+ All Categories
Home > Documents > EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS...

EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS...

Date post: 07-Jul-2018
Category:
Upload: dangcong
View: 233 times
Download: 0 times
Share this document with a friend
32
EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 1 EE247 Lecture 16 • Administrative issues Midterm exam postponed to Thurs. Oct. 25th o You can only bring one 8x11 paper with your own written notes (please do not photocopy) o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones.... o Midterm includes material covered to end of lecture 14 o Also, reading material including IEEE publications for Nyquist rate data converters posted EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 2 EE247 Lecture 16 DAC Converters (continued) Segmented current-switched DACs DAC dynamic non-idealities DAC design considerations Self calibration techniques Current copiers Dynamic element matching DAC reconstruction filter ADC Converters – Sampling Sampling switch considerations Thermal noise due to switch resistance Sampling switch bandwidth limitations Switch induced distortion
Transcript
Page 1: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 1

EE247Lecture 16

• Administrative issues

Midterm exam postponed to Thurs. Oct. 25tho You can only bring one 8x11 paper with your own written

notes (please do not photocopy)o No books, class or any other kind of handouts/notes,

calculators, computers, PDA, cell phones....o Midterm includes material covered to end of lecture 14

o Also, reading material including IEEE publications for Nyquist rate data converters posted

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 2

EE247Lecture 16

• DAC Converters (continued)– Segmented current-switched DACs – DAC dynamic non-idealities– DAC design considerations– Self calibration techniques

• Current copiers• Dynamic element matching

– DAC reconstruction filter• ADC Converters

– Sampling• Sampling switch considerations

– Thermal noise due to switch resistance– Sampling switch bandwidth limitations– Switch induced distortion

Page 2: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 3

Summary Last Lecture

D/A converters continued:– Current based DACs-unit element versus binary weighted– R-2R type DACs– Static performance

• Component matching-systematic & random errors– Component random variations Gaussian pdf – INL for both unit-element and binary-weighted DACs:

σINL= σε x2B/2-1

– DNL for unit-element: σDNL= σε

– DNL for binary-weight DAC: σDNL= σε x2B/2

– Practical aspects of current-switched DACs

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 4

Unit Element versus Binary Weighted DACExample: B=10

B2

DNL

1

B

INL 2 1

S 2 1 24

6

0

ε

ε ε

σ σ

σ σ σ−

=

≅ =

= =

Significant difference in performance and complexity!

B2

B2

DNL

1INL

2 3

2 16

S B 10

ε ε

εσ σ

σ σ

σ

σ−

≅ =

≅ =

= =

Unit Element DAC Binary Weighted DAC

Number of switched elements:

Page 3: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 5

Segmented DACCombination of Unit-Element & Binary-Weighted

• Objective:Compromise between unit-element and binary-weighted DAC

• Approach:B1 MSB bits unit elementsB2 LSB bits binary weighted

• INL: unaffected same as either architecture• DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC

element turns on Same as binary weighted DAC with (B2+1) # of bits• Number of switched elements: (2B1-1) + B2

Unit Element Binary Weighted

VAnalog

MSB (B1 bits) (B2 bits) LSB

… …

BTotal = B1+B2

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 6

ComparisonExample:

B = 12, B1 = 5, B2 = 7B1 = 6, B2 = 6

Assuming: σε = 1%

( )B 122

B2

DNL INL

1INL

B12

2 2

2

S 2 1 B

ε

ε

σ σ σ

σ σ

+

≅ =

= − +

409563+6=6931+7=38

12

0.010.1130.160.64

0.320.320.320.32

Unit element (12+0)Segmented (6+6)Segmented (5+7)Binary weighted(0+12)

# of switched elements

σDNL[LSB]σINL[LSB]DAC Architecture(B1+B2)

MSB LSB

Page 4: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 7

Practical AspectsCurrent-Switched DACs

Binary Thermometer000 0000000001 0000001010 0000011011 0000111100 0001111101 0011111110 0111111111 1111111

• Unit element DACs ensure monotonicity by turning on equal-weighted current sources in succession

• Typically current switching performed by differential pairs

• For each diff pair, only one of the devices are on switch device mismatch not an issue

• Issue: While binary weighted DAC can use the incoming binary digital word directly, unit element requires a decoder

N to (2N-1) decoder

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 8

Segmented Current-Switched DACExample: 8bit 4MSB+4LSB

• 4-bit MSB Unit element DAC + 4-bit binary weighted DAC

• Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder

• Digital code for both DACs stored in a register

Page 5: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 9

Segmented Current-Switched DACCont’d

• 4-bit MSB Unit element DAC + 4-bit binary weighted DAC

• Note: 4-bit MSB DAC requires extra 4-to-16 bit decoder

• Digital code for both DACs stored in a register

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 10

Segmented Current-Switched DACCont’d

• MSB DecoderDomino logicExample: D4,5,6,7=1 OUT=1

• RegisterLatched NAND gate:CTRL=1 OUT=INB

Register

Domino Logic

IN

Page 6: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 11

Segmented Current-Switched DACReference Current Considerations

• Iref is referenced to VDD

Problem: Reference current varies with supply voltage

+

-

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 12

Segmented Current-Switched DACReference Current Considerations

• Iref is referenced to Vss GND

+-

Page 7: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 13

Segmented Current-Switched DACConsiderations

• Example:– 2bit MSB Unit

element DAC & 3bit binary weighted DAC

• To ensure monotonicity at the MSB LSB transition: First OFF MSB current source is routed to LSB current generator MSB

LSB

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 14

DAC Dynamic Non-Idealities

• Finite settling time– Linear settling issues: (e.g. RC time constants)– Slew limited settling

• Spurious signal coupling– Coupling of clock/control signals to the output via

switches

• Timing error related glitches– Control signal timing skew

Page 8: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 15

Dynamic DAC Error: Timing Glitch

• Consider binary weighted DAC transition 011 100

• DAC output depends on timing

• Plot shows situation where the control signals for LSB & MSB– LSB/MSBs on time– LSB early, MSB late– LSB late, MSB early

1 1.5 2 2.5 30

5

10

Idea

l

1 1.5 2 2.5 30

5

10

Ear

ly1 1.5 2 2.5 30

5

10

TimeLa

te

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 16

Glitch Energy• Glitch energy (worst case) proportional to: dt x 2B-1

• dt error in timing & 2B-1 associated with half of the switches changing state• LSB energy proportional to: T=1/fs

• Need dt x 2B-1 << T or dt << 2-B+1 T

• Examples:

Timing accuracy for data converters much more critical compared to digital circuitry

<< 488<< 1.5<< 0.5

121612

120

1000

dt [ps]Bfs [MHz]

Page 9: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 17

DAC Dynamic Errors• To suppress effect of non-idealities:

– Retiming of current source control signals• Each current source has its own clocked latch

incorporated in the current cell • Minimization of latch clock skew by careful

layout ensuring simultaneous change of bits

– To minimize control and clock feed through to the output via G-D of the switches• Use of low-swing digital circuitry

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 18

DAC Implementation Examples• Untrimmed segmented

– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983

– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315

• Current copiers:– D. W. J. Groeneveld et al, “A Self-Calibration Technique for

Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517

• Dynamic element matching:– R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795

Page 10: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 19

2μ tech., 5Vsupply6+2 segmented8x8 array

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 20

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

Page 11: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 21

Current-Switched DACs in CMOS

Iout

Example: 5 unit element current sources

VDD

I1 I2 I3 I4

Rx4I Rx3I Rx2I

M1 M2 M3 M4 I5M5

RxI

Assumptions:RxI small compared to transistor gate-overdriveTo simplify analysis: Initially, all device currents assumed to be equal to I

( )

M 2 M 1

M 3 M 1

M 4 M 1

M 5 M 1

M 2

M 1

GS GS

GS GS

GS GS

GS GS

2GS th2

2

2 1GS th

V V 4RI

V V 7RI

V V 9RI

V V 10RI

V VI k

4RI1I IV V

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

= −

= −

= −

= −

−=

−=−

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 22

Current-Switched DACs in CMOS

Iout

Desirable to have gm small

Example: 5 unit element current sources

VDD

I1 I2 I3 I4

Rx4I Rx3I Rx2I

M1 M2 M3 M4 I5M5

RxI

( )

( )

( )

( )

( )

M 2

M 1

M 1

M 1

M 1M 1

M 1M 1

M 1M 1

M 1M 1

22

GS th2 1GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

2m

4 1 1 m

2m

5 1 1 m

4RI1V VI k I

V V2I

gV V

4RgI I I 1 4Rg12

7RgI I I 1 7Rg12

9RgI I I 1 9Rg12

10RgI I I 1 10Rg12

⎛ ⎞−−= = ⎜ ⎟−⎝ ⎠=

−⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠⎛ ⎞

→ = ≈ −−⎜ ⎟⎝ ⎠

Page 12: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 23

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 24

Current-Switched DACs in CMOSExample: INL of 3-Bit unit element DAC

Input

INL

[LS

B]

Example: 7 unit element current source DAC- assume gmR=1/100

• If switching of current sources arranged sequentially (1-2-3-4-5-6-7)INL= +0.25LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 )INL = +0.09, -0.058LSB INL reduced by a factor of 2.6

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

0

Page 13: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 25

Current-Switched DACs in CMOSExample: DNL of 7 unit element DAC

Input

DN

L [L

SB

]

Example: 7 unit element current source DAC- assume gmR=1/100

• If switching of current sources arranged sequentially (1-2-3-4-5-6-7)DNLmax= + 0.15LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 )DNLmax = + 0.15LSB

DNL unchanged

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 26

More recent published DAC using symmetrical switching built in 0.35μ/3V analog/1.9V digital, area x10 smaller compared to previous example

(5+5)

Page 14: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 27

• Layout of Current sources -each current source made of 4 devices in parallel each located in one of the 4 quadrants

• Thermometer decoder used to convert incoming binary digital control for the 5 MSB bits

• Dummy decoder used on the LSB side to match the latency due to the MSB decoder

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 28

• Current source layout– MSB current sources layout

in the mid sections of the four quad

– LSB current sources on the periphery

– Two rows of dummy current sources added @ the periphery to create identical environment for devices in the center versus the ones on the outer sections

Page 15: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 29

• Note that each current cell has its clocked latch and clock signal laid out to be close to its switch to ensure simultaneous switching of current sources

• Special attention paid to the final latch to have the cross point of the complementary switch control signal such that the two switches are not both turned off during transition

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 30

• Measured DNL/INL with current associated with the current cells as variable

Page 16: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 31

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 32

I

I/2 I/2

Current Divider

16bit DAC (6+10)- MSB DAC uses calibrated current sources

Page 17: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 33

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 34

I

I/2 I/2

Ideal Current Divider

Current Divider Accuracy

I

I/2+dId /2

Real Current Divider

M1& M2 mismatched

d1 d 2d

d d1 d 2

d d

WLd

thWLd GS th

I II

2

dI I II I

ddI 2dV

I V V

+=

−=

⎡ ⎤⎛ ⎞= × +⎢ ⎥⎜ ⎟

− ⎝ ⎠⎣ ⎦

I/2-dId /2

M1 M2M1 M2

Problem: Device mismatch could severely limit DAC accuracy

Page 18: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 35

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 36

Dynamic Element Matching

( ) ( )

(1) ( 2 )2 22

1 1o

o

I II

2

1 1I2 2

I2

+=

− Δ + + Δ=

( )( )

(1) 1 o 11 2(1) 1 o 12 2

I I 1

I I 1

= + Δ

= − Δ

/ 2 error Δ1

I1

During Φ1 During Φ2

I2

fclk

Io

Io/2Io/2( )( )

( 2 ) 1 o 11 2( 2 ) 1 o 12 2

I I 1

I I 1

= − Δ

= + Δ

Page 19: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 37

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 38

Dynamic Element Matching

( )( )

( )( )( )214

1

2)1(

121)1(

3

121)1(

2

121)1(

1

111

1

1

Δ+Δ+=Δ+=

Δ−=

Δ+=

o

o

o

III

II

II ( )( )

( )( )( )214

1

2)2(

121)2(

3

121)2(

2

121)2(

1

111

1

1

Δ−Δ−=Δ−=

Δ+=

Δ−=

o

o

o

III

II

II

During Φ1 During Φ2

( )( ) ( )( )

( )21

2121

)2(3

)1(3

3

14

21111

4

2

ΔΔ+=

Δ−Δ−+Δ+Δ+=

+=

o

o

I

I

III

E.g. Δ1 = Δ2 = 1% matching error is (1%)2 = 0.01%

/ 2 error Δ1

I1

I2

fclk

Io

Io/2

/ 2 error Δ2

I3 I4

fclk

Io/4Io/4

Page 20: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 39

• Bipolar 12-bit DAC using dynamic element matching built in 1976• Element matching clock frequency 100kHz• INL <0.25LSB!

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 40

Example: State-of-the-Art current steering DAC

6bit unit-element 8bit binary

Page 21: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 41

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 42

DAC In the Big Picture

• Learned to build DACs– Convert the

incoming digital signal to analog

• DAC output staircase form

• Some applications require filtering (smoothing) of DAC output

reconstruction filter

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

Page 22: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 43

DAC Reconstruction Filter

• Need for and requirements depend on application

• Tasks:– Correct for sinc droop– Remove “aliases”

(stair-case approximation)

B fs/2

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DAC

Inpu

t

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

sinc

0 0.5 1 1.5 2 2.5 30

0.5

1

DAC

Out

put

Normalized Frequency f/fs

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 44

Reconstruction Filter Options

• Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2)

• Digital filter– Band limits the input signal prevent aliasing– Could also provide high-frequency pre-emphasis to

compensate in-band sinc amplitude droop associated with the inherent DAC S/H function

DigitalFilter DAC SC

FilterCT

Filter

Reconstruction Filters

Page 23: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 45

DAC Reconstruction Filter Example: Voice-Band CODEC Receive Path

Ref: D. Senderowicz et. al, “A Family of Differential NMOS Analog Circuits for PCM Codec Filter Chip,” IEEE Journal of Solid-State Circuits, Vol.-SC-17, No. 6, pp.1014-1023, Dec. 1982.

Note: fsigmax = 3.4kHz

fsDAC = 8kHz

sin(π fsigmax x Ts )/(π fsig

max xTs )= -2.75 dB droop due to DAC sinc shape

Receive Output

fs= 8kHz fs= 128kHzfs= 8kHz fs= 128kHz

fs= 128kHz

GSR

Reconstruction Filter& sinx/x Compensator

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 46

SummaryD/A Converter

• D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL– Segmented- unit element MSB(B1)+ binary weighted LSB(B2)

complexity proportional ((2B1-1) + B2) -DNL compromise between the two• Static performance

– Component matching• Dynamic performance

– Time constants, Glitches• DAC improvement techniques

– Symmetrical switching rather than sequential switching– Current source self calibration– Dynamic element matching

• Depending on the application, reconstruction filter may be needed

Page 24: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 47

What Next?

• ADC Converters:

– Need to build circuits that "sample“

– Need to build circuits for amplitude quantization

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 48

Analog-to-Digital Converters

• Two categories:– Nyquist rate ADCs fsig

max ~ 0.5xfsampling• Maximum achievable signal bandwidth higher compared

to oversampled type• Resolution limited to max. 12-14bits

– Oversampled ADCs fsigmax << 0.5xfsampling

• Maximum possible signal bandwidth lower compared to nyquist

• Maximum achievable resolution high (18 to 20bits!)

Page 25: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 49

MOS Sampling Circuits

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 50

Ideal Sampling• In an ideal world, zero

resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C

Output Dirac-like pulses with amplitude equal to VINat the time of sampling

• In practice not realizable!

vIN vOUT

CS1

φ1

φ1

T=1/fS

Page 26: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 51

Ideal Track & Hold Sampling

vIN vOUT

CS1

φ1

• Vout tracks input for ½ clock cycle when switch is closed• Grab exact value of Vin when switch opens• "Track and Hold" (T/H) (often called Sample & Hold!)

φ1

T=1/fS

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 52

Ideal T/H Sampling

ContinuousTime

T/H signal(Sampled-Data

Signal)

Clock

Discrete-TimeSignal

time

Trac

k

Hol

d

Page 27: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 53

Practical SamplingIssues

vIN vOUT

CM1

φ1

• Switch induced noise due to M1 finite channel resistance• Finite Rsw limited bandwidth finite acquisition time• Rsw = f(Vin) distortion• Switch charge injection & clock feedthrough• Clock jitter

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 54

kT/C Noise

• Switch resistance & sampling capacitor form a low-pass filter • Noise associated with the switch resistance results in Total noise

variance= kT/C @ the output (see noise analysis in Lecture 1)• In high resolution ADCs kT/C noise often dominates overall minimum

signal handling capability (power dissipation considerations).

vIN vOUT

C

S1RvIN vOUT

CM1

φ1 4kTRΔf

Page 28: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 55

Sampling Network kT/C NoiseFor ADCs sampling capacitor size is usually chosen based on having thermal noise smaller or equal or at times larger compared to quantization noise:Assumption: Nyquist rate ADC

2

2

2

2

2

212

1212

12

noise Q than equal)(or less is level noise thermalsuch that C Choose12

power noiseon quantizati Total :ADC rateNyquist aFor

FS

B

B

FS

B

B

B

VTkC

VTkC

CTk

×≥→

⎟⎟⎠

⎞⎜⎜⎝

⎛ −≥→

Δ≤

Δ≈

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 56

Sampling Network kT/C Noise

0.012 pF2.4 pF52 pF

824 pF211,200 pF

Cmin (VFS = 0.5V)

Required Cmin as a Function of ADC Resolution

0.003 pF0.8 pF13 pF

206 pF52,800 pF

812141620

Cmin (VFS = 1V)B

2

2212FS

BB

VTkC ≥

The large area required for C limit highest achievable resolution for Nyquist rate ADCs Oversampling results in reduction of required value for C (will be covered in oversampled converter lectures)

Page 29: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 57

Sampling Acquisition Bandwidth• The resistance R of switch

S1 turns the sampling network into a lowpass filter with finite time constant:τ = RC

• Assuming Vin is constant during the sampling period and C is initially discharged

• Need to allow enough time for the output to settle to less than 1 ADC LSB determines minimum duration for φ1 or maximum clock frequency

vIN vOUT

CS1

φ1

R

( )τ/1)( tinout evtv −−=

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 58

Sampling: Effect of Switch On-Resistance

Example:B = 14, C = 13pF, fs = 100MHzTs /τ >> 19.4, or 10τ <<Ts/2 R << 40 Ω

vIN vOUT

CS1

φ1

φ1

T=1/fS

R

tx

( )

( )

( )

/

2

since 11

2 ln

Worst Case:

1 0.722 ln 2 1

1 1 0.722 ln 2 1

s

tx tx tin out out in

Ts

inin

in FS

s sB

Bs s

V V V V eTV e or

V

V V

T TB

Rf C B f C

τ

τ τ

τ

− << Δ = −

→ << Δ <<⎛ ⎞⎜ ⎟Δ⎝ ⎠

=

×<< ≈−

<< − ≈−

Page 30: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 59

Switch On-Resistance

( ) ( )

( )

( )( )

0

1,2

1 1

1Let us call @ =0

1

DS

D triodeDSD triode ox GS TH DS

ON DS V

ON

ox GS th ox DD th in

in o o

ox DD th

oON

in

DD th

dIVWI C V V VL R dV

R W WC V V C V V VL L

R V R then R WC V VL

RR VV V

μ

μ μ

μ

⎛ ⎞= − − ≅⎜ ⎟⎝ ⎠

= =− − −

=−

=− −

Switch MOS operating in triode mode:

Vin

CM1

φ1 VDDVGS =VDD - Vin

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 60

Sampling Distortion

in

DD th

outT V12 V V

in

v

v 1 e τ

⎛ ⎞− −⎜ ⎟⎜ ⎟−⎝ ⎠

=⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

Simulated 10-Bit ADC &Ts/2 = 5τVDD – Vth = 2V VFS = 1VSampling Switch modeled:

Results in HD2=-41dBFS & HD3=-51.4dBFS

Page 31: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 61

Sampling Distortion

10bit ADC Ts/2 = 10 τVDD – Vth = 2V VFS = 1V

Doubling sampling time (or ½time constant)Results in:

HD2 improved from -41dBFS to -70dBFS ~30dB

HD3 improved from -51.4dBFS to -76.3dBFS ~25dB

Allowing enough time for the sampling network settling Reduces distortion due to switch R non-linear behavior to a tolerable level

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 62

Sampling DistortionEffect of Supply Voltage

10bit ADC & T/τ = 10VDD – Vth = 4V VFS = 1V

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

• Effect of higher supply voltage on sampling distortionHD3 decrease by (VDD1/VDD2)2

HD2 decrease by (VDD1/VDD2)

Page 32: EE247 Lecture 16 - University of California, Berkeleyee247/fa07/files07/lectures/L16_f... · EECS 247- Lecture 16 Data Converters:DAC Design ... EE247 Lecture 16 ... DAC Design (continued)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 63

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR sensitive to sampling distortion - improve linearity by:

• Larger VDD /VFS• Higher sampling bandwidth

• Solutions:• Overdesign Larger switches

Issue: Increased switchcharge injectionIncreased nonlinear S &D junction cap.

• Maximize VDD/VFSDecreased dynamic range

if VDD const.• Complementary switch• Constant & max. VGS ≠ f(Vin)

EECS 247- Lecture 16 Data Converters:DAC Design (continued) © 2007 H.K. Page 64

Practical SamplingSummary So Far!

2

2212

B

BFS

C k TV

( )1 for inON o o ox DD th

DD th

WVg g g C V VV V Lμ⎛ ⎞= − = −⎜ ⎟−⎝ ⎠

0.72

sR

B f C<<

• kT/C noise

• Finite Rsw limited bandwidth

• gsw = f (Vin) distortion

vINvOUT

CM1

φ1


Recommended