

  • Index

    I

    Index

    ABSTRACT...................................................................................................................V

    ZUSAMMENFASSUNG................................................................................................VI

    NOMENCLATURE........................................................................................................IX

    1 INTRODUCTION.....................................................................................................1

    MEIOSISINPLANTSANDITSREGULATION......................................................................11.11.1.1Meiosis,abriefintroduction.............................................................................1

    1.1.2Cytologyofmeioticprogression.......................................................................3

    1.1.3Chromosomedynamicsandtheroleofcohesioninmeiosis............................8

    1.1.4Meiosisinpolyploids......................................................................................11

    TIMECOURSESOFPLANTMEIOSIS..............................................................................141.2

    1.2.1Temperatureandgenotypeeffectsonmeioticduration................................15

    1.2.2Meioticdurationinpolyploids........................................................................16

    1.2.3Experimentalproceduresoftimecourses.......................................................17

    IMAGINGOFMEIOSIS...............................................................................................211.3

    1.3.1Livecellimagingsetups..................................................................................21

    1.3.2Livecellimagingofplantmeiosis...................................................................22

    2 OBJECTIVES.........................................................................................................25

    3 RESULTS..............................................................................................................27

    TECHNIQUEESTABLISHMENT.....................................................................................273.13.1.1Sampleisolationandmounting......................................................................27

    3.1.2Microscopesetup...........................................................................................29

    SELECTIONOFREPORTERLINES..................................................................................313.2

    3.2.1 Functionality of the PROREC8:REC8:mEGFP and the PRORPS5A:TagRFP:TUB4

    reporter..........................................................................................................................33

    3.2.2TheKINGBIRDline..........................................................................................34

    ALANDMARKSYSTEMFORMALEMEIOSISOFARABIDOPSISTHALIANA..............................363.3

    3.3.1Cellfeaturesdescriptionandco-occurrence...................................................36

    3.3.2Assessmentofcellularstatesanddefinitionofneighboringscore.................39

    3.3.3ALandmarksystem........................................................................................41

    3.3.4ThecaseoftheNuclearEnvelopebreakdown................................................44

  • Index

    II

    TETRAPLOIDGENERATION.........................................................................................453.4

    3.4.1VIGStreatmentandKINGBIRDtetraploids.....................................................45

    3.4.2 Meiosis of the F2 tetraploid KINGBIRD line progresses through the same

    landmarksasdiploidplants............................................................................................48

    TIMECOURSEOFMEIOSISINDIPLOIDANDTETRAPLOIDKINGBIRDLINES.........................493.5

    3.5.1Diploidtimecourse.........................................................................................49

    3.5.2Tetraploidtimecourseandcomparison.........................................................53 TOWARDSNEWAPPLICATIONS..................................................................................553.6

    3.6.1Screenofreportersandgenerationofnewcrossedlines...............................55

    3.6.2KINGBIRD2anditsintrogressioninmutantbackgrounds..............................55

    3.6.3GenerationofPROREC8:REC8:mNG...................................................................58

    3.6.4PerformanceofPROREC8:REC8:mNG................................................................58

    4 DISCUSSION........................................................................................................63

    STRENGTHSANDLIMITATIONSOFTHEMICROSCOPESETUP............................................634.1

    LIVECELLIMAGINGAPPLICATIONTOSTUDYMEIOSISINCROPS........................................654.2

    THELANDMARKSYSTEM...........................................................................................664.3

    TOWARDSANATLASOFMEIOSIS................................................................................674.4

    SINGLE CELL IMAGING REVEALS NEW INSIGHTS INTO MEIOTIC TIMING AND TISSUES4.5

    SYNCHRONIZATION..................................................................................................................69

    TIMECOURSEIN2XAND4X.....................................................................................714.6 FUTUREPERSPECTIVES.............................................................................................724.7

    5 MATERIALANDMETHODS..................................................................................75

    PLANTMATERIALANDGROWTHCONDITIONS...............................................................755.1

    GENOTYPING.........................................................................................................755.2

    CLONINGOFPROREC8:REC8:MNG.........................................................................765.3

    PLANTTRANSFORMATIONANDCROSSING...................................................................775.4

    VIGS....................................................................................................................775.5

    5.5.1VIGStreatment...............................................................................................77

    5.5.2SelectionofVIGStreatedplants.....................................................................78

    PHENOTYPEEVALUATION.........................................................................................795.6

    5.6.1Evaluationofseedabortion............................................................................79

    5.6.2Pollenviabilitytest.........................................................................................79

    5.6.3Cellspreads.....................................................................................................79 CONFOCALMICROSCOPY.........................................................................................805.7

  • Index

    III

    5.7.1Stillpictures....................................................................................................80

    5.7.2Livecellimaging.............................................................................................80

    TIMELAPSESPROCESSINGANDANALYSIS.....................................................................815.8

    QUANTITATIVEANALYSISOFLIVECELLIMAGINGDATA...................................................815.9

    5.9.1Landmarkextraction......................................................................................81

    5.9.2Meiotictimecoursecalculation......................................................................83

    REFERENCES..............................................................................................................85

    ANNEXES.................................................................................................................102

    APPENDIX..................................................................................................................XI

    INDEXOFFIGURES.............................................................................................................XI

    INDEXOFTABLES..............................................................................................................XI

    INDEXOFANNEXES...........................................................................................................XII

    INDEXOFABBREVIATIONS.................................................................................................XIII

    PUBLICATIONSANDPRESENTATIONS........................................................................XV

    EIDESSTATTLICHEVESRICHERUNG/DECLARATIONONOATH...................................XVI

    CONFIRMATIONOFCORRECTENGLISH...................................................................XVII

    ACKNOWLEDGMENTS............................................................................................XVIII

  • Abstract

    V

    AbstractMeiosisisacrucialeventforsexualreproduction;duringitscoursethechromosome

    numberishalved,andrecombinationbetweenhomologstakesplace.Understanding

    howmeiosisisregulatedinplantshasadirectimpactonbreedingapplicationsand,

    therefore, researchers invest constant effort in studying its fundamental aspects.

    Extensive knowledge about the meiotic progression results from the cytological

    analysisoffixedmaterial.Althoughhighlyinformative,thisapproachisnotsufficient

    tounderstand the dynamics ofmeiosis; numerousworks have demonstrated that

    keymeiotic events as homologs paring and segregation are heavily dependent on

    chromosomemovementsandcytoskeletonrearrangements,underpinningtheneed

    ofaspatiotemporaldescriptionofthecelldivision.

    This dissertation introduces a live cell imaging technique, based on confocal

    microscopy, which allows the observation of the entiremeiotic division of pollen

    mothercellsofArabidopsisthaliana.Inthisstudy,thebehaviorofsinglemeiocytesis

    monitoredthroughouttheprogressionofmeiosisbythesimultaneousvisualization

    ofthemeioticsubunitofcohesin,RECOMBINATION8(REC8),andmicrotubules.The

    doublereporterline,namedKINGBIRD(KleisinINGreen,tuBulinInReD),allowsthe

    descriptionoffivecellularfeatures:cellshape,nucleusposition,nucleolusposition,

    chromosome conformation, and microtubule array. These features combine in a

    non-randommannertoformcellularstates;theanalysishereperformedledtothe

    identificationof11principalstates,referredtoaslandmarks,whichareconvergent

    pointsofthemeioticprogression.Usingthelandmarksystemasareference,itwas

    possibletodescribeaprecisetimecourseofmeiosis,whichincludedthedurationof

    shortandasynchronousphases,suchasmetaphasesandanaphases.Takentogether,

    thehereestablishedmicroscopytechniqueandlandmarksystemconstituteanovel

    approach,whichopensnewwaystothestudyofplantmeiosis.

  • Zusammenfassung

    VI

    ZusammenfassungDie Meiose ist ein essentieller Schritt der sexuellen Fortpflanzung;während ihres

    Verlaufs wird die Chromosomenzahl halbiert und eine Rekombination zwischen

    homologen Chromosomen ermöglicht. Unser Verständnis der Regulation der

    Meiose in Pflanzen ist für die Pflanzenzüchtung von direktem Interesse, weshalb

    große Anstrengungen unternommen werden, die grundlegenden Abläufe zu

    verstehen.

    Aus der zytologischen Analyse von fixiertem Material wurde bereits

    umfangreiches Wissen über den grundsätzlichen Ablauf der Meiose gewonnen.

    Obwohl sehr informativ, reicht dieser Ansatz aber nicht aus, um die Dynamik der

    Meiose imDetail zuverstehen.ZahlreicheArbeitenhabengezeigt,dassmeiotische

    Schlüsselereignissewie Paarung derHomologen und deren Segregation stark von

    Chromosomenbewegungen und Zytoskelettumlagerungen abhängen, was die

    Notwendigkeit einer genauen räumlich-zeitlichen Beschreibung der meiotischen

    Zellteilung untermauert. Mit dieser Dissertation wird eine Technik zur

    Lebendzellbeobachtung während der Meiose eingeführt, die auf konfokaler

    Lasermikroskopie basiert und die Beobachtung des gesamten Ablaufs der

    meiotischenTeilungderPollenmutterzellenvonArabidopsisthalianaermöglicht

    Durch eine gleichzeitige Visualisierung der Mikrotubuli und der meiotischen

    Untereinheit von Kohäsin, RECOMBINATION 8 (REC8), kann die Entwicklung

    einzelnerMeiozytenwährend des Verlaufs derMeiose genaumitverfolgtwerden.

    DiehierfürkonstruiertezweifacheReporterlinienamensKINGBIRD(KleisinINGreen,

    tuBulin In ReD) ermöglicht die Beschreibung von fünf Zellmerkmalen: Zellform,

    Position des Zellkerns, Position des Nucleolus im Zellkern,

    Chromosomenkonformation und die Anordnung der Mikrotubuli. Die spezifische

    KombinationdieserMerkmalecharakterisiertjeweilsbestimmtemeiotischeStadien.

    Die hier durchgeführte Analyse führte zur Identifizierung von 11Hauptzuständen,

    sogenannten Referenzpunkten, die konvergente Punkte des meiotischen Ablaufs

    darstellen. Mit Hilfe des Referenzpunkt-Systems konnte ein genauer zeitlicher

    Verlauf der Meiose beschrieben werden, der es nun ermöglicht, auch die Dauer

    kurzerundasynchronerPhasen,wieMetaphaseundAnaphase,präzisezuerfassen.

  • Zusammenfassung

    VII

    Die hier etablierte mikroskopische Technik zur Lebendbeobachtung und das

    Referenzpunkt-SystemstelleneineninnovativenAnsatzdar,deresermöglicht,neue

    WegeinderErforschungderMeioseinPflanzenzugehen.

    .

  • Nomenclature

    IX

    NomenclatureThe Nomenclature style used in this dissertation follows the nomenclature

    guidelines of TAIR and refers to Meinke and Koornneef, 1997 (Meinke and

    Koornneef,1997).Plantgenesareabbreviatedwithathree-lettersymbol,writtenin

    uppercase italic letters (e.g. REC8), the respective protein is named by the same

    abbreviation written in uppercase roman letters (e.g. REC8); mutant genes are

    referredinlowercaseitalicletters(e.g.rec8),specificmutantallelesarespecifiedby

    numbers after a slash sign (e.g. tam1-2), when it is relevant themutant name is

    followedby+/-forheterozygous,andby-/-forhomozygousplants.

    Transgeniclinesarenamedaftertheconstructandwritteninuppercaseitalic

    (e.g. PROREC8:REC8:mEGFP), with the exception of the KINGBIRD1 and KINGBIRD2

    lines,which are double constructs and therefore havebeen renamed for practical

    reasons.KINGBIRD1couldbefollowedby2Xor4Xtoinformaboutitsploidystate.

    The reporter gene is aswell indicated by the nameof the construct in uppercase

    italics(e.g.PROREC8:REC8:mEGFP),whilethefusionprotein is indicatedbythesame

    name written in uppercase roman letters (e.g. REC8:mEGFP). Plasmid names are

    writteninuppercaseromanlettersprecededbylowercasep(pGWB501)eventually

    followedbytheT-DNAinserted(e.g.pGWB501-REC8-mNG).

    Organisms are indicated using the Linnean name written in italics (e.g.

    Arabidopsis thaliana, Zea mays or Saccharomyces cerevisiae) or using the short

    versionofit(e.g.C.elegans,S.pombe).Alternatively,thecommonlyusednamecan

    befoundinthetext(e.g.maize).

  • Introduction

    1

    1 Introduction

    Meiosisinplantsanditsregulation1.1

    1.1.1Meiosis,abriefintroduction

    Meiosisisaspecializedeukaryoticcelldivision,whichtakesplaceinthereproductive

    tissues. In animals, meiosis gives rise to gametes whereas in plants spores are

    generated that eventually form the actual gametes. Meiosis consists of only one

    cycle of DNA replication followed by two consecutive chromosome segregation

    events.Thus,meiosisallowstheformationofhaploidgametesinadiploidorganism.

    This is crucial for sexual reproduction as it prevents the doubling of a genome in

    everynewgeneration.Moreover,meiosisdrivesgeneticdiversityascrossovers(CO)

    between homologous chromosomes (homologs) result in new assortments of

    geneticalleles. Inaddition,homologouschromosomesare randomlysegregated to

    completenewchromosomesets,furthercontributingtogeneticvariation.

    Given its importance in the rearrangement of genetic information,

    understandingmeiosis is of crucial interest forbreeding that largely relies on the

    combination of favorable alleles (Crismani et al., 2013; Lambing and Heckmann,

    2018; Hand and Koltunow, 2014). Thus, the molecular mechanisms underlying

    recombination and chromosome segregation, as well as entry and progression of

    meiosis, havebeenahot topic forplant investigationover the lastdecades.More

    than80meioticgeneshaveuptonowbeen identified inArabidopsisthaliana,Zea

    maysandOryzasativa(Mercieretal.,2015;WijnkerandSchnittger,2013;Ma,2006;

    ZhouandPawlowski,2014;Lambingetal.,2017).Manipulationofthesegenesisalso

    a cornerstone ofnewmolecular tools thatarebeingdeveloped for cropbreeding

    (Barakateetal.,2014;Calvo-Baltanasetal.,2018;Dirksetal.,2009).

    Meiosisishighlyconservedamongtaxa,anditscorefactorssuchaselements

    involvedindoublestrandbreak(DSB) initiationandrecombination(SPO11,RAD51,

    DMC1,etc.), COs formation (MHS4.MHS5,MLH1,etc.) (Figure1.1), and structural

    proteinsofthesynaptonemalcomplex(ZYP1)havebeenfoundencodedingenomes

    from protists to land plants and animals (Mercier et al., 2015; Loidl, 2016).

  • Introduction

    2

    Nonetheless,major differences exist among andwithin taxa, in processes such as

    homologparing, recombination control or in the presence of developmental hold

    and checkpoints (Loidl,2016). For example inyeast andplantsDSB formationand

    repairarenecessaryforpairingandsynapsis(HendersonandKeeney,2004;Grelon,

    2001), while in C. elegans and drosophila the two process are independent

    (Dernburgetal.,1998;McKimetal.,1998).

    In the course of this thesis, the flowering plant Arabidopsis thaliana was

    chosenasamodelsystem,andthereforethedescriptionofmeiosis that follows is

    referredtotheprogressioninthisorganism;anexplicitreferencewillbemadewhen

    comparisonorknowledgederivedfromotherorganismsarepresented.

    Figure1.1RecombinationpathwaysofArabidopsisthaliana

    The scheme illustrates the differentmolecular pathways of recombination and crossover formation duringmeiosis ofArabidopsisthaliana.AtfirstDSBsareformedbySPO11andMTOPIV.DSBendsareprocessedtoobtainsinglestrandDNA.DMC1andRAD51bind the single strandDNAandmediate the strand invasion.The single strandDNA can invade theintactsisterchromatidoroneof thehomologouschromatids.The inter-homologous intermediatecanbe resolved intoClass ICO,mediatedbyZMMproteinsandMLH1-MLH3, intoClass IICO,mediatedbyMUS81 ,orcanresult inaNonCrossOver(NCO)event.

  • Introduction

    3

    1.1.2Cytologyofmeioticprogression

    In floweringplants, the establishment of the germline occurs in late stages of

    development,afterthetransitionfromavegetativetoafloralmeristem(Schmidtet

    al.,2015)anditconsistsinafinereprogrammingofsomaticcellfateintoameiocyte

    through genetic pathways. This involves the activity of factors known to regulate

    plantdevelopmentandcellproliferationasRETINOBLASTOMARELATED1(RBR1)the

    WUSCHEL (WUS), CYCLIN-DEPENDENT KINESES A;1 (CDKA;1) and its inhibitor KIP-

    RELATEDPROTEINS(KRPs)(Zhaoetal.,2012,2017;WijnkerandSchnittger,2013).

    The newly designated meiocytes adopt a characteristic shape that radically

    changeswhileundergoingmeiosis, ultimately resulting in the formationof spores.

    Thesechangeshavebeenclassifiedintoasetofphases,whichbecametheframeof

    referencewhenanalyzingmeioticprogression.Theseconsecutivephasesarecalled

    S-phase/G2,prophaseI,metaphaseI,anaphaseI,telophaseI/interkinesis,prophase

    II,metaphaseII,anaphaseII,telophaseIIandcytokinesis.ProphaseIistraditionally

    subdivided into severalsub-phases: leptotene,zygotene,pachytene, diploteneand

    diakinesis(Figure1.2).Eachofthesemeioticstagesischaracterizedbyphase-specific

    events,e.g.,DSBareformedinearlyleptotene,COsareresolvedatmetaphaseIand

    only at anaphase II the sister chromatid segregate. The molecular network that

    tightly regulates these events has been deeply explored in the past (for plant

    meiosis,summarizedinthefollowingreviews:Hamantetal.,2006;Luoetal.,2014;

    Mercieretal.,2015;WangandCopenhaver,2018)andiscurrentlybeingexpanded,

    asforthecharacterizationofASYNAPTIC4(ASY4),involvedinchromosomesynapsis

    (Chambonetal.,2018),orforthenewevidencedoftheroleofTOPOISOMERASEII

    (TOPII), in the resolution of chromosome entanglements (Martinez-Garcia et al.,

    2018).

    Acytologicaldescriptionofeachphaseisofkeyimportanceinthecontextofthis

    thesis,whichinvestigatesmeiosisbymicroscopy.Agraphicalrepresentationandcell

    spreadsofeachmeioticphaseareillustratedinFigure1.2.

    · S-Phase/G2

    DuringS-phasetheDNAisduplicated;itis likelythatthecommitmenttomeiosisis

    settled in this phase and the first steps for the subsequent events ofmeiosis are

    prepared.Cellshaveahomogeneousinterphaseoutlook,exceptforthebiggersize

  • Introduction

    4

    of nuclei and nucleoli comparing to somatic interphases (Armstrong et al., 2003;

    Ross et al., 1996). Its duration is estimated to last longer than amitotic S-phase,

    between 5 and 9 hours in Arabidopsis thaliana (Armstrong et al., 2003), and it

    coincides with the expression of meiotic-specific proteins such as the cohesin

    subunitRECOMBINATIONDEFICIENT8(REC8)(Caietal.,2003).DuringG2phase,the

    first stretchesof chromosomeaxesappear, revealingagradual transitionbetween

    themeiotic interphase and the first phaseof the division (Armstronget al., 2003;

    ArmstrongandJones,2003).

    · Leptotene(ProphaseI)

    Leptotene meiocytes are characterized by the presence of distinguishable thin,

    unpaired chromosome threads, which, towards the end of the phase, become

    unevenlydistributedwithinthenucleararea(ArmstrongandJones,2003;Rossetal.,

    1996).Atthesametime,thenucleolusmovesontheoppositecornerofthenucleus

    (Stronghilletal.,2014;Rossetal.,1996).

    · Zygotene(ProphaseI)

    Zygoteneisthephaseinwhichsynapsisbetweenhomologsstarts.DAPI-stainedcell

    spreadsshowareasofthin(unsynapsed)andthick(synapsed)chromosomesinthe

    same nucleus, revealing that synapsis progresses (Ross et al., 1996). MTs and

    organellespolarizetowardasideofthecell,whilethenucleusmovesfromacentral

    positiontothesideofthecell(Rossetal.,1996;Peirsonetal.,1997;Armstrongand

    Jones, 2003; Stronghill et al., 2014) In zygotene, telomeres cluster at the nuclear

    envelope (NE) and form a characteristic shape, called telomere bouquet. The

    telomere bouquet has been observed inmany species includingmaize, barley, as

    wellasfission,buddingyeast,andmice(amongmanyobservations:Golubovskayaet

    al.,2002;Higginsetal.,2012;Yuetal.,2010;TomitaandCooper,2007;Leeetal.,

    2012,2015).InArabidopsisthaliana,telomeresalsoclusterbutonlyverytransiently

    (Hurel et al., 2018). In addition, telomeres were reported to aggregate at the

    nucleolusduringG2,andtoloosethisassociationattheearlyleptotene(Armstrong

    etal.,2001).

    · Pachytene(ProphaseI)

    Pachytene is defined as the stage of full synapsis, the two paired arms of the

    homologsarevisiblebycellspreadasadoublethreadalongthecomplete

  • Introduction

    5

    chromosome length.Nucleus and organelles can be either unevenly or evenly

    distributed(Rossetal.,1996;Armstrongetal.,2003;ArmstrongandJones,2003).

    · Diplotene(ProphaseI)

    Also called diffused stage, diplotene is characterized by the gradual loss of

    synapsis. Bivalents extend and become a mixture of paired and unpaired areas,

    resembling the zygotene chromosome structure. Zygotene and diplotene cells can

    bedistinguished fromeachotherbythenucleusposition:indiplotene,thenucleus

    has returned to the center of the cell; therefore organelles are homogenously

    distributed(Rossetal.,1996;Armstrongetal.,2003;ArmstrongandJones,2003).

    · Diakinesis(ProphaseI)

    Diakinesis is the last stage considered part of prophase; chromosome re-

    condenseandthefivebivalentsofArabidopsisthalianacanbedetectedasseparate

    entitiesinacharacteristicx-shape(Rossetal.,1996;Armstrongetal.,2003).

    · MetaphaseI

    At metaphase I the five bivalents reach the maximum level of condensation.

    Theyalignat themetaphaseplateandchiasmataalongthechromosomearmscan

    be counted (Armstrong and Jones, 2003). The spindle is formed (Peirson et al.,

    1997).

    · AnaphaseI

    Homologs are segregated in two balanced pools and pulled towards the two

    oppositepolesof thecell.Chromosomesarestillhighlycondensed,andunivalents

    canbedistinguished(Rossetal.,1996)

    · TelophaseI/Interkinesis

    Afteranaphase I,meiocytespresent twodistinctnuclearareas, containing five

    condensedunivalents.Thenuclearenvelope(NE)isre-formed.Arabidopsisthaliana

    doesnotundergocytokinesisatthisstageofmeiosis,differentlyfromotherplants

    suchasmaizeandrice (Zhangetal.,2018). Instead,anorganellarbandappears in

    themiddle of thecell,which ismaintaineduntil theendofmeiosis II (Rossetal.,

    1996; Armstrong and Jones, 2003). Most of the MTs are located between the

    segregated chromosomes with a few radiating from each pole into the cortical

    cytoplasm(Peirsonetal.,1997).

  • Introduction

    6

    · MeiosisII

    Thesecondmeioticdivisionisthoughttolargelyresembleamitoticdivision.Its

    primaryoutcome is thesegregationofsisterchromatidsandthe formationof four

    spores.Itcanbedivided intothesub-phasesprophaseII,metaphaseII,anaphaseII

    and finally telophase II, which is followed by cytokinesis and cell wall formation.

    Sincemeiosis IIproceedsmuchfasterthanthefirstdivision, it ismorecomplicated

    toobtaincellspreadsofmeiosisII,andhence, lessdetailedcytologicaldescriptions

    havebeenpublished.Nonetheless, a few specific characteristics havebeennoted.

    Prophase II cells can be recognized by the presence of two distinct nuclei and

    diffusedchromosomes.Fivedensechromocentersarevisible ineachnucleus (Ross

    etal.,1996).AttheonsetofmetaphaseII,twospindlesareformed.Theyaresmaller

    than themetaphase I spindleandcomposedbya lowernumberofMTs. Theyare

    parallel to the equatorial plane, but their reciprocal orientation can vary from

    paralleltoperpendiculartoeachother.Chromosomesaligninthemetaphaseplane

    as they would do in mitotic metaphase (Peirson et al., 1997). At anaphase II

    individual chromatids are segregated, forming four groups of chromosomes. At

    telophase II, the phragmoplast is formed, and the cytoplasm is finally partitioned

    (Peirsonetal.,1997;Rossetal.,1996;ArmstrongandJones,2003).

  • Introduction

    7

    Figure1.2ProgressionofmalemeiosisinArabidopsisthaliana

    A) Schematic representation of meiotic progression. Cytoplasm is green, nucleus is yellow and thehomologous chromosomes are depicted in blue and pink. During prophase I homologs pair andsynapse,COsaredetectableatmetaphaseI,whileexchangeofDNAbetweenhomologsisvisiblefromanaphaseI,whenhomologssegregationtakeplace.AftermetaphaseII,sisterchromatidsdividesandIIfourhaploidsporesareformed.ThefigureismodifiedfromMercieretal.,2015.

    B) CellspreadsofWTCol-0.DNAwasstainedwithDAPItohighlightchromosomes(inlightgray).Scalebaris10μm.Amoredetaileddescriptionofcellspreadsinfoundinthemaintext,chapter1.1.2.

  • Introduction

    8

    1.1.3Chromosomedynamicsandtheroleofcohesioninmeiosis

    As stated in the brief meiotic description in chapter 1.1, one of the most

    important outcomes of meiosis is balanced chromosome segregation resulting in

    fourhaploid cells.This isobtainedby a complex interactionofevents, including a

    correctestablishmentofCOsandCOsresolution,aswellasanaccuratedeposition

    and removalof cohesin, theprotein complex responsibleofestablishing cohesion

    betweensisterchromatidsduringmitoticandmeioticdivisions.

    Cohesin is formed by four conserved subunits: SMC1, SMC3, SCC3 and an α-

    kleisinprotein (Figure1.3).Thesubunitsassemble inaring-likeshape,whichholds

    the chromatids together,eitherembracingbothwithin the same ring (strong ring

    model)orestablishingcohesindimers,eachonecontainingasinglechromatid(weak

    ring model, reviewed in Nasmyth and Haering, 2009) (Figure 1.3). Arabidopsis

    thaliana genome encodes for four α-kleisins: SYN1, SYN2, SYN3, and SYN4, also

    known as REC8, RAD21.1, RAD21.2, and RAD21.3. Even though a certain level of

    redundancyhasbeenobserved (Schubertet al.,2009), the four complexes,which

    differsby the kleisin subunit,are involved indifferent functions.This is shownby

    differences in mutant phenotypes (Schubert et al., 2009) as well as by their

    expression in distinct tissues.REC8, in particular, is solely expressed inmeiocytes

    (Cai et al., 2003) and its null mutation affects spores formation,with substantial

    effectsonplantfertility,whilemitoticdivisionandplantdevelopmentdonotshow

    deficiency(Peirsonetal.,1997;Baietal.,1999).

    Cohesin isdepositedalongchromosomesduringS-phase(reviewed inPeterset

    al., 2008), and it is maintained in position until the bipolar attachment of sister

    chromatidswhen finally its complete cleavagepromotes their segregation.During

    meiosis cohesin requires a stepwise removal: at the end of prophase I REC8 is

    cleaved from the arm of the chromosomes allowing the resolution of COs, but

    remainsloadedattheperi-centromericareas,ensuringthatsisterchromatidsdonot

    segregate beforehand (Peters et al., 2008; Nasmyth and Haering, 2009). The

    remainingcohesion isfinallyremovedattheonsetofanaphase II.Duetotechnical

    difficultiesintheimmunolocalizationofREC8,whichdetectedastrongsignalfromS-

    phase to metaphase I only (Cai et al., 2003), it was doubted that in Arabidopsis

    thalianaREC8wasinvolvedinthecohesionmaintenanceaftertheonsetofanaphase

  • Introduction

    9

    I. Only recently, the presence of REC8 after metaphase I has been proved by

    immunolocalization, confirming that the stepwisemodel could apply to plants as

    well(Cromeretal.,2013;Yuanetal.,2018;Yuan,2018).

    Both the cleavages are performed by the endopeptidase separase, which

    recognizes phosphorylated REC8 as a target (Katis et al., 2010); thus the core

    element of the stepwise removal is tight control of REC8 phosphorylation and

    dephosphorylation (Figure 1.3). While there is no current evidence of the

    phosphorylating factor of REC8, it is well known that in Arabidopsis thaliana the

    protection of cohesion at anaphase I is performed by SHUGOSHIN 1 (SGO1)

    (Zamariola et al., 2013; Cromer et al., 2013), which directs the PROTEIN

    PHOSPHATASE PP2A to the centromeres, promoting dephosphorylation of REC8

    (Yuanetal.,2018)inasimilarwaytowhatwasobservedinyeastandanimals(Clift

    andMarston,2011);absenceofSGO1andPP2A results inearlydepletionofREC8

    (Yuan,2018;Yuanetal.,2018),andconsequently inchromosomemis-segregation.

    Additionally, another important protector of REC8, PATRONUS (PANS1) has been

    identifiedinplants,havingaprominentroleduringinterkinesis(Cromeretal.,2013).

    ThemeioticroleofREC8andofthecohesincomplex, ingeneral, isnotonly

    restrictedtotheestablishmentchromatidcohesion.Ithasbeenprovedinsteadthat

    itisinvolvedinhomologsrecognitionandpairing,inthedepositionofsynaptonemal

    complex and in directing the kinetochore attachment (Bai et al., 1999; Cai et al.,

    2003;Chelyshevaetal.,2005).

  • Introduction

    10

    Figure1.3Cohesinstructureandcleavageduringmeiosis

    A) Schematicrepresentationofthecohesinringcomplex.B) Cohesincanconnectthetwosisterchromatids,eitherenclosingboththechromatidswithinthesame

    ring(stringringmodel)orformingtworings,oneperchromatids,whichtheninteractandestablishtheconnection(weakringmodels).

    C) Duringmeiosis,cohesiniscleavedinatwo-stepsmanner,whichismediatedbyREC8phosphorylation.Atfirstcohesiniscleavedfromthearmsofthechromosomes,andremainsatcentromeres,protectedbytheactionofSGO1.PP2AandPANS1.Onlyattheonsetofthesecondanaphasecohesinisentirelyremoved,andsisterchromatidsseparate.

    α-kleisin

    ModifiedfromNasmythandHaering2009

    A B

    C

    ModifiedandextendedfromCli? andMarston2011

    MEI

    OSI

    SI

    MEI

    OSI

    SII

    S-phase ProphaseI MetaphaseI AnaphaseI

    AnaphaseIIMetaphaseIIInterkinesis

    REC8(cohesin) Phosphate

    CDK+cyclin(CDKA;1?)

    SHUGOSHIN1PP2A SEPARASE

    PATRONUS1PP2A SEPARASE

    PATRONUS1PP2A

    APC/C

    Strongringmodel Weakringmodels

  • Introduction

    11

    1.1.4Meiosisinpolyploids

    Polyploidyisacommonconditionamongplants;itsroleofpromoterofevolutionary

    flexibility and speciation is supported by evidence of whole genome duplication

    (WGD)inancestorsofmonocots(Yuetal.,2005;Jiaoetal.,2014)andangiosperms

    ingeneral(Soltisetal.,2007).Advantagesofbeingpolyploidlieingeneredundancy,

    whichmasks recessiveallelesandhas thepotential todevelop intogeneparalogy

    (Comai,2005),aswellasinhigherheterosisandvigor,whichmightfosterpolyploid

    survivalinstressconditions(Comai,2005;Sattleretal.,2016;Peeretal.,2017).The

    latter characteristic, together with the increased cell size, made polyploids

    interestingforbreeding.

    Even though polyploidization is a frequent event, its stabilization over

    generations is not (Peer et al., 2017). More commonly, low ploidy levels are

    preferred, as exemplified by the experiment of Wang et al. where they proved

    genome instability in octaploids of Arabidopsis thaliana mutated for TARDY

    ASYNCHRONOUSMEIOSIS(TAM).Themutationcausesprematureexitaftermeiosis

    I,andconsequentgenerationof2ngametes.Thefourthgenerationofoctaploidtam,

    didnotshowfurthergenomedoubling,onthecontrary itsprogenywentbacktoa

    hexaploid state in 32% of the cases, while the remaining were distributed from

    diploids(2.4%)tooctaploids(22%)andnohigherploidylevelwereobserved(Wang

    et al., 2010).Moreover,we know from numerous studies that neopolyploids can

    suffer from severe infertility,primarily causedbymeioticaberrations (reviewed in

    RamseyandSchemske,2002;JenczewskiandAlix,2004;Comai,2005;Zielinskiand

    Mittelsten Scheid, 2012). From this observation raised the interest in studying

    meioticregulationinpolyploidsorganisms.

    Themajor disturbance ofmeiosis in polyploids is caused by the formation of

    multivalents(associationofmorethantwohomologs)whichresultsindifficultiesin

    disentanglement of chromosomes association, errors in COs resolution,

    chromosome fragmentation, and ultimately in mis-segregation which induces

    aneuploidyandunviablegametes(Figure1.4).Notably,thesolutionofthesedefects

    isfundamentaltoestablishpolyploidyovergenerations,anditistestifiedbythefact

    thatneopolyploidsare themostaffected,whileestablished linespresenta regular

  • Introduction

    12

    diploid-likemeioticdivision;epigenetics,aswellasgenetic,seemstoplayarole in

    thisadaptation(Comai,2005;Bombliesetal.,2015;Peléetal.,2018)

    Autopolyploids,whichderivefromaWGDeventwithinasinglespecies,andasa

    consequencehaveadoublenumberofhomologouschromosomes(Figure1.4),are

    the most subjected to multivalents formation. It has been hypothesized that an

    increaseinCOsinterference,andthereforeareductioninCOsnumbersbutnottheir

    complete disappearance, would promote the formation of bivalents over

    multivalents (Bomblies et al., 2015). This concept is supported by studies in

    Arabidopsis arenosa,whichexists asdiploid and asestablishednatural tetraploid.

    Comparisonbetweenthegenomesofthetwopopulationsrevealed39differentiated

    regions, which encodes among others for eight meiotic genes involved in

    homologous recombination and synapsis: PRD3, ASY3, ASY1, REC8, ZYP1a, ZYP1b,

    SMC3andPDS5(Yantetal.,2013).

    Conversely,asecondgroupofpolyploidsnamedallopolyploidshasdifferent

    solutions to the problem. Allopolyploids generate from hybridization followed by

    WGD; theseconcomitantevents result in twoormorediploid setsofhomologous

    chromosomes,whichareconsideredtobehomoeologousonetotheother (Figure

    1.4).Homoeologpairing isstronglyrestrictedtherefore inallopolyploids,compared

    toautopolyploids, the formationofmultivalents is rare (Comai,2005;Bomblieset

    al., 2015; Pelé et al., 2018). This phenomenon is regulated at a genetic level as

    demonstrated by the cases of the Pairing homoeologous 1 locus (Ph1) in the

    allohexaploidTriticumaestivum (breadwheat,AABBDD;2n=6x=42).ThePh1 locus

    containsaclusterofCYCLIN-DEPENDENTKINASES (CDKs)thatcontrolchromosome

    arrangement at premeiotic phases, as well as chromosome synapsis and COs

    formation. The absence of the Ph1 locus induces homoeologous pairing and

    recombination. Similar evidence comes from the allotetraploid Brassica napus

    (AACC;2n=4x=38), inwhichasinglegenewas identifiedasprimaryresponsible for

    the constraint:PAIRING REGULATOR IN B. NAPUS (PRBN) (reviewed in Jenczewski

    andAlix,2004;Cifuentesetal.,2010;Grandontetal.,2013;Bombliesetal.,2015).

    Curiously,sincethelownumberofmultivalentsformedduringallopolyploidmeiosis,

    thestrengtheningofCOsinterferenceisnotrequired,tothepointthatthenumber

  • Introduction

    13

    of COs between homologs in allopolyploids seems to increase (Zielinski and

    MittelstenScheid,2012;Grandontetal.,2013)

    Figure1.4Meioticdefectsandadaptationinpolyploids

    The figure illustrates themeiotic defects and the possible outcome ofmeiosis in diploid, autopolyploid andallopolyploid. Homologous chromosomes are presented in the same color (magenta and dark green) whilehomeologous chromosomes are colored with different tones (magenta/purple an dark/light green). Duringdiploidmeiosis,bivalentsareformedinaringshape(indicationoftwoormoreCOsonthechromosomearms)orin a rod shape (only one CO is formed on one chromosome arm). Multivalents are easily formed duringneopolyploidmeiosis, and it results in the generationofunbalanced spores, chromosome fragmentation andaneuploidy.Establishedpolyploids insteadpresentacorrectmeioticoutcome,andbalancedspores.Thismightbeachievedwitha reductionofCOnumber inautopolyploid (only rodbivalents)orwitha strong restrictionagainsthomeologspairing,inallopolyploids.

  • Introduction

    14

    Timecoursesofplantmeiosis1.2

    The course of meiosis and its consequent outcome (recombination, duration,

    gameteviability)canvarysignificantlydependingon intrinsiccharacteristicsof the

    organism,e.g.,chromosomenumber,ploidylevel,andgender;aswellasdepending

    on environmental factors, e.g. temperature and exposure to chemicals, both in

    plants(reviewedinBennett,1971,1977;Bombliesetal.,2015)andinanimals(Allard

    andColaiácovo,2010;Zenzesetal.,2001).

    Amongall,durationhasbeenproven tobeoneof themost variableaspects:

    within the Plantae kingdom alone, meiosis can last from 16 hours in anthers of

    Petunia(IzharandFrankel,1973)upto16.5daysinFritillariameleagris(reviewedby

    Bennett,1977andTable1.1),orpresentanincreaseof130hoursinfemalemeiosis

    of Lilium hybrids compared with the male division (Bennett, 1977; Bennett and

    Stern, 1975). The main investigations about meiotic duration are dated back

    between 1950 and 1980. Themajority of theseworks have been summarized by

    M.D. Bennett in his thorough review “The time and duration of meiosis” (1977),

    whereafewcommontraitsofthemeioticdurationwerestatedforthefirsttime:

    1) Meiosisisalwaysslowerthanthemitoticdivisionofthesameorganism.

    2) ProphaseIisalwaysthemostextendedphase.

    3) The overall duration ofmeiosis is determined by the interaction of four

    mainfactors:

    · Environment,inparticulartemperature.

    · Genotype.

    · NuclearDNAcontent.

    · Ploidylevel.

    4) Theincreaseindurationofmeiosisisduetoaproportionalincreaseofthe

    length of every single phase, except for organisms that present

    developmentalholdor,asmorerecentdataprove,ofsinglemutationsof

    meiotic genes which are responsible for specific transitions during the

    division. For example in the case of Atmlh3 and Atmsh4, involved in

    recombination, which cause a delay of prophase I (Higgins et al., 2004;

    Jacksonetal.,2006).

  • Introduction

    15

    Bennett’s main conclusions have been re-proven and expanded by later

    experiments as illustrated in the following chapter. In particular, the influence of

    temperatureandgenotypehavebeenassessedinthelastdecade.

    1.2.1Temperatureandgenotypeeffectsonmeioticduration

    Temperature effects can be quite drastic and influencemany aspects ofmeiosis.

    Heatandcoldshockscanalter the recombination rate (Bombliesetal.,2015)and

    cause the arrest of meiotic progression (Draeger and Moore, 2017). Detailed

    experimentsonthemeioticbehavioratdifferenttemperaturehavebeenconducted

    onDasypyrumvillosum(StefaniandColonna,1996),Endymionnonscriptus(Wilson,

    1959)SecalecerealeandTriticumaestivum(Bennettetal.,1971)bringingallatthe

    conclusionthatmeiosisproceedsfasterathighertemperatures(Table1.1and1.2).

    Implicationsofthis informationforbreedinghavebeendiscussedbyStefani

    andColonna,whohypothesized that incompatiblybetweenhybridsofDasypyrum

    andTriticumdependsondifferentdurationsofprophase(9hourslongerinTriticum

    turgidum),andsuggestedthatalteringthetemperatureduringmeiosiscouldreduce

    thetimingdifferencesand increasethehybridfertility(StefaniandColonna,1996).

    Another example is brought by Higgins et al., where they correlate in Hordeum

    vulgaris an altered spatiotemporal distribution of chiasmata with changes in

    temperature. In particular, higher temperature synchronizes the onset of

    recombination foci among the entire chromosome lengths, with no distinction

    between regions distal and proximal to centromeres. This phenomenon leads to

    rearrangement in thedistributionofCOs towardsotherwise cold-spots,modifying

    therecombinationlandscapeofbarley(Higginsetal.,2012).

    The genotypic effects on meiotic duration can be analyzed under different

    aspects. At first, Bennett compares different varieties of the same species,

    concluding that plants sharing a large part of the genotype proceed at similar or

    identical speed, e.g. meiosis of the two cultivars of Triticum aestivum ‘Chinese

    Spring' and ‘Holdfast' lasts 24-25 hours when plants are grown at the same

    conditions. (Table 1.1, reviewed by (Bennett, 1977). On the other end, Bennett

    hypothesizesthatmutationsinsinglemeioticgenescouldinfluencemeiosis,butthe

    experimentalmeansofthetimewerenotadvancedenoughtobringclearevidence

  • Introduction

    16

    toconfirmthishypothesis.WiththedevelopmentofgenetictoolssuchasT-DNA,it

    hasbeenpossible lateron toverify it.Adelayedandprolongeddivisionhasbeen

    found for example in themaizemutant pam1, (plural abnormalities inmeiosis 1)

    (Golubovskayaetal.,2002)andtheArabidopsisthalianamutantstam1(Magnardet

    al., 2001),msh4 (MutS homolog 4) (delayof 8 hours in prophase) (Higgins et al.,

    2004),andmlh3(MutLhomolog3)whichshowsadelayof25hoursinfirstmeiotic

    division,foranoveralldurationofmeiosisofalmost60hours(Jacksonetal.,2006).

    1.2.2Meioticdurationinpolyploids

    Another central point of Bennett’s work was the study of polyploidy effects on

    meiosis (Bennettet al.,1971;Bennettand Smith,1972; Finch andBennett,1972;

    Bennett andKaltsikes,1973).Makinguseof cereal systems,which arepresent as

    diploid progenitors (Triticum monococcum, Secale cereale and Hordeum vulgare),

    and as tetraploids (Triticum dicoccum, Secale cereale and Hordeum vulgare),

    hexaploids or octaploids (different varieties of Triticum aestivum and the hybrid

    Triticale) Bennett and his collaborators observed that the duration of meiosis is

    shortened when the ploidy level becomes higher, e.g., meiosis of Triticum

    monococcumlasts42hours,whileinitshexaploidrelativeTriticumaestivummeiosis

    lastsonly24hourswhengrownatthesametemperature(BennettandSmith,1972)

    (Table 1.1). This phenomenonwas recorded in autopolyploids (Hordeum vulgaris,

    FinchandBennett,1972)aswellasinallopolypolids(TriticaleandTriticumaestivum;

    Bennett et al., 1971; Bennett and Smith, 1972) and could be considered

    counterintuitivesincepreviousfindings,aswellasacomparisonamongthedifferent

    speciesused in thisstudy,describedan increase inmeioticdurationparallel toan

    increment in DNA content (Bennett, 1971; Bennett and Smith, 1972). The

    controversy of the data did not find an exhaustive explanation in the work of

    Bennett, and only recently a study conducted in Triticum aestivum proposed a

    regulatory mechanism based on observations of pre-meiotic association of

    centromeresinthehexaploidwheat,whichwerenotrecordedinthecorresponding

    diploid(Martinez-Perezetal.,2000).

    It has to be noted that the work on cereals is focused exclusively on well-

    establishedpolyploids,andthereforetheshorteningofmeiosiscouldbeasecondary

  • Introduction

    17

    effectofthepreviouslymentionedmeioticadaptation(chapter1.1.4).Moreoveran

    oppositetrendwassuggestedbyobservationsofmeioticprogressionofArabidopsis

    arenosa;cellspreadsof thediploidand tetraploidpopulations revealed thatwhile

    theonsetofmeiosiswasfoundinbudsofthesamesizeforboth,thetetraploidbuds

    hosting pollen were bigger than the diploid, showing a possible delay in meiosis

    (Higginsetal.,2014).

    1.2.3Experimentalproceduresoftimecourses

    Lookingatthetables1.1and1.2,andattheyearsofpublication,togetherwiththe

    amountofinformationgiven,itbecomesclearthatafterthereviewofBennettand

    untilearly2000,onlyafewworksfocusedonthedurationofmeiosis.

    The reason for this gap likely lies in technical issues. The basic experimental

    procedurereliedonsynchronicityofmeiosiswithinthesameflowerbudorspikelet,

    and on tediousDNA labelingwith radioactive compounds such as [3H]-thymidine,

    followed by autoradiography. The first attempts were based on relative timing,

    expressedinthefrequencyofcellsfoundatacertainstage,withinaspecificposition

    in the inflorescence or spike (Lindgren et al., 1969). These types of experiments

    highlighted the differences of duration among the stages (e.g. In barley pre-

    pachytene and pachytene were the longest phases, followed by diplotene and

    telophaseIIandthepositionofthestageswithinthespikelet(EkbergandEriksson,

    1965;Lindgrenetal.,1969),butoftenledtoanimpreciseorquitebroadcalculation

    oftime.

    Anewriseoftimecoursesastoolstostudymeiosiscameaftertheintroduction

    of immunolabelling techniquesbasedon themodified thymineanalog5-bromo-2’-

    deoxyuridine (BrdU) (Gratzner,1982)or5-ethynyl-2’-deoxyuridine (EdU) (Salicand

    Mitchison,2008).Theusageofantibodiesagainstthesubstitutiveformofthymine,

    introgressed inDNAduringreplication, ismuch fasterand lessdangerousthanthe

    utilization of autoradiographic procedures. Armstrong was the first to describe a

    time course of plant meiosis using BrdU in Arabidopsis thaliana, being able to

    quantify the duration of each stage until diplotene (Armstrong et al., 2003). This

    methodallowstheconcomitantimmunostainingofmeioticproteinsandwasapplied

    as a tool to study mutant phenotypes and protein expression patterns in later

  • Introduction

    18

    studies such as (Higgins et al., 2004; Jackson et al., 2006; Sanchez-Moran et al.,

    2007).EdUwasinsteadintroducedafewyearslatereitherincombinationwithBrdU

    aspresentedbyHigginsetal.intheirtimecourseofHordeumvulgaris(Higginsetal.,

    2012),or to introduce anewcytological technique tostudymeiosis inArabidopsis

    thaliana as in Stronghill et al. (Stronghill et al., 2014) where they maintain the

    tridimensionalstructureofthepollensacs,allowingtheevaluationofmorecellular

    features. In this study, they re-confirmed the duration of meiosis in WT male

    Arabidopsisthalianatobearound22-24hoursaspreviouslyobtainedbyArmstrong

    andSanchez-Moran(Table1.2).

    All the methods described above, independently on the labeling system, are

    basedon fixationofmeiocytes,and theactual timeofeachmeiotic step is retro-

    calculated as an estimation of the distribution in the percentage of the meiotic

    stagesover the samples,after acertain intervalof times.Thiscalculationhas two

    major drawbacks: on one side it flattens the small asynchrony, which is present

    within the samepollen sac.Thisasynchronywasestimated tobe0.5 to1hour in

    PetuniabyIzharandFrankel,(IzharandFrankel,1973),anditislikelythereasonwhy

    manytimecoursesarenotabletodescribedistinctphasesdurationfromdiplotene

    onwards (Armstrong et al., 2003; Higgins et al., 2012; Pacini and Cresti, 1978;

    Sanchez-Moranetal.,2007;StefaniandColonna,1996;Stronghilletal.,2014and

    Table1.2).Theseconddrawbackistheimpossibilitytodisambiguatecasesinwhich

    themeioticdivisionproceedatadifferentspeedthaninWTfromcasesinwhichthe

    progression isarrestedas in themutantdescriptionofpam1 (Golubovskayaetal.,

    2002).Bothproblemscanbesolvedapplyinglivecellimagingtechniques,asproven

    bydatafromYuetal.,Nannasetal.onmaizemeiosis(Yuetal.,2009;Nannasetal.,

    2016).YuandNannaswereabletodefinepreciselythedurationandprogressionof

    thesecondmeioticdivision,withaparticularfocusonanaphase II,which lasts less

    than15minutes(Table1.1)andhavebeenrarelyrecordedbyfixedmaterial(Nannas

    et al., 2016; Yu et al., 1997). Moreover, live cell imaging permits direct time

    calculationand,whenperformedforsufficienttime,wouldbringnewinsightsabout

    meiosis of mutants, starting with the distinction between arrested and delayed

    progression, to the identification of their specific malfunctions and cytological

    effects.

  • Table1.1Du

    ratio

    nofm

    eiosisinM

    onocotyled

    ons

    MONOCO

    Tplan

    tspe

    cie

    publication

    tempe

    rature

    overalldurationofm

    alemeiosisprem

    eiosis

    leptoten

    ezygo

    tene

    pachyten

    ediploten

    ediakinesis

    metap

    haseIan

    apha

    seI

    teloph

    aseI

    interkinesis

    prop

    haseII

    metap

    haseIIan

    apha

    seII

    teloph

    aseII

    tetrad

    sAlliumcepa

    Vasil195

    9NOTGIVE

    N96h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Co

    nvallaria

    majalis

    Benn

    ett1

    973

    20°C

    72h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Da

    sypyrumvillosum

    Stefaniand

    Colon

    na199

    6fie

    ldinM

    ay35

    ±1.7hou

    rs//

    8ho

    urs

    //fie

    ldinJu

    ly22

    ±2hou

    rs//

    3.5ho

    urs

    //5°

    C13

    6±14

    .4hou

    rs//

    22h

    ours

    //10

    °C88

    ±5.3hou

    rs//

    20h

    ours

    //20

    °C29h

    ours

    //5ho

    urs

    //28

    °C21

    ±0.7ho

    urs

    //4.5ho

    urs

    //35

    °C17

    ±0.7ho

    urs

    //3ho

    urs

    //0°

    C864ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //5°

    C360ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //10

    °C168ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //15

    °C84h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //20

    °C48h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //25

    °C30h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //30

    °C20h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //15

    -21°

    C66h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Fritillaria

    meleagris

    Barber194

    212

    -15°

    C40

    0ho

    ursA

    PPRO

    XIMAT

    E//

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    Gasteriatrigon

    aSt

    raub

    ,193

    7NOTGIVE

    N96h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    32.6

    0%23

    .70%

    ////

    ////

    //19

    .50%

    8%24

    .80%

    2.40

    %4.

    60%

    13.0

    0%1.

    50%

    7.20

    %5.

    40%

    13.6

    0%//

    ////

    ////

    17.9

    0%7.

    50%

    24.1

    0%2.

    50%

    4.70

    %13

    .40%

    1.60

    %7.

    60%

    5.80

    %14

    .90%

    //Ho

    rdeumvulga

    re:S

    ulta

    nBe

    nnetta

    ndFinch197

    120

    °C39h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ho

    rdeumvulga

    re:Y

    mer

    FinchandBe

    nnett1

    972

    20°C

    39h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ho

    rdeumvulga

    re:Y

    mer4

    XFinchandBe

    nnett1

    972

    20°C

    31h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    22°C

    43h

    ours

    13h

    ours

    30°C

    43h

    ours

    9ho

    urs

    Liliumcan

    didu

    mSaue

    rland

    195

    6NOTGIVE

    N168ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumhenryi

    Pereira

    and

    Linksins1

    963

    NOTGIVE

    N170ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumhybrid

    :BlackBeuty

    Benn

    etta

    ndStern197

    520

    °C264ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumhybrid

    :Son

    ata

    Benn

    etta

    ndStern197

    520

    °C180ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumlong

    iflorum

    :varietyunspecified

    Marqu

    ardt193

    7NOTGIVE

    N

    96h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumlong

    iflorum

    :NellieW

    hite

    Itoand

    Stern196

    722

    °Cca19

    2ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumlong

    iflorum

    :Cro

    ftTaylorand

    McM

    aster1

    954

    23°C

    ca19

    2ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Liliumlong

    iflorum

    :Flo

    ridii

    Eric

    kson

    194

    8NOTGIVE

    Nca24

    0hou

    rs//

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    Ornith

    ogalum

    vire

    nsCh

    urchand

    Wim

    ber1

    969

    18°C

    72hou

    rs-A

    PPRO

    XIMAT

    E//

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    Rhoeodiscolor

    Vasil195

    9NOTGIVE

    N48h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //15

    °C88h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //20

    °C51h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //25

    °C39h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Secalecereale4X

    20°C

    38h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Steinitz194

    4;Taylor1

    949,

    1950

    ;BeattyandBe

    atty

    1953

    NOTGIVE

    N126ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Steinitz194

    4NOTGIVE

    N52h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    SaxandEdmon

    ds,195

    318

    °to23

    °48h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //SaxandEdmon

    ds,193

    3NOTGIVE

    N144ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ho

    ttaandStern19

    631°

    C2160h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ho

    ttaandStern19

    632°

    C1680h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ke

    mp

    1964

    5°C

    960ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ito

    and

    Stern196

    715

    °C288ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticaletu

    rgidum

    :durum

    Benn

    etta

    ndKaltsikes197

    320

    °C31h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticale:genotypeA(CS/K-TA

    )Be

    nnetta

    ndSmith

    197

    220

    °C21h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticale:genotypeB(CS/Pet-TA

    )Be

    nnetta

    ndSmith

    197

    220

    °C22h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticale:R

    osner

    Benn

    etta

    ndSmith

    197

    220

    °C34or3

    5ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticumdiococcum

    4X

    Benn

    etta

    ndSmith

    197

    220

    °C30h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    Triticumeastivum

    xAe.M

    utica

    Benn

    ett,Do

    vera

    ndRiley

    1974

    20°C

    31h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticumeastivum

    xSecalecereale

    Benn

    ett1

    973

    20°C

    35h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //15

    °C43h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //20

    °C24h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //25

    °C18h

    ours

    15°C

    45h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //20

    °C24or2

    5ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Triticumm

    onococcum

    Benn

    etta

    ndSmith

    197

    220

    °C42h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Tulbag

    hiaviolacea

    Taylor195

    320

    °C130ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Hs

    uetal.19

    88NOTGIVE

    N11

    9.1ho

    urs

    //43h

    ours

    31h

    ours

    12.2h

    ours

    7.1ho

    urs

    7.2ho

    urs

    4.4ho

    urs

    1.6ho

    urs

    1.6ho

    urs

    1.8ho

    urs

    0.4ho

    urs

    3.9ho

    urs

    2.1ho

    urs

    2.8ho

    urs

    //Yueta

    l.19

    9725

    ±1°C

    meiosisII:5hou

    rs//

    ////

    ////

    ////

    ////

    2.5ho

    urs

    //Nen

    nasa

    tal201

    6NOTGIVE

    Nanaphases:12min

    ////

    ////

    ////

    //12

    .7±3.2m

    in//

    ////

    //11

    ±3.7m

    in//

    //

    Zeamays

    Benn

    ette

    tal197

    1

    Triticumeastivum

    :Holdfast

    Benn

    ette

    tal197

    2

    Triticumeastivum

    :ChineseSpring

    Secalecereale

    Benn

    ette

    tal197

    1

    Trad

    escantiapalud

    osa

    Trilliumerectum

    Trad

    escantiare

    flexa

    Endymionno

    nscriptus

    Wils

    on1

    959

    Hordeumvulga

    re:unspe

    cifie

    dvarie

    ty

    Lind

    gren

    eta

    l.19

    69NOTGIVEN

    Hordeumvulga

    re:M

    orex

    Higginse

    tal.20

    12

    12.5h

    ours

    10h

    ours

    10.5h

    ours

    6ho

    urs

    46h

    ours

    20.5h

    ours

    10h

    ours

    5.5ho

    urs

    5ho

    urs

    15.5h

    ours

    69.5h

    ours

    12h

    ours

    48h

    ours

    1.5ho

    urs

    1ho

    ur

    5.30

    %19

    .90%

    3daysafterthe

    firsta

    naylsedmaterialalltheanthersh

    adm

    icrospores-->allm

    eiocyteste

    rminated

    meiosis.One

    "spikeletu

    nit"se

    eEriksson

    and

    Ekberg19

    65,islessthan16

    hou

    rs-->shorterstageslessthan1ho

    ur

    14h

    ours

    43h

    ours

    43h

    ours

    Table 1.1

    19

  • Table1.2Du

    ratio

    nofm

    eisoisinDycotiledo

    nsand

    gym

    nosperms

    DICO

    TSplan

    tspe

    cie

    publication

    tempe

    rature

    meiosisdurationoverall

    prem

    eiosis

    leptoten

    ezygo

    tene

    pachyten

    ediploten

    ediakinesis

    metap

    haseIan

    apha

    seI

    teloph

    aseI

    interkinesis

    prop

    haseII

    metap

    haseIIan

    apha

    seII

    teloph

    aseII

    tetrad

    sAlliaria

    petiolata

    Benn

    ett1

    973

    NOTGIVE

    N24h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //An

    thirriumm

    ajus

    Ernst1

    938

    NOTGIVE

    N24

    to34ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Arab

    idop

    sisth

    aliana

    :Ws

    Armstrongeta

    l.20

    0318

    .5°-

    20°C

    33h

    ours(2

    4)9

    6//

    Arab

    idop

    sisth

    aliana

    :Col

    -0Sanche

    z-Moraneta

    l.20

    07NOTGIVE

    N32h

    ours(2

    2)10

    7//

    //Arab

    idop

    sisth

    aliana

    :Ler

    Stronghilletal.20

    1421

    °C29h

    ours

    (22)

    75

    610

    1//

    ////

    ////

    ////

    ////

    //Arab

    idop

    sisth

    aliana

    :Col-02X

    thisthesis

    21°C

    35h

    ours(2

    6.5)

    8.5

    1.5

    610

    //Arab

    idop

    sisth

    aliana

    :Col-04X

    thisthesis

    21°C

    51h

    ours(3

    2.5)

    191.

    57.

    511

    //Be

    taVulga

    risBe

    nnett1

    973

    20°C

    24h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ca

    psellabursa-pastoris

    Benn

    ett1

    973

    NOTGIVE

    N18h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ha

    plop

    appu

    sgracilis

    Marith

    amu&Threlked

    NOTGIVE

    N24-36ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Lycopersicum

    esculentum

    (Solan

    umlycopersicum

    )Be

    nnett1

    973

    20°C

    24-30ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    Lycopersicum

    peruvianu

    mPaciniand

    Cresti197

    8NOTGIVE

    Nprop

    hase12ho

    urs

    ////

    ////

    ////

    ////

    ////

    Petuniahybrida

    Izhara

    ndFrankel197

    315

    -17°Cnight

    /25-30

    °Cday

    16h

    ours

    22

    13

    12

    Pisumsa

    tivum

    Benn

    ett1

    976

    20°C

    30h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Ve

    ronicacha

    maedrys

    Benn

    ett1

    973

    NOTGIVE

    N20h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Viciafaba

    Marqu

    ardt195

    1NOTGIVE

    N72

    to96ho

    urs

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //Viciasativa

    Benn

    ett1

    976

    20°C

    24h

    ours

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    GYM

    NOSPER

    Mplan

    tspe

    cie

    publication

    tempe

    rature

    meiosisdurationoverall

    prem

    eiosis

    leptoten

    ezygo

    tene

    pachyten

    ediploten

    ediakinesis

    metap

    haseIan

    apha

    seI

    teloph

    aseI

    interkinesis

    prop

    haseII

    metap

    haseIIan

    apha

    seII

    teloph

    aseII

    tetrad

    sPinu

    slaricio

    Cham

    berla

    in193

    5(rep

    orted

    inIzhare

    ta.l19

    73)

    NOTGIVE

    N

    3mon

    ths

    ////

    ////

    ////

    ////

    ////

    ////

    ////

    //

    1.5

    6

    15.3

    2.7

    12h

    ours

    41

    21

    3

    31

    14

    12

    31

    Table 1.2

    20

  • Introduction

    21

    Imagingofmeiosis1.3

    1.3.1Livecellimagingsetups

    Threemainsetupshavebeenusedsofartofollowmeiosislive:wide-field,confocal

    andmulti-photonmicroscopy.

    Wide-fieldmicroscopy,oftensupportedbydeconvolution,providesaneasy-to-

    handlesystemtoobtaintime-lapsesandz-stacksofthedivision.Thepairingofwide-

    fieldwithafluorescentlightsource(e.g.,UV-lamp)allowedtheemploymentofdyes

    andfluorophoresfusedtoreporterstovisualizecellularandnuclearelements,e.g.,

    telomeres and centromeres (Tomita and Cooper, 2007) or synaptonemal proteins

    (Lee et al., 2015). As an example, the functions of telomere bouquet in budding

    yeastS.pombehavebeenanalyzedbywide-fieldmicroscopy.Theseworksrevealed

    its involvement in controlling the behavior of the microtubule-organizing center

    (TomitaandCooper,2007),aswellas in creating a specialized sub-nuclearmicro-

    environment that directs the assembly of meiotic centromeres (Klutstein et al.,

    2015). Other works conducted both in yeast (Lee et al., 2012) and in isolated

    mammaloocytes(Leeetal.,2015;Shibuyaetal.,2014)dissectedtherapidprophase

    movementsofchromosomes,showingthattheyfollowdifferentdynamicsoverthe

    meioticdivisionandthattheyareresponsiblefortheformationofcorrectsynapsis

    andrecombinationevents.

    While for single cell imaging (unicellularorganisms,or isolatedmeiocytes) the

    wide-fieldmicroscope is a good option, formore complex samples confocal laser

    scanningmicroscopy(CLSM)ismoreadequate.Bysettingupapinholeinfrontofthe

    detector,thesignalfromtheoff-focalplanecanbefiltered,restitutingimageswitha

    highsignal/noiseratio.Thisallowstheobservationofthickerspecimenthatcouldbe

    scanned a series of optical sections. Consequently, confocalmicroscopy has been

    successfullyapplied to studyhomologpairing inS.pombe (Chacónet al.,2016),C.

    elegans (Rog and Dernburg, 2015; Wynne et al., 2012), Drosophila melanogaster

    (Christophorouetal.,2015),andmammalianoocytesandspermatocytes,whichcan

    be visualized ex vivo within cultured embryonic ovaries and tubules (Enguita-

    Marruedoetal.,2018).Likewise,chromosomesegregation inmammaloocyteshas

    been analyzed by confocal microscopy: kinetochores could be tracked for over 8

  • Introduction

    22

    hours,revealingthatthebi-orientedattachmentofhomologs isestablishedaftera

    lengthytry-and-errorprocess(Kitajimaetal.,2011);microtubulesorganizingcenters

    andactinelementsofthecytoskeletonhavebeenshowntoberelevantforspindle

    formation and correct segregation (Schuh and Ellenberg, 2007; Holubcová et al.,

    2013;MogessieandSchuh,2017),aswellasitwasconfirmedbylivecellimagingof

    fetalmouse oocytes that cohesin establishment ismaintainedwithout detectable

    turnoverandthatitslossinolderoocytesremainsuncorrected,leadingtoformation

    ofaneuploidandnon-viablegametes(Burkhardtetal.,2016).

    A further advantage of confocal microscopy is the usage of lasers as a light

    source,allowingthepreciseselectionofexcitationwavelength.Thisopenedtheway

    toproceduressuchasFRAP,aspresented in thestudyofGigantetal.Byapplying

    photobleachingtothecytoskeletonreporterGFP:NMY2,theywereabletodetecta

    change inthespindledynamicsofoocyteswhichcarriedamutation inthekinesis-

    13,provingitsinvolvementintheformationofmeioticspindlesofC.elegans(Gigant

    etal.,2017).

    At last, two-photonmicroscopyhasbeenused to imagemeiosis inC. elegans.

    Two-photonmicrosocpyuses infrared lightasexcitationsource,whichallowsdeep

    penetration in the tissues. Coupling two-photon technology with the FLIM/FRET

    techniqueLlèresetal.,wereabletovisualizeatananoscalelevelthecompactionof

    prophasechromosomeswithinC. elegansovaries,and to link its regulation to the

    actionofcondensinIandII(Llèresetal.,2017).

    1.3.2Livecellimagingofplantmeiosis

    Incontrasttothestudyofmeiosisinotherorganisms,researchinplantsisonlyinits

    infancytoexplorethepowerof live imaging.Sofar,onlyfivestudiesarepublished

    that employ two different approaches to describe chromosome movements and

    MTsrearrangementsinmaizemeiocytes(Yuetal.,1997;Nannasetal.,2016;Higgins

    etal.,2016;SheehanandPawlowski,2009)aswellaschromatinreprogramming in

    Arabidopsisthaliana(Ingouffetal.,2017).

    ThesystemdevelopedbyYuetal.1997,re-adaptedintheworksfromNannaset

    al.,2016andHigginsetal.,2016, isbasedonwide-field fluorescentmicroscopyof

    isolatedmaizemeiocytes;thecellsarecultured in liquidmedium,whichoffersthe

  • Introduction

    23

    advantageofeasy treatmentwithdyesas Syto12 tomark chromosomeswhereas

    other cellularelements couldbe visualizedwith fluorescent reporters such as the

    fusionproteinCFP:β-TUB1formicrotubules.

    Whilethissetupiseasilyapplicable,itsusageisrestrictedtothestudyofshort

    meioticphases such asmetaphase and anaphase:meiocytes couldbemaintained

    aliveforamaximumof9hours(Yuetal.,1997)andwereimagedoverperiodsof80

    minutes or less (Nannas et al., 2016), failing to restitute information about the

    longer prophase. Nonetheless, important knowledge could be gained about the

    regulationofmeioticspindles,whichcouldnotberevealedby fixedspecimen.For

    example, theworkofNannasdescribed theexistenceofasymmetricalanaphases,

    which correct off-center positioning of the spindles in anaphase I and II, and the

    appearanceofphragmoplastequidistant from the chromosomes insteadof in the

    spindlemid-zone,providingabackupsystemforfailureincompletingchromosomes

    segregation(Nannasetal.,2016).

    The secondapproach isbasedonmultiphotonmicroscopy.Exploiting itsgreat

    focusdepth,whichreaches200µm,meiocytescanbe imagedwithouttheneedof

    isolation. This set up has been successfully applied to maize anthers cultured in

    liquid medium (Sheehan and Pawlowski, 2009) and on Arabidopsis thaliana

    inflorescences,embedded insolidmediumanddissectedwithavibratome(Ingouff

    etal.,2017).Samplescouldbemaintainedaliveforperiodslongerthan30hoursand

    imaged for 24 hours (maize anthers in Sheenan and Pawlowski, 2009, no time

    indications for Ingouffet al.,2017).SheenanandPawlowskiwereable toobserve

    and analyze chromosome movements similar to the one described for yeast, C.

    elegans,andmammals,revealingthepresenceofdifferentdynamicscharacterizing

    zygotene and pachytene stages (Sheehan and Pawlowski, 2009). Ingouff et al.,

    instead, were interested in investigating chromatin reprogramming during

    Arabidopsis thaliana reproduction, and revealed that methylation levels are very

    stableexceptforasignificantdecreaseofthesignaluponeggcellmaturation.Since

    intheirstudy Ingouffetal.,aimtofollowthecompletesexualdevelopmentofthe

    plant,meiosiswasconsidered asingleunit,withoutdistinctionamongsub-phases,

    andthereforetheirresolutionofthecelldivisionwasminimal.

  • Objectives

    25

    2 ObjectivesOverthelastyears,thestudyofbiologicalprocesseshasbeenincrediblyfosteredby

    livecell imaging,whichdisclosed thecomplexdynamicsunderlyingevents suchas

    cellproliferation,patternformation,andcelldeath.Differentlythaninothertopics,

    inthefieldofmeiosisplantshaslackedbehindyeastorotheranimals,countingonly

    ahandfulnumberofpublicationsusinglivecellimagingapproaches(Yuetal.,1997;

    SheehanandPawlowski,2009;Nannasetal.,2016;Higginsetal.,2016; Ingouffet

    al.,2017).

    As aconsequence, thedescriptionof thedynamicsof themeioticdivisionhas

    beenrestrictedtotheapplicationofcytochemicalmethodssuchascellspreadsand

    immunolocalization,whicharebasedonfixedmaterial.Whilethesetechniqueshave

    been and continue tobe, very informative, theydidnot allow fully capturing the

    natureofmeiosis,characterizedbyspecificchromosomemovementsduringparing

    andsegregation,orbythefastdynamicsofproteinre-location.

    Thefirstaimofthisstudywas,therefore,theestablishmentofalivecellimaging

    technique to follow theentiremeioticdivision in anthersofArabidopsis thaliana.

    The technique should fulfill three main requisites: long-time imaging (and hence

    maintenance of sample viability for a long time) to follow the complete division,

    chromosomal resolution in imaging to distinguish chromosomes and cellular

    structures,and finally simplicity in itsexecution tomake themethodavailable for

    otherresearchers.

    Secondly, a system to unequivocally describe the images and allow for a

    quantitativedescriptionoftheobtaineddatashouldbedeveloped.

    Finally, Iwas interested in the application of the newmethod, paired to the

    analysissetup,toperformacomparisonbetweenthetimecourseofmalemeiosisin

    wildtypeArabidopsisthaliana,indiploidandtetraploidpopulations.

  • Results

    27

    3 Results

    Techniqueestablishment3.1

    Live cell imaging of plants benefited greatly from CLSM application; for example

    confocalmicroscopyhasbeenusedtostudymitosisandcelldifferentiation inroot

    apicalmeristem (RAM) (e.g., in Komaki and Schnittger, 2017) and in shoot apical

    meristem (SAM) (e.g., in Hamant et al., 2014; Gruel et al., 2016) of Arabidopsis

    thaliana.Conversely, ithasnotbeenappliedsofartoobserveplantmeiosis.Inthe

    firstchapterofthe“Results”sectionanewmethodisintroduced.

    3.1.1Sampleisolationandmounting

    Theselectionandpreparationofoptimalmaterialareofkeyimportancetoperform

    live imaging. To facilitate the handling of the sample the whole procedure was

    performed under a dissection microscope with a magnification of 4X. An

    inflorescencewascutfromafivetosixweeksoldplantandlaiddownonasupport

    of1%agarosedissolvedinMilliQwater.Underourgrowthconditions(Materialand

    Methodssection6.1),wildtype-likeflowerbudsundergoingmeiosisare0.3-0.5mm

    longandpresentaroundshape(Figure3.1);thereforeallflowerslargerthan0.5mm

    wereremovedatthepedicelwiththeuseoftweezers(Figure3.1A).

    CLSM has a typical penetration depth of 70-100 μm, which allows imaging

    throughthe fourcell layersthatenwrapthepollenmothercells (PMCs)withinthe

    anther, but not to penentrate the sepals. Thus, to obtain clear images of male

    meiocytes,itwasnecessarytoremovetheuppermostsepaloftheflowerbud;inthis

    way, two of the six anthers are exposed and directly accessible to the objective

    (Figure3.1C1andC2).After the sepal removal, the innerorganizationof the floral

    organs is disclosed, giving a further hint about the staging: in flower primordia

    undergoing meiosis, petals are visible, but they do not overlap with the anthers

    which in turn have the same length of the gynoecium (Figure 3.1C2). This

    developmental stage corresponds to stage 9 in the description from Smyth et al.

    1990(Smythetal.,1990).

  • Results

    28

    Conversely,allthesmallflowers,presumablynotcontaininganymeiocytesyet,

    wereclippedaway(Figure3.1B)toobtainasinglebudattachedtoafewmillimeters

    of its stem. The sample was transferred and anchored onto a small petri dish

    (diameterof35mm)filledwithApexCultureMedium(ACM)(Hamantetal.,2014).

    Further stabilization was obtained using a drop of 2% agarose in MilliQ water

    distributedaroundtheflowerhead.

    Iftheflowerbudwasnotatthecorrectstage,eitheroneoftwostrategieswas

    followed:when the flowerpresented amoreadvanceddevelopmental stage (e.g.,

    long petals), it was clipped, and the very next flower of the inflorescence was

    isolated;when the flowerwas tooyoung itwaspossible tomount itonACM,seal

    thepetridishandletitgrowatthesamegrowthconditionsofthemotherplantuntil

    thecorrectdevelopmentalstagewasreached.

    ToassessthesampleviabilityonACM,flowerbudswereisolatedandmounted

    on themediumas inpreparation for imaging,with the removalof theuppermost

    sepal. The petri dish containing the sampleswere sealed and repositioned in the

    same growth chamber as the mother plant, to assure the maintenance of the

    environmentalconditions.Flowerbudgrowthwasmonitoredthroughoutoneweek

    (Figure3.1D).

    Theorgansoftheflowerspresentedadevelopmentfromstage9,(Figure3.1D,

    DAY0)tostage15(Figure3.1D,DAY7),withinasimilartimeframe(7daysversus

    6.5days)aspreviouslypublishedinSmythetal.1990(Smythetal.,1990).

  • Results

    29

    3.1.2Microscopesetup

    UprightCLSMZEISS780and880wereequippedwith40Xwaterdippingobjectives,

    whichcanbesubmergeddirectlyintowater;thusbypassingtheuseofcoverglasses.

    Thissetupallowsmountingthesampleonsolidmediuminasmallpetridish,as

    described in 3.1.1, leaving it free to grow and expand without constraint in the

    vertical direction, but at the same time offering an anchoring system to avoid

    flotation.

    Othermagnificationlensessuchas20Xand63Xweretestedforthepurpose,but

    the 40X objective was finally selected since I could visualize the entire flower

    structurewithoutsacrificingresolutionwhenzoomingontosinglemeiocytes(Figure

    3.2 B1). Once ready, the petri dish containing the sample was positioned on the

    microscope stage and stabilized with double-sided tape. The petri dish was then

    Figure3.1Sampleisolationandviability

    Thethreemainstepsofsamplepreparationareillustrated:A)Atfirst,an inflorescence isdissected.Alltheolderflowersareremoved,whiletheyoungerflowerbudsarekeptattachedtothestem.Thewhitearrowheadindicatesaflowerbudatameioticstage.B) After the removal of the uppermost sepal and the validation of the correct developmental stage of theselectedflower,allthesmallerflowerbudsareclippedaway.C1)ThesampleisanchoredintoACMwiththeexposedanthersfacingup.C2)Magnificationof the flower bud inC2); thedifferent floralorgansarehighlighted: inblue sepals, inwhitepetals,inyellowanthersandinpinkthegynoecium.D)MonitoringofflowergrowthanddevelopmentonACM.The3flowerspresentanormalgrowthoveraperiodof7days:thefloralorgansandthestemelongate inaconstantmannerfromday0today7,confirmingtheirviabilityonthemedium.

  • Results

    30

    filledwithautoclavedwater,and left inposition for aperiodofminimumhalfan

    hour,toensurethatthemediumwouldabsorbthewater,andavoidlateronfurther

    movementsduetomediumswallowing.

    Such amicroscope set up applies to several investigations, and therefore the

    settings for imageacquisition couldbeadjustedaccording towith thepurpose. In

    thecontextofthisdissertation, Iappliedthetechniquetoperformtimecoursesof

    the entire meiotic division, on flower buds expressing GFP and TagRFP fusion

    proteins; thus themain concernwas to balance image resolution,with temporal

    resolutionandsampleupkeep.

    Imageswereacquiredasaseriesofz-stack.The intervaltimewassetbetween

    minimum3andmaximum15minutes,dependingon theobservedmeioticphase.

    Thez-stackswerecomposedbysixfocalplanes,with50μmdistance.Thisintervalin

    the z-dimension allowed the buffering of small verticalmovementof the sample,

    assuring that the same meiocytes would be captured during the whole data

    acquisition.Whenmorethanflowerbudwasmountedonthesamepetridish,their

    differentpositionsweresavedusingthemulti-positionfunctionofZENsoftware,and

    eachofthemwasautomaticallyre-focusedateachtimepoint,usingtheauto-focus

    functionbasedonfluorescence.

    Argon laser (λ488)andDPSS561-10 laser (λ561)wereusedas the sourceof

    excitationwavelengthsforGFPandTagRFPrespectively;theirintensitywasadjusted

    accordingtowiththesampleemission,butingeneral,wasneverexceeding10%for

    theArgonlaserand4%fortheDPSS561-10laser.Itwasessentialtokeepitaslowas

    possible to not compromise the sample viability. The emitted signalswere firstly

    filtered through theBeamsplitterMBS488/561.Greenandred fluorescencewere

    recorded intwochannelsbysequential linemode filteredrespectively for498-550

    nm and 578-649 nm; an additional third channel was used to collect the auto-

    fluorescenceofchloroplasts,andfilteredfor680-750nm.Thepinholewassetat1

    Airy Unit, and scan time did not exceed 0.7 μsec pixel dwell. The bidirectional

    function was on, and averaging was performed on two lines. Images were

    1024x1024pixels.

  • Results

    31

    Selectionofreporterlines3.2

    Atypicalsetupfor livecell imagingofcelldivisions isconcomitantuseofamarker

    for chromatin, such as histone fusion protein, with a marker that highlights

    microtubulestomonitorchromosomeandspindlebehavior(twoexamplestofollow

    plantmeiosiscanbefoundinPeirsonetal.,1997;Nannasetal.,2016).Additionally,

    Iwas interested in ameiotic-specificmarker, to unequivocally identifymeiocytes

    evenatearlystagesofmeiosiswhentheirsizeandshapearenotyetverydistinct.

    Iidentifiedasagoodcandidateamongthereportersavailableinourlaboratory

    theGFP fusion to REC8 PROREC8:REC8:mEGFP, generated byDr. Shinichiro Komaki

    (Prusickietal.,2018).

    REC8 accumulation has been detected by immunolocalization studies starting

    frompre-meioticS-phaseuntiltheonsetofanaphaseI(Caietal.,2003).Moreover,

    seenitsroleasα-kleisinsubunitinthemeioticcohesincomplex,itlocalizesalongthe

    entire length of the chromosomes during prophase I, allowing the detection of

    chromosomedynamicsandsynapsisstateuntiltheendofmetaphaseI.

    Figure3.2MicroscopesetupExampleofmicroscopesetupandsamplevisualization.

    A) Thesample(ingreen)ismountedinasmallpetridishcontainingACM.Thepetridishisfilledupwithdistilledwaterandtheobjectiveisimmerseddirectlyintothewater.

    B1)OverviewofaflowerbudcarryingTUB4-RFPreporter,underthe40Xwaterdippingobjective.B2)IdentificationoffloralorgansoftheflowerbudinB1:inbluesepals,inwhiteapetal,inpinkthetipofthegynoeciumandinyellow2anthers.Withintheantherspollensacsarehighlightedinred.C)ZoominontheanthersofB,onadifferentfocalplane.Meiocytesoccupytheinnerpartoftheantherandarerecognizablebytheirregularshapeandthebigcentralnucleus.

  • Results

    32

    Therefore I decided to utilize PROREC8:REC8:mEGFP as amarker for chromatin

    duringmeiosis.Ifoundthatthereporterlineonlyaccumulatesinmeiocytesandits

    localization pattern is consistent with the previous description (Cai et al.,

    2003)(Figure3.3A).

    Moreover, the REC8 reporter allowed us to estimate the sensitivity of the

    imagingprocedure. WhileREC8 isremoved fromchromosomesarmsattheendof

    meiosis I to allow the resolution of cross-overs, a small fraction remains at the

    centromerestomaintainsisterchromatidcohesion(Yuanetal.,2018).Thedetection

    of the centromeric fraction of REC8 has been challenging by immunolocalization

    studies(Caietal.,2003;Yuanetal.,2018).WhenIfollowedthefirstmeioticdivision,

    I observed the remaining REC8:GFP at centromeres indicating that the here

    presentedlivecellimagingsystemishighlysensitive(Figure3.3B).

    Ascytoskeletonmarker,IselectedafusionproteinoftheTUBULINβSUBUNIT4

    (TUB4)withTagRFPexpressedundertheRPS5Apromoter (PRORPS5A:TagRFP:TUB4),

    generatedandkindlyprovidedbyDr.Takashi Ishida(KumamotoUniversity,Japan).

    TheexpressionofPRORPS5A:TagRFP:TUB4 isnotcell-specific,andthereforenotonly

    allows a straightforward recognition of meiotic phases such as metaphase and

    anaphase, but permits as well the observation of the complete structure of the

    anther,andconsequentlythestudyofthebehaviorofothercell layersconstituting

    thepollensac,e.g.,thetapetum.

  • Results

    33

    3.2.1 Functionality of the PROREC8:REC8:mEGFP and the

    PRORPS5A:TagRFP:TUB4reporter

    ToassurethatthefusionproteinPROREC8:REC8:mEGFPwasfunctional,Iperformeda

    rescue assay.Homozygous plants of the REC8 T-DNA insertion line SAIL_807_B08

    (rec8-/-)presentanormalvegetativegrowth,butarecompletelysterile,withshort

    siliquesandpollenandseedabortionratesatalmost100%(Figure3.4A-E).Aclose

    Figure3.3ExpressionpatternofPROREC8:REC8:mEGFPandPRORPSA5:TagRFP:TUB4intheKINGBIRDline

    A) The figuredepicts the localizationofPROREC8:REC8:mEGFPandPRORPSA5:TagRFP:TUB4over thecourseofentiremeiosisinafloweroftheKINGBIRDline.A1:premeiosis;A2:leptotene;A3:zygotene;A4:diploteneinthe lower anther and metaphase I in the upper anther; A5: telophase I in the lower anther and lateprophaseII-metaphaseIItransitionintheupperanther;A6:tetrads.

    B) REC8-GFP localizationaftermetaphaseI(B1) inaPROREC8:REC8:mEGFP-onlyplant.ThewhitearrowheadsinB2andB3indicatecentromericREC8.

  • Results

    34

    look tomeioticprogression revealsall the typicalphenotypespreviouslydescribed

    for rec8 homozygous plants: irregular chromosome condensation and pairing at

    prophase I, chromosome fragmentation,presenceofunivalents,and chromosome

    mis-segregationresulting intheformationofunbalancedgametes,micronucleiand

    polyads (Figure 3.4 F, Bai et al., 1999). The introgression of PROREC8:REC8:mEGFP

    construct into rec8 -/- background fully restored fertility, with the plant growing

    elongatedsiliques,andhavingasimilarlevelofpollenandseedproductionaswild-

    typeplants(figure3.4A-E).CellspreadsofPROREC8:REC8:mEGFP


Recommended