+ All Categories
Home > Documents > EE 232 Lightwave Devices Lecture 8: Einstein’s AB...

EE 232 Lightwave Devices Lecture 8: Einstein’s AB...

Date post: 04-Jun-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
5
1 EE232 Lecture 8-1 Prof. Ming Wu EE 232 Lightwave Devices Lecture 8: Einstein’s AB Coefficients, Spontaneous Emission Instructor: Ming C. Wu University of California, Berkeley Electrical Engineering and Computer Sciences Dept. EE232 Lecture 8-2 Prof. Ming Wu R 21 spon = A 21 f 2 1 f 1 ( ) R 21 stim = B 21 f 2 1 f 1 ( ) P( E 21 ) R 12 = B 12 f 1 1 f 2 ( ) P( E 21 ) For non-monochromatic light: P( E 21 ) = n ph N ( E 21 ) : number of photons per unit volume per energy interval n ph = 1 e !ω k / k B T 1 : Number of photons per state (Bose-Einstein distribution) NE 21 ( ) = 8π n r 3 E 21 2 h 3 c 3 :Number of states with photon energy E ba per unit volume, per energy interval Einstein’s AB Coefficients E 2 E 1 hν hν hν 21 stim R 21 spon R hν 12 R
Transcript
Page 1: EE 232 Lightwave Devices Lecture 8: Einstein’s AB ...inst.eecs.berkeley.edu/~ee232/sp16/lectures/EE232-8-Einstein AB Co… · EE 232 Lightwave Devices Lecture 8: Einstein’s AB

1

EE232 Lecture 8-1 Prof. Ming Wu

EE 232 Lightwave Devices Lecture 8: Einstein’s AB Coefficients,

Spontaneous Emission

Instructor: Ming C. Wu

University of California, Berkeley Electrical Engineering and Computer Sciences Dept.

EE232 Lecture 8-2 Prof. Ming Wu

R21spon = A21 f2 1− f1( )R21stim = B21 f2 1− f1( )P(E21)

R12 = B12 f1 1− f2( )P(E21)

For non-monochromatic light:P(E21) = nphN (E21) :

number of photons per unit volume per energy interval

nph =1

e!ωk /kBT −1 : Number of photons per state (Bose-Einstein distribution)

N E21( ) = 8πnr3E21

2

h3c3 :Number of states with photon energy Eba per unit volume,

per energy interval

Einstein’s AB Coefficients

E2

E1

hν hν hν

21stimR21

sponR

12R

Page 2: EE 232 Lightwave Devices Lecture 8: Einstein’s AB ...inst.eecs.berkeley.edu/~ee232/sp16/lectures/EE232-8-Einstein AB Co… · EE 232 Lightwave Devices Lecture 8: Einstein’s AB

2

EE232 Lecture 8-3 Prof. Ming Wu

Photon Density of States

Optical wave eik!⋅r!

satisfies periodic boundary condition

ωk =kcnr

dispersion relation of photons

(equivalent to energy band structure of electrons)Number of states with photon energy E21 per unit volume, per energy interval

N E21( ) = 2V

4πk 2dk

2πL

!

"#

$

%&

3∫ ⋅δ(E21 − !ωk )

= 8π

2π( )3

nrωk

c

!

"#

$

%&∫

2nrcdωk ⋅

1!δ(E21

!−ωk )

N E21( ) = 8πnr3E21

2

h3c3

EE232 Lecture 8-4 Prof. Ming Wu

Einstein’s AB Coefficients

At thermal equilibrium:R12 = R21

spon + R21stim

B12 f1 1− f2( )P(E21) = A21 f2 1− f1( )+ B21 f2 1− f1( )P(E21)

P(E21) =A21 f2 1− f1( )

B12 f1 1− f2( )− B21 f2 1− f1( )=

A21eE1−FkBT

B12eE2−FkBT − B21e

E1−FkBT

N (E21) ⋅nph =A21

B12eE2−E1kBT − B21

⇒ 8πnr

3E212

h3c3

$

%&&

'

())

1ehωk /kBT −1

=A21

B12eE2−E1kBT − B21

B12 = B21

A21

B21

=8πnr

3E212

h3c3= N (E21)

Page 3: EE 232 Lightwave Devices Lecture 8: Einstein’s AB ...inst.eecs.berkeley.edu/~ee232/sp16/lectures/EE232-8-Einstein AB Co… · EE 232 Lightwave Devices Lecture 8: Einstein’s AB

3

EE232 Lecture 8-5 Prof. Ming Wu

Spontaneous Emission Spectra

B12 = B21 = B

A21

B=

8πnr3E21

2

h3c3= N (E21)

R21spon = r21

spon (E21)dE = A21 f2 (1− f1)

Rnetabs = rnet

abs (E21)dE = B f2 − f1!" #$P(E21)

Absorption coefficient:

α(E21)dE =rnetabs (E21)dE

P(E21)(c / nr )=nrcB f1 − f2!" #$= −g(E21)dE

r21spon (E21)g(E21)

=A21

nrcB

f2 (1− f1)f2 − f1

!

"#

$

%&

r21spon (E21) =

8πnr2E21

2

h3c2

1

1− eE21−ΔFkBT

!

"

###

$

%

&&&g(E21) [ 1

s1m3

1eV

]

CB

VB

E2

E1

( )1sponC VR f f∝ −

CB

VB

E2

E1

( )stimnet C VR f f∝ −

Spontaneous Emission

Stimulated Emission

spn

EE232 Lecture 8-6 Prof. Ming Wu

Spontaneous Emission and Gain Spectra for Various Temperatures

1 1.2 1.4 1.6 1.80

1 1044×

2 1044×

3 1044×

4 1044×

5 1044×

ρr hvi( )

hvieV

1 1.2 1.4 1.6 1.81.5−

0

1.5

f_e hvi 1K, 1.55eV, ( )f_e hvi 77K, 1.55eV, ( )f_e hvi 300K, 1.55eV, ( )

hvieV

1 1.2 1.4 1.6 1.81.5− 106×

0

1.5 106×

α0 hvi( ) f_e hvi 1K, 1.55eV, ( )⋅

α0 hvi( ) f_e hvi 77K, 1.55eV, ( )⋅

α0 hvi( ) f_e hvi 300K, 1.55eV, ( )⋅

α0 hvi( )α0 hvi( )−

hvieV

Joint DOS

Emission Probability

T= 1 K T= 77K T = 300K

Spontaneous Emission Spectra

1 1.2 1.4 1.6 1.80

1 1044×

2 1044×

3 1044×

4 1044×

5 1044×

ρr hvi( )

hvieV

1 1.2 1.4 1.6 1.81.5−

0

1.5

f_g hvi 1K, 1.55eV, ( )f_g hvi 77K, 1.55eV, ( )f_g hvi 300K, 1.55eV, ( )

hvieV

1 1.2 1.4 1.6 1.81.5− 106×

0

1.5 106×

α0 hvi( ) f_g hvi 1K, 1.55eV, ( )⋅

α0 hvi( ) f_g hvi 77K, 1.55eV, ( )⋅

α0 hvi( ) f_g hvi 300K, 1.55eV, ( )⋅

α0 hvi( )α0 hvi( )−

hvieV

Joint DOS

Fermi Inversion

Factor

Gain Spectra

Page 4: EE 232 Lightwave Devices Lecture 8: Einstein’s AB ...inst.eecs.berkeley.edu/~ee232/sp16/lectures/EE232-8-Einstein AB Co… · EE 232 Lightwave Devices Lecture 8: Einstein’s AB

4

EE232 Lecture 8-7 Prof. Ming Wu

Spontaneous Emission and Gain Spectra for ΔF (T = 300 K)

1 1.2 1.4 1.6 1.80

1 1044×

2 1044×

3 1044×

4 1044×

5 1044×

ρr hvi( )

hvieV

1 1.2 1.4 1.6 1.81.5−

0

1.5

f_e hvi 300K, 1.5eV, ( )f_e hvi 300K, 1.55eV, ( )f_e hvi 300K, 1.6eV, ( )

hvieV

1 1.2 1.4 1.6 1.81.5− 106×

0

1.5 106×

α0 hvi( ) f_e hvi 300K, 1.5eV, ( )⋅

α0 hvi( ) f_e hvi 300K, 1.55eV, ( )⋅

α0 hvi( ) f_e hvi 300K, 1.6eV, ( )⋅

α0 hvi( )α0 hvi( )−

hvieV

ΔF= 1.5eV ΔF= 1.55eV ΔF= 1.6eV

Joint DOS

Emission Probability

Spontaneous Emission Spectra

1 1.2 1.4 1.6 1.80

1 1044×

2 1044×

3 1044×

4 1044×

5 1044×

ρr hvi( )

hvieV

1 1.2 1.4 1.6 1.81.5−

0

1.5

f_g hvi 300K, 1.5eV, ( )f_g hvi 300K, 1.55eV, ( )f_g hvi 300K, 1.6eV, ( )

hvieV

1 1.2 1.4 1.6 1.81.5− 106×

0

1.5 106×

α0 hvi( ) f_g hvi 300K, 1.5eV, ( )⋅

α0 hvi( ) f_g hvi 300K, 1.55eV, ( )⋅

α0 hvi( ) f_g hvi 300K, 1.6eV, ( )⋅

α0 hvi( )α0 hvi( )−

hvieV

Joint DOS

Fermi Inversion

Factor

Gain Spectra

ΔF= 1.5eV ΔF= 1.55eV ΔF= 1.6eV

EE232 Lecture 8-8 Prof. Ming Wu

Spontaneous Emission Lifetime

r21spon (!ω) = 1

τ rρr (!ω − Eg ) fe (!ω)

fe (!ω) = fC (E2 ) 1− fV (E1)( )

r21spon (E21) =

8πnr2E21

2

h3c2

1

1− eE21−ΔFkBT

g(E21)

=8πnr

2E212

h3c2

fe (!ω)fg (!ω)

C0 e! ⋅P!"cv

2

ρr (!ω − Eg )!

"#

$

%& fg (!ω)

⇒ τ r =h3c2

8πnr2E21

2⋅

1

C0 e! ⋅P!"cv

2

Typically τ r ~ 1 nsec

Flux_per_eV8 π⋅ nr2⋅ Eg2⋅

2 π⋅ h_bar⋅( )3 c2⋅:= Flux_per_eV 6.078 1047×

s

m4 kg⋅=

τ_r1

Flux_per_eV1

C0m06

⋅ Ep⋅⋅:=

τ_r 5.443 10 10−× s=

Page 5: EE 232 Lightwave Devices Lecture 8: Einstein’s AB ...inst.eecs.berkeley.edu/~ee232/sp16/lectures/EE232-8-Einstein AB Co… · EE 232 Lightwave Devices Lecture 8: Einstein’s AB

5

EE232 Lecture 8-9 Prof. Ming Wu

Alternative Form for Gain

C0 e! ⋅P!"cv

2

=h3c2

8πnr2E21

2⋅1τ r=hλ0

2

8πnr2τ r

g(!ω) = hλ02

8πnr2τ r

ρr (!ω − Eg ) fg (!ω)


Recommended