+ All Categories
Home > Documents > Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC)...

Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC)...

Date post: 26-Feb-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
13
‹#› EENG224 Eeng224 Circuit II, Course Information Instructor: Mustafa Kemal Uyguroğlu, Room No: EE 134, Office Tel: 630 1433 Office Hours: Wednesday 09:3010:20, Friday 09:3010:20 (Otherwise: Anytime I am available in my office) Course Webpage: http://opencourses.emu.edu.tr/course/view.php?id=12&notifyeditingon=1 Lecture Notes : Assoc. Prof. Dr. Hüseyin Bilgekul Lab Assistant: Textbook: C. K. Alexander and M. N. O. Sadiku, Electric Circuits, 5th Edition, McGraw-Hill. Grading: Midterm 1 Exam : % 30 Final Examination : % 40 HW & Quizzes : % 15 Lab Work : % 15 Prerequisite: EENG223 Circuit Theory I Attendance Requirements: Students must attend all the lab sessions. Students are also expected to attend the lectures. Make-up Policy: Students missing an examination should provide a valid excuse within three days following the examination they missed. No separate make-up exams are administered for midterm and final exams. Re-sit examination are administered as make-up examinations, instead. NG POLICY: Any student who has an overall failing grade, and who has failed to attend the lectures regularly (min 80%) will be given the NG grade.
Transcript
Page 1: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Eeng224 Circuit II, Course Information

Instructor: Mustafa Kemal Uyguroğlu, Room No: EE 134, Office Tel: 630 1433

Office Hours: Wednesday 09:30–10:20, Friday 09:30–10:20 (Otherwise: Anytime I am available in my

office)

Course Webpage: http://opencourses.emu.edu.tr/course/view.php?id=12&notifyeditingon=1

Lecture Notes : Assoc. Prof. Dr. Hüseyin Bilgekul

Lab Assistant:

Textbook: C. K. Alexander and M. N. O. Sadiku, Electric Circuits, 5th Edition, McGraw-Hill.

Grading:

Midterm 1 Exam : % 30

Final Examination : % 40

HW & Quizzes : % 15

Lab Work : % 15

Prerequisite: EENG223 Circuit Theory I

Attendance Requirements: Students must attend all the lab sessions. Students are also expected to

attend the lectures.

Make-up Policy: Students missing an examination should provide a valid excuse within three days following the

examination they missed. No separate make-up exams are administered for midterm and final exams. Re-sit examination

are administered as make-up examinations, instead.

NG POLICY: Any student who has an overall failing grade, and who has failed to attend the lectures regularly (min 80%)

will be given the NG grade.

Page 2: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Chapter 9 Sinusoids and Phasors

Chapter Objectives:

Understand the concepts of sinusoids and phasors. Apply phasors to circuit elements.

Introduce the concepts of impedance and admittance.

Learn about impedance combinations. Apply what is learnt to phase-shifters and AC

bridges.

Page 3: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two prescribed levels in a set

time sequence.

Instantaneous value: The magnitude of a waveform at any instant of time; denoted by the lowercase

letters (v1, v2).

Peak amplitude: The maximum value of the waveform as measured from its average (or mean) value,

denoted by the uppercase letters Vm.

Period (T): The time interval between successive repetitions of a periodic waveform.

Cycle: The portion of a waveform contained in one period of time.

Frequency: (Hertz) the number of cycles that occur in 1 s

The sinusoidal waveform is the only alternating waveform whose shape is

unaffected by the response characteristics of R, L, and C elements.

1fT

T

Page 4: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Sinusoids The sinusoidal wave form can be derived from the length of the vertical projection of a radius vector

rotating in a uniform circular motion about a fixed point.

The velocity with which the radius vector rotates about the center, called the angular velocity, can be

determined from the following equation:

The angular velocity ( ) is:

Since ( ) is typically provided in radians per second, the angle α obtained using α = t is usually in

radians.

The time required to complete one revolution is equal to the period (T) of the sinusoidal waveform. The

radians subtended in this time interval are 2π.

2or 2 f

T

t

sinmV

cosmV

Page 5: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Sinusoids The basic mathematical format for the sinusoidal waveform is:

Vmsinα

Vm is the peak value of the waveform and α is the unit of measure for the horizontal axis.

The equation α = t states that the angle α through which the rotating vector will pass is determined by

the angular velocity of the rotating vector and the length of time the vector rotates.

For a particular angular velocity (fixed ), the longer the radius vector is permitted to rotate (that is, the

greater the value of t ), the greater will be the number of degrees or radians through which the vector will

pass. The general format of a sine wave can also be as:

sin( )mV t

Page 6: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Sketch of Vmsin t.

Sinusoids A SINUSOID is a signal that has the form of the sine or cosine function.

The sinusoidal current is referred to as AC. Circuits driven by AC sources are referred to as AC Circuits.

(a) As a function of t. (b) As a function of t .

• Vm is the AMPLITUDE of the sinusoid.

• is the ANGULAR FREQUENCY in radians/s.

• f is the FREQUENCY in Hertz.

• T is the period in seconds.

12 andf fT

T Period

Page 7: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Phase of Sinusoids A periodic function is one that satisfies v(t) = v(t + nT), for all t and for all integers n.

12f Hz f

T

Only two sinusoidal values with the same frequency can be compared by their amplitude and phase difference.

If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

Page 8: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Phase of Sinusoids The terms lead and lag are used to indicate the relationship between two

sinusoidal waveforms of the same frequency plotted on the same set of axes.

The cosine curve is said to lead the sine curve by 90

.

The sine curve is said to lag the cosine curve by 90

.

90 is referred to as the phase angle between the two waveforms.

When determining the phase measurement we first note that each sinusoidal

function has the same frequency, permitting the use of either waveform to determine

the period.

Since the full period represents a cycle of 360°, the following ratio can be formed:

Page 9: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Phase of Sinusoids Consider the sinusoidal voltage having phase φ, ( ) sin( )mv t V t

• v2 LEADS v1 by phase φ.

• v1 LAGS v2 by phase φ.

• v1 and v2 are out of phase.

Page 10: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

(120 V at 60 Hz) versus (220 V at 50 Hz) AC In North and South America the most common available ac supply is 120 V at 60 Hz, while

in Europe and the Eastern countries it is 220 V at 50 Hz.

Technically there is no noticeable difference between 50 and 60 cycles per second (Hz).

The effect of frequency on the size of transformers and the role it plays in the generation and

distribution of power was also a factor.

The fundamental equation for transformer design is that the size of the transformer is

inversely proportional to frequency.

A 50 HZ transformer must be larger than a 60 Hz (17% larger) sinusoidal voltage having

phase φ.

Higher frequencies result in concerns about arcing, increased losses in the transformer core

due to eddy current and hysteresis losses, and skin effect phenomena.

Larger voltages (such as 220 V) raise safety issues beyond those of 120 V.

Higher voltages result in lower current for the same demand, permitting the use of smaller

conductors.

Motors and power supplies, found in common home appliances and throughout the

industrial community, can be smaller in size if supplied with a higher voltage.

Page 11: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Trigonometric Identities Sine and cosine form conversions.

2 2 -1

sin( ) sin cos cos sin

cos( ) cos cos sin sin

sin( 180 ) sin

cos( 180 ) cos

sin( 90 ) cos

cos( 90 ) sin

cos sin cos( )

Where

C= A and =tan

A B A B A B

A B A B A B

t t

t t

t t

t t

A t B t C t

BB

A

cos( 90 ) sint t

sin( 180 ) sint t

Graphically relating sine

and cosine functions.

Page 12: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

Figure shows a pair of waveforms v1 and v2 on an oscilloscope. Each major vertical division represents 20 V and each major division on the horizontal (time) scale represents 20 ms. Voltage v1 leads. Prepare a phasor diagram using v1 as reference. Determine equations for both voltages.

Page 13: Eeng224 Circuit II, Course Information · 2013. 9. 18. · EENG224 ‹#› Alternating (AC) Waveforms The term alternating indicates only that the waveform alternates between two

‹#› EENG224

EXERCISE Voltage and current are out of phase by 40°, and voltage lags. Using current as the reference, sketch the phasor diagram and the corresponding waveforms.


Recommended