+ All Categories
Home > Documents > EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf ·...

EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf ·...

Date post: 09-Apr-2018
Category:
Upload: ngothien
View: 212 times
Download: 0 times
Share this document with a friend
27
1 Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology EET 157 Electronics Circuit Analysis # 05 Revised by Dr. Athula Kulatunga
Transcript
Page 1: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

1

Purdue University EET 157 - 05 Electronics Circuit Analysis

Electrical Engineering Technology

EET 157

Electronics Circuit Analysis # 05

Revised by Dr. Athula Kulatunga

Page 2: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

2

Purdue University EET 157 - 05 Electronics Circuit Analysis

Overview

♦Multivibrators

♦ 555 Timer

♦ 555 Timer Monostatble Multivibrators

♦555 Timer Astable Multivibrators

Page 3: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

3

Purdue University EET 157 - 05 Electronics Circuit Analysis

Waveforms

sine square rectangle

A dc source can be used to generate all the above shapes

triangle exponentialsawtooth

Page 4: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

4

Purdue University EET 157 - 05 Electronics Circuit Analysis

Multivibrators

Pulse generatorsTypes Characteristics

Astable or free-running no stable stateMonostable or one shot one stable stateBistable two stable states

Page 5: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

5

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable or Free-running

Astable Multivibrator

Vout

unstableVH

VL unstable

TL

T

TH

W

Page 6: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

6

Purdue University EET 157 - 05 Electronics Circuit Analysis

Duty Cycle

Defined for rectangular waveforms

%100×=TW

D

Square wave has 50% duty cycle.

Why?

Page 7: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

7

Purdue University EET 157 - 05 Electronics Circuit Analysis

Duty Cycle Example 1

A rectangular signal is high for 4 ms and low for 6 ms. Find the signal’s period, pulse width, duty cycle, and frequency.

Page 8: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

8

Purdue University EET 157 - 05 Electronics Circuit Analysis

Duty Cycle Example 2

A rectangular waveform has a frequency of 1k Hz and a duty cycle of 60%. Find the signal’s repetition rate, period, and pulse width.

Page 9: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

9

Purdue University EET 157 - 05 Electronics Circuit Analysis

Monostable Operation

unstable

VL stable

VH

W

T1

Monostable Multivibrator

VoutVin

T1 T1

The monostable multivibrator produces a well-defined pulse out for an input signal that may not be well defined (a narrow pulse or a spike)

Page 10: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

10

Purdue University EET 157 - 05 Electronics Circuit Analysis

Bistable OperationThe bistable multivibrator has two stable states and utilizes one input pulse to take the output high and another input pulse to take the output low.

VH

VL stable

stable

Bistable Multivibrator

VoutVin_1

T1

Vin_2 T1 T2

T2

Page 11: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

11

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer IC - Schematic

SET

RESET

Q

Q

RS Flip-FlopUTP

LTP

To +Esupply

VCC

8

1COMMON

2TRIGGER

THRESHOLD6

5CONTROL

4RESET

3OUTPUT

DISCHARGE

7

R

R

R

U1

U2

Q1

Inverter

Page 12: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

12

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer IC - Features• Q FF output−high or low output• Q Complement (opposite) of Q−low or high

output• SET FF input−high signal sets high and low• RESET FF input−high signal in resets low and high• U1 Noninverting comparator driving the FF set input• U2 Inverting comparator driving the FF reset input• UTP Upper trip point for U1 set by 2R/3R of Esupply

• LTP Lower trip point for U2 set by R/3R of Esupply

• Q1 BJT used to discharge external capacitor when Q high• Pin 7 Open or tied to common through BJT switched on

Page 13: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

13

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer - Symbol & Chip

1

2

3

4

5

6

7

8

555

LM

555

1

2

4

3

7

5

6

8

Page 14: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

14

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer – Monostable Connection

12

3

4

5

6

78

555

+5 V

vout

R1 k

C1 µ

0.01 µ

0 V

3.33 V

T1

W

+5 V

less than 1.67 V

T1

W

T1

+5 V

0 V

input

RCcharge

capacitordischargethrough BJT

Output stays at 0 Vuntil input dipsbelow 1.67 V.

Page 15: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

15

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer – Monostable Operation

SET

RESET

Q

Q

RS Flip-FlopUTP

LTP

To +E supply

VC C

8

1COMMON

2TRIGGER

THRESHOLD6

5CONTROL

4RESET

3OUTPUT

DISCHARGE7

R

R

R

U1

U2

Q1

Inverter

+5Vdc

1k

1uL

H ON

0V

L

5VL

Remains SET

Page 16: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

16

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer – Monostable Operation

SET

RESET

Q

Q

RS Flip-FlopUTP

LTP

To +E supply

VC C

8

1COMMON

2TRIGGER

THRESHOLD6

5CONTROL

4RESET

3OUTPUT

DISCHARGE7

R

R

R

U1

U2

Q1

Inverter

+5Vdc

1k

1uH

L OFFStart

Charging

H

H

RESET

Drop below

1.67V

3.3V

SET

H

L

ONStart

Discharging

0V

Page 17: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

17

Purdue University EET 157 - 05 Electronics Circuit Analysis

Monostable Pulse Width Calculation

ms1F1k1 =µ×Ω==τ RC( ) τ/

C eV5V0V5)( ttv −−+=ms1/

C eV5V5)( ttv −−=ms1/eV5V5V33.3 t−−=

ms10.1=t ms10.1=W

The pulse width W is the time required to charge the capacitor; therefore,

vout

T1

W

+5 V

0 V

Page 18: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

18

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer – Astable Connection

12

3

4

56

7

8

555

+5 V

vout

R21 k

C1 µ

0.01 µ

R11 k

(R1+R2) Cchargetowardsupply

(R2) Cdischarge

through pin 7and BJT short to

common

W

T

TLTH

Page 19: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

19

Purdue University EET 157 - 05 Electronics Circuit Analysis

555 Timer – Astable Operation

SET

RESET

Q

Q

RS Flip-FlopUTP

LTP

To +E supply

VC C

8

1COMMON

2TRIGGER

THRESHOLD6

5CONTROL

4RESET

3OUTPUT

DISCHARGE7

R

R

R

U1

U2

Q1

Inverter

+5Vdc

R1: 1k

1u L

ON

R2: 1k

H

Discharge

towards 0V

<1.67V

H

RESET

L

H

OFF

Charge

Towards 5V

from 1.67V

<3.3V

L

H

SET

H

L

ON

Discharge Towards

0V through R2

Length Depend on (R1+R2)C

Depend on (R2)C

Page 20: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

20

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Width CalculationThe pulse width W depends upon the (R1 + R2) C

time constant τH and the capacitor charging from 1.67 V to 3.33 V while the output is in the high (or 5 V) state. The capacitor must follow the universal dc transient expression

τ/ssinitssC e)()( tVVVtv −−+=

( ) ms2F1k2C2R1R =µ×Ω=+=

( ) ms2/C eV5V67.1V5)( ttv −−+=

ms2/C eV33.3V5)( ttv −−=

τ

Page 21: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

21

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Width Calculation

The capacitor charges to 3.33 V (or 2/3 of VCC) when it transitions back to its stable state. Set the capacitor voltage expression equal to 3.33 V and solve the expression inversely for the time t required to charge the capacitor to 3.33 V.

ms2/eV33.3V5V33.3 t−−= ms386.1=t

Page 22: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

22

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Width Calculation

The pulse width W is the time required to charge the capacitor, so

ms386.1=W

Page 23: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

23

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Space Calculation

uThe time TL of the pulse depends upon the (R2) C time constant τL and discharging the capacitor from 3.33 V to 1.67 V while the output is in the low (0 V) state. The capacitor must follow the universal dc transient expression

Page 24: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

24

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Space Calculation

The capacitor starts with a value of 3.33 V (initial value) and attempts to fall to 0 V

( ) ms1F1k1C2RL =µ×Ω==τ

( ) ms1/C eV0V33.3V0)( ttv −−+=

ms1/C eV33.3)( ttv −=

Page 25: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

25

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Space Calculation

u The capacitor discharges to 1.67 V (or 1/3 of VCC), when it transitions back to its stable state. Set the capacitor voltage expression equal to 1.67 V and solve the expression inversely for the time t required to discharge the capacitor to 1.67 V.

ms1/eV33.3V67.1 t−=

ms693.0=t

ms693.0=t

ms693.0L =T

ms693.0L =T

Page 26: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

26

Purdue University EET 157 - 05 Electronics Circuit Analysis

Astable Pulse Space Calculation

T = TH + TLT = 1.386ms +0.693 msT = 2.079 ms

f = 1/T f = 481 Hz

W

T

TL

TH

Page 27: EET 157 - New Jersey Institute of Technologyecelabs.njit.edu/fed101/resources/555_Timer.pdf · Purdue University EET 157 - 05 Electronics Circuit Analysis Electrical Engineering Technology

27

Purdue University EET 157 - 05 Electronics Circuit Analysis

Overview

♦Multivibrators

♦ 555 Timer

♦ 555 Timer Monostatble Multivibrators

♦555 Timer Astable Multivibrators


Recommended