+ All Categories
Home > Documents > ee351lesson2_2009

ee351lesson2_2009

Date post: 07-Apr-2018
Category:
Upload: hasan-hatice-ilcali
View: 214 times
Download: 0 times
Share this document with a friend

of 12

Transcript
  • 8/3/2019 ee351lesson2_2009

    1/12

    OPERATIONAL AMPLIFIERSPart 1

    Mikroelektronik Devreler-1Yrd.Do.Dr. Mutlu BOZTEPE

    2. OPERATIONAL AMPLIFIERS (op-amps)

    Circuit symbol of an op-amp

    Widely used

    Often requires 2 power supplies + V

    Responds to difference between two signals

    Rin = infinity

    Rout = 0

    Avo = infinity (Avo is the open-loop gain)

    Bandwidth = infinity (amplifies all frequencies equally)

    2.2 Ideal op-amp

  • 8/3/2019 ee351lesson2_2009

    2/12

    Model of an ideal op-amp

    V+

    V-

    Vout = A(V+ - V-)+

    -

    +

    -

    Usually used with feedback

    Open-loop configuration not used much

    I-

    I+

    Summary of op-amp behavior

    Vout = A(V+ - V-)

    Vout/A = V+ - V-

    Let A infinity

    then,

    V+ -V- 0

    V+ = V-

    I+ = I- = 0

    Seems strange, but theinput terminals to an

    op-amp act as a short and

    open at the same time

  • 8/3/2019 ee351lesson2_2009

    3/12

    Gain of circuit determined by

    external components; R2 and R1

    2.3 Inverting configuration

    Analysis of inverting configuration;

    open-loop gain is infinite

    Vo/ Vi = -R2/ R1

    open-loop gain is finite

    Vo/ Vi -R2/ R1

    I1

    I2

    Virtual

    ground

    Input resistance; Ri = vI/i1 = R1

    Outpur resistance is zero

    2.4.2 Integrator

    I1 = (Vi - V-)/R1

    I2 = C d(V- - Vo)/dt

    set I1 = I2,

    (Vi - V-)/R1 = C d(V- - Vo)/dt

    but V- = V+ = 0

    Vi/R1 = -C d(Vo)/dtSolve for Vo

    Vo = -(1/CR1)( Vi dt)

    Output is the integral of

    input signal.

    I1

    I2

    CR1 is the time constant

    1/CR1 is integrator frequency Negative

  • 8/3/2019 ee351lesson2_2009

    4/12

  • 8/3/2019 ee351lesson2_2009

    5/12

    Problem 2.28

    t

    mS

    10.5 1.5

    1V

    -1V

    0

    Vo = -(t/1mS), for 0 < t < 0.5mS

    Vo = (t/1mS), for 0.5 < t < 1.0mS

    When t = 0.5mS, Vo = 0.5V

    CR1 = 1mS

    CR1 = 0.5mS

    Exercise 2.6

    Design an integrator (find RC) such that the output has a 20Vp-p

    amplitude given the input below.

    Vo = -(1/CR)( Vi dt)

    Vi = 10V, 0 < t < 1.0mS

    Vo = -(1/RC)

    Vo = -10t/RC

    let t = 1.0mS, and Vo = -20

    20 = 0.01/RC

    RC = 0.5mS

    t2mS

    10V

    -10V

    Vi

    t

    dt

    0

    10

    Vout

  • 8/3/2019 ee351lesson2_2009

    6/12

    2.5 Noninverting configuration

    (0 - V-)/R1 = (V- - Vo)/R2

    But, Vi = V+ = V-,

    ( - Vi)/R1 = (Vi - Vo)/R2

    Solve for Vo,

    Vo = Vi(1+R2/R1)

    Vi

    I

    I

    Positive

    VirtualVi

    Buffer amplifier

    Vi = V+ = V- = Vo

    Vo = Vi

    Isolates input

    from output

  • 8/3/2019 ee351lesson2_2009

    7/12

    Analyzing op-amp circuits

    Write node equations using:

    V+ = V-

    I+ = I- = 0

    Solve for Vout

    Usually easier, can solve most

    problems this way.

    Write node equations using:

    model, let A infinity

    Solve for Vout

    Works for every op-amp circuit.

    OR

    Input resistance of noninverting amplifier

    Vout =

    A(V+ -V-)

    V-

    V+

    Rin = Vin/ I, from definition

    Rin = Vin/ 0

    Rin = infinity

    I

  • 8/3/2019 ee351lesson2_2009

    8/12

    Input resistance of inverting amplifier

    Vout =

    A(V+ - V-)

    V-

    V+

    Rin = Vin/ I, from definition

    I = (Vin - Vout)/R

    I = [Vin - A (V+ - V-)] / R

    But V+ = 0

    I = [Vin - A( -Vin)] / R

    Rin = VinR / [Vin (1+A)]

    As A approaches infinity,

    Rin = 0

    I

    Summary of op-amp behavior

    Vi

    Inverting configuration Noninverting configuration

    Vo/Vi = 1+R2/R1

    Rin = infinity

    Vo/Vi = - R2/R1

    Rin = R1

    Rin = 0 at

    this point

    Vi

  • 8/3/2019 ee351lesson2_2009

    9/12

    Fig. 2.21 A difference amplifier.

    Difference amplifier

    Use superposition,

    set V1 = 0, solve for Vo

    (noninverting amp)

    set V2 = 0, solve for Vo

    (inverting amp)

    Add the two results

    Vo = -(R2/R1)V1 + (1 + R2/R1) [R4/(R3+R4)] V2

    Difference amplifier

    Vo1 = -(R2/R1)V1 Vo2 = (1 + R2/R1) [R4/(R3+R4)] V2

    V2 R4/(R3+R4)

  • 8/3/2019 ee351lesson2_2009

    10/12

  • 8/3/2019 ee351lesson2_2009

    11/12

    Improving the input resistance of amplifiers

    Add buffer amplifiers to the inputsRin = infinity at both V1 and V2

    Instrumentation Amplifier

  • 8/3/2019 ee351lesson2_2009

    12/12

    Prob. 2.55

    (a) Find Rin at V1.Ground V2, Rin = R.

    (b) Find Rin at V2.Ground V1, Rin = 2R.

    Rin = V/I from definition.

    Write voltage loop,

    V = IR + IR, I = V/2R

    Rin = V/I = V2R/V

    Rin = 2R

    +

    V

    -

    I

    I

    (c) Find Rin between V1 and V2.

    Rin = V/I from definition

    I1 = V/2R from Ohms law

    I2 = (V - V/2)R = V/2R because V+ = V-

    Rin = V/ (I1 + I2) = V2R/2V

    Rin = R

    I

    +

    V

    -

    I1 = V/2R

    I2

    V/2

    (d) Find Rin between V1 and V2

    connected together and ground.

    Prob. 2.55