+ All Categories
Home > Documents > EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105...

EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105...

Date post: 21-Jul-2018
Category:
Upload: trandieu
View: 228 times
Download: 0 times
Share this document with a friend
24
EE105 – Fall 2015 Microelectronic Devices and Circuits MultiStage Amplifiers Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH)
Transcript
Page 1: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

EE105  – Fall  2015Microelectronic  Devices  and  Circuits

Multi-­Stage  Amplifiers

Prof.  Ming  C.  Wu  

[email protected]

511  Sutardja  Dai  Hall  (SDH)

Page 2: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Terminal  Gain  and  I/O  Resistances  of  MOS  Amplifiers

AV ,t = −gmRL

1+ gmRSRi =∞

Ro = ro 1+ gmRE( )#$ %&

AI ,t =∞

Without degeneration:Simply set RS = 0

AV ,t =RL1gm

+ RL

Ri =∞

Ro =1gm

AI ,t =∞

AV ,t = gmRL

Ri =1gm

Ro = ro 1+ gmRE( )!" #$

AI ,t ≈1

For  the  gain,  Ri,  Ro of  the  whole  amplifier,  you  need  to  include  voltage/current  dividers  at  input  and  output  stages

Common  Source (CS) Common  Drain  (CD) Common  Gate  (CG)

Page 3: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Summary  of  MOS  Single-­Transistor  Amplifiers

MOS Common  Source

Common  Sourcewith  Deg.

Common  Drain

Common  Gate

Ri ∞ ∞ ∞ SmallRo Large Very  Large Small LargeAV Moderate Small ~ 1 ModeratefH Small Moderate Large Large

Page 4: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Single  Stage  Amplifier  Cannot  Meet  All  Requirements

• For  example,  a  general  purpose  operational  amplifier  requires– High  input  resistance  ~  1MΩ– Low  output  resistance  ~  100Ω– High  voltage  gain  ~  100,000

• No  single  transistor  amplifier  can  satisfy  all  spec’s

• Cascading  multiple  stages  of  amplifiers  offers  a  path  towards  the  design

Page 5: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Multistage  Amplifiers

• Usually– An  input  stage  to  provide  required  input  resistance– Middle  stage(s)  to  provide  gain– An  output  stage  to  provide  required  output  resistance  or  drive  external  loads

• More  gain  !– Gain/stage  limited,  especially  in  nanoscale  devices

• Improve  Bandwidth– De-­couple  high  impedance  nodes  from  large  capacitors

• DC  coupling  (no  passive  elements  to  block  the  signal)– Use  amplifiers  to  naturally  “level  shift”  signal

Page 6: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Impedance  “Match”

• On-­chip  circuits  often  use  “voltage/current”  matching  to  minimize  loading

• Keep  in  mind  the  input  resistance  and  output  resistance  of  each  type  of  stage  so  that  the  loading  does  not  create  an  undesired  effect  

Ideal Rin Ideal RoutVoltage  Amplifier ∞ 0Current  Amplifier 0 ∞Transconductance Amplifier ∞ ∞Transresistance Amplifier 0 0

Page 7: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Two-­Stage  Voltage  Amplifier

• Boost  gain  by  cascading  Common-­Source  stages

CS1 CS2

Can  combine  into  a  single  2-­port  modelResults  of  new  2-­port:      Rin =  Rin1, Rout =  Rout2

CS1,2

Page 8: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  Cascade  Analysis

vin voutgm1vin gm2vintvint

Results  of  new  2-­port:      Rin = Rin1 = Rout = Rout2 =AV = vout/vin =

Page 9: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  Cascade  Bandwidth

vin voutgm1vin gm2vintvint

Two  time  constants:τ1 =τ2 =

Page 10: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Bandwidth  Extension

• Common  Source  stage  has  high  gain,  but  low  bandwidth

• Note  that  Miller  effect  is  the  culprit

• Follower  stage  can  buffer  source  resistance  from  Miller  cap

Page 11: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Bandwidth  Extension  Using  Source  Follower  (SF)

vin gm1vin vint voutgm2vint

COMMON  SOURCE COMMON  DRAIN COMMON  SOURCE          

Page 12: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  Example  with  Cap  Load

• Cin and  CS are  very  large,  therefore  they  look  like  short  circuits  to  the  AC  signal.

• If  CL is  very  large,  its  pole  dominates,  let’s  analyze

Page 13: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  with  Cap  Load  – Small  Signal

Rd

• What  are  the  time  constants  associated  with  the  capacitors  in  this  circuit?

• What  can  we  do  if  we  have  to  drive  a  large  CL?

R2//Rg1//Rg2~R2

Page 14: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  with  Cap  Load  – Bandwidth

• How  can  we  reduce  the  impact  of  CL?

• One  way  is  to  reduce  the  resistance  Rd,  but  this  reduces  our  low-­frequency  gain

• To  recover  the  gain  we  can  increase  gm1.  What  does  this  cost  us?

Page 15: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  with  Cap  Load  – BW  Extension

• A  better  way  to  extend  the  bandwidth  is  to  add  a  source-­follower  stage.

• Similar  to  previous  example

Page 16: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  with  Cap  Load  – BW  Extension

vin gm1vin vint

• By  adding  a  CD  (Source  Follower)  we  can  increase  the  bandwidth

• It  costs  us  power  for  the  CD  stage

• Remember  that  increasing  the  BW  by  increasing  gm1 costs  us  much  more

vint

1/gm2

Page 17: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

CS  +  CG

• Common  source  provides  gain,  CG  acts  as  a  buffer,  but  is  it  even  helping?

• How  do  you  bias  this  circuit?

Page 18: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Merged  CS  +  CG  =  Cascode

• Let’s  apply  2-­port  small-­signal  analysis

• In  this  case,  we  care  about  the  input  current  to  the  second  stage

• Note  that  the  input  resistance  of  the  CG  is  low,  therefore  the  majority  of  the  CS  current  is  fed  to  the  CG

• Av  =

vint

vout

Page 19: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Cascode  Bandwidth

• Draw  in  the  Cgs and  Cgd capacitors.

• Which  ones  are  Miller  effected?

• Is  this  better  or  worse  than  a  CS  without  a  CG?

Page 20: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Cascode  Bandwidth

• Draw  in  the  capacitors  and  input  resistance

vint

vout

Page 21: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Cascode  Biasing

l CG  has  a  very  large  output  resistancel Loading  it  with  RD is  likely  to  reduce  the  voltage  gainl We  can  increase  the  gain  by  using  a  current  source  load,  but  rocneeds  to  be  very  large.  Can  use  a  cascode  current  mirror!

Page 22: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Complete  Amplifier  Design

Goals: gm1 = 1 mS, Rout =5 MWWFor simplicity, let’s assume all gm and ro values are equal

AV ≈ −gm1Rout = −1mS *5MΩ = −5,000

Rout ≈12gmro

2 = 5MΩ

ro =20MΩgm

=10MΩ1mS

=100kΩ

Page 23: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Bias  Current  &  Device  Sizing

ro =1

λIDS=100kΩ

IDS =1

.1V −1 *100kΩ=100µA

gm = 2k ' WL

⎝⎜

⎠⎟IDS =1mS

WL=

gm2

2k ' IDS=

(1mS)2

2*100µ *100µA= 50

Need  to  know  process  parameters  to  solve  for  W/Lk’  =  100  μA/V2λ =  0.1 [V-­1]

Page 24: EE105 –Fall 2015 Microelectronic Devices and Circuitsee105/fa17/lectures/Module_4-4... · EE105 –Fall 2015 Microelectronic Devices and Circuits Multi-Stage Amplifiers Prof. Ming

Output  (Voltage)  Swing

Maximum VOUT =Minimum VOUT =Input Bias VIN =

Need to know VGS – VT (e.g. VDSAT , VOV)

gm =2IDS

VGS −VT=1mS

VGS −VT =2IDSgm

=2*100µA1mS

= 0.2V


Recommended