+ All Categories
Home > Documents > EET 2261 Unit 8 System Clocks; Seven-Segment Displays; S19 Records

EET 2261 Unit 8 System Clocks; Seven-Segment Displays; S19 Records

Date post: 24-Feb-2016
Category:
Upload: istas
View: 28 times
Download: 0 times
Share this document with a friend
Description:
EET 2261 Unit 8 System Clocks; Seven-Segment Displays; S19 Records. Read Almy , Section 16 and Appendix B. Homework #8 and Lab #8 due next week. Quiz next week. Review: HCS12 Block Diagram. - PowerPoint PPT Presentation
Popular Tags:
39
EET 2261 Unit 8 Seven-Segment Displays; S19 Records; System Clocks Read Almy, Appendix B and Chapter 16. Homework #8 and Lab #8 due next week. Quiz next week.
Transcript
Page 1: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

EET 2261 Unit 8Seven-Segment Displays; S19 Records; System Clocks

Read Almy, Appendix B and Chapter 16.

Homework #8 and Lab #8 due next week.

Quiz next week.

Page 2: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Recall that a seven-segment display has LEDs named a through g (and possibly one or two LEDs for decimal points) that can be lit up to display characters.

Seven-Segment Displays

Page 3: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Every seven-segment display is either: • Common-cathode: each LED has its own

anode pin, and all LEDs share a single cathode pin.

• Or common-anode: each LED has its own cathode pin, and they all share a single anode pin.

• The Dragon12’s are common-cathode.

Common-Cathode or Common-Anode?

Page 4: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Recall that LEDs will burn out if you pass too much current through them.

• Each LED should always be connected in series with its own current-limiting resistor, typically between 220 Ω and 470 Ω.

• So if you wire a seven-segment display, you’ll need about eight of these current-limiting resistors: one for each segment and decimal point. (This is already done for us on the Dragon12 board.)

Current-Limiting Resistors

Page 5: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Often we use banks of several seven-segment displays to show several digits.

• Example: For a clock that displays hours, minutes, and seconds, we’d need six seven-segment displays.

• The result: a lot of connections and a lot of current-limiting resistors (if you take the “brute-force” approach described below).

Banks of Seven-Segment Displays

Page 6: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

1. Brute force approach• Simple, but eats up a lot of resources

(such as I/O ports on the HCS12).

2. Multiplexing approach• Harder to understand, but much more

efficient in its use of limited resources (such as I/O ports).

• This approach is described on pages 24-26 of Dragon12 manual and in the textbook’s Appendix B.

Two Approaches to Controlling a Bank of Seven-Segment Displays

Page 7: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Connect a seven-segment display’s eight anode pins through current-limiting resistors to one of the HCS12 chip’s ports.

• Also connect the display’s common cathode pin to ground.

• Driving several displays in this way will use several of the I/O ports on our HCS12 chip.

Approach #1: Brute Force

Page 8: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Implementing Approach #1 (Brute Force) for Two Displays

Page 9: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• In the second approach, we use a single HCS12 port to drive the anode pins on all of the displays.

• We also connect the common-cathode pins to another HCS12 port. This lets us turn a particular display on (by making the common-cathode pin LOW) or off (by setting the common cathode pin HIGH).

Approach #2: Multiplexing

Page 10: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• We sequence quickly through the displays, turning each one on for an instant:1. Send out the code for the first display’s digit.2. Turn the first display on by setting its cathode

LOW and setting all of the other cathodes HIGH.3. Brief delay.4. Send out the code for the second display’s digit.5. Turn the second display on by setting its

cathode LOW and setting all of the other cathodes HIGH.

6. Brief delay.7. And so on for each of the other displays.8. Repeat the entire sequence from Step 1.

Approach #2: Multiplexing (Cont.)

Page 11: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Implementing Approach #2 (Multiplexing) for Two Displays

Page 12: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Our trainer board uses the multiplexing approach for its four seven-segment displays.

• See Schematic Diagram 4 and pages 24-26 of Dragon12 manual.

Seven-Segment Displays on the Dragon12 Trainer

Page 13: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• We’ve seen that the seven-segment displays’ anode pins are wired to Port B and their common cathode pins are wired to Port P.

• So to use the seven-segment displays, we must first configure Ports B and P as outputs.

Reminder: You Must Configure Ports as Inputs or Outputs

Page 14: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Downloading a Program from CodeWarrior to the HCS12

• When CodeWarrior downloads a program to the HCS12, it does so using a widely used standard called the Motorola S19 file format. (http://en.wikipedia.org/wiki/S19_(file_format))

• In Lab #3 you briefly examined an S19 file for a program that you were downloading. One line (or “record”) of that file looked like this:

S109200086038B0520FE9F

• See next slide for analysis of this record.

Page 15: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Analyzing a Record from an S19 File

• We can break the record into five pieces:

S1 09 2000 86038B0520FE 9F

Record type: Identifies this record as a data sequence record containing a two-byte address.

Byte Count: Tells how many bytes follow in this record.

Address: The starting address in memory where the following data bytes are to be located.

Data: The data bytes being downloaded. In our case, this is the machine code for a simple program.

Checksum: For error-checking. It’s similar to the parity bits that are sometimes attached to data for error-checking.

Page 16: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Checksums• A checksum byte is an extra byte

appended to data that is being transmitted. Its purpose is to allow error checking by the receiver. (Similar to a parity bit.)

• There are different ways to compute checksum bytes. They’re all effective, as long as the sender and the receiver are using the same method. See next two slides for the checksum method used in S19 files.

Page 17: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Generating the Checksum in an S19 Record

• The sender uses the following method to calculate the checksum byte:

1. Add the byte count, the address bytes, and the data bytes, discarding any carries.

2. Take the one’s-complement of the sum.

• The result of Step 2 is the checksum byte for this record.

Page 18: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Checking the Checksum in an S19 Record

• The receiver uses the following method to check for errors:

1. Add the byte count, the address bytes, the data bytes, and the checksum byte, discarding any carries.

2. The result should equal $FF. If it does not equal $FF, an error has occurred during transmission.

Page 19: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Up to now we’ve focused on the HCS12’s central processing unit, CPU12 in the block diagram (on page 6 of textbook or page 23 of Device User Guide).

• We’ve also looked at the memory blocks (Flash, RAM, EEPROM).

• And we’ve looked at the general-purpose I/O ports (PTA, PTB, etc. in the diagram).

Review: HCS12 Block Diagram

Page 20: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• In coming weeks we’ll study other hardware “blocks” (or subsystems) in the HCS12, such as:• Clock and Reset Generator Block• Enhanced Capture Timer Block• Interrupt Block• And others

• Up to now our primary reference guide has been the CPU reference manual, but now we’ll need the reference guides for the other blocks, listed here.

Review: HCS12 Block Diagram

Page 21: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Review: Special-Function Registers

• Recall that the HCS12 has hundreds of special-function registers.

• Most of these registers are either:• Data registers, which transfer data from place

to place. (Example: PORTA)

• Control registers, which control various aspects of the chip’s operation. (Example: DDRA)

• Status registers, which hold status information about events that have occurred.

Page 22: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Review: How to Access the Special-Function Registers

• In the HCS12’s memory map (page 26 of Device User Guide), addresses from $0000 to $03FF are assigned to the special-function registers.

• When you execute an LDAA or STAA instruction to one of these addresses, you’re not reading or writing to memory; instead, you’re reading from or writing to a special-function register.

Page 23: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Review: List of Special-Function Registers

• Pages 27-49 in the Device User Guide list all of the special-function registers and their addresses.

Page 24: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Finding Details on the Special-Function Registers

• Up to now the only special-function registers we’ve used are the ones associated with I/O ports, such as PORTA, DDRA, etc.

• In coming weeks we’ll discuss many more special-function registers, which are associated with individual hardware blocks.

• For details on how these registers are used, refer to the block user guides.

Page 25: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Finding Details on the Special-Function Registers: Example

• Example: The register at address $0034, named SYNR, is one of many associated with the Clock and Reset Generator.

• For details on this register, refer to p. 15 of the Clock and Reset Generator Block User Guide.

Page 26: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• Next we’ll look at the Clock and Reset Generator block, which includes an important circuit called a Phase-Locked Loop (PLL).

• Figure from p. 6 of textbook or p. 23 of Device User Guide).

Clock and Reset Generator (CRG) Block

Page 27: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Overview: Clock and Reset Generator (CRG) Block

• As its name suggests, this hardware block has two major responsibilities:1. Generating the HCS12’s clock signals 2. Resetting the HCS12 under certain

conditions.• See block

diagram on p. 11 of the CRG Block User Guide.

Page 28: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Reset Generator• Four conditions can cause the system to

reset itself:1. Applying power to the chip’s power pin.2. Pressing RESET button connected to pin

42.3. Clock Monitor

failure.4. Computer

Operating Properly (COP) timeout.

Page 29: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Clock Generator• Three clock signals are used by different

parts of the system:1. Core Clock.2. Bus Clock, whose frequency is ½ of the

Core Clock.3. Oscillator

Clock.• The one we care

most about is the Bus Clock, which tells us the instruction cycle time.

Page 30: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Oscillator and External Crystal • All three clock signals are derived ultimately

from the external crystal connected to the chip’s oscillator.

• See diagram on p. 32 of the CRG Block User Guide.

Page 31: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Bypassing the Phase Locked Loop (PLL)

• In the simplest case, we bypass the internal phase locked loop (PLL) circuit and just use the oscillator’s output.

• In this case, the Core Clock and Oscillator Clock will run at the crystal frequency, and the Bus Clock will run at ½ this frequency.

• Example: The Dragon12 has an 8-MHz crystal, so if we bypass the PLL, our clock frequencies will be:• Oscillator Clock = 8 MHz• Core Clock = 8 MHz• Bus Clock = 4 MHz

Page 32: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Using the PLL• The PLL circuit lets us increase or decrease

the Core Clock and Bus Clock frequencies above or below what they would be if we just used the crystal and oscillator.

• Example: By default, CodeWarrior uses the Dragon12’s PLL to multiply the oscillator frequency by 6. Since we have an 8-MHz crystal, our clock frequencies will be:• Oscillator Clock = 8 MHz• Core Clock = 48 MHz• Bus Clock = 24 MHz

Page 33: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Special-Function Registers Associated with the CRG Block

• The twelve special-function registers located at addresses $0034 to $003F let us control the operation of the CRG block.

• Figure from p. 30 of the Device User Guide.

Page 34: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Special-Function Registers That Control the PLL

• Of the registers associated with the CRG, we care most about these four:• CRG PLL Control Register (PLLCTL)• CRG Clock Select Register (CLKSEL)• CRG Synthesizer Register (SYNR)• CRG Reference Divider Register (REFDV)

• These let us tell the system whether we want to use the PLL or bypass it, and also let us specify how much we want to increase or decrease the clock frequency.

Page 35: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

CRG PLL Control Register (PLLCTL)

• The main bit we care about in this register is bit 6 (PLLON), which turns the PLL circuit on or off.

• Figure from p. 21 of CRG Block User Guide, which also provides detailed explanation.

Page 36: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

CRG Clock Select Register (CLKSEL)

• The main bit we care about in this register is bit 7 (PLLSEL), which says whether we want to bypass the PLL or use it.

• Figure from p. 19 of CRG Block User Guide, which also provides detailed explanation.

Page 37: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

• These two registers determine how much we increase or decrease the clock frequency, according to this formula:

• See pp. 15-16 of CRG Block User Guide.

CRG Synthesizer Register (SYNR) & Reference Divider Register (REFDV)

Page 38: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Example: Programming the PLL

LDAA #0 STAA CLKSEL ;Select oscillator, not PLL. LDAA #2 STAA SYNR LDAA #1 STAA REFDV JSR Delay ;Need about 1 ms delay. LDAA #$80 STAA CLKSEL ;Select the PLL. LDAA #$60 STAA PLLCTL ;Turn on the PLL.

Page 39: EET 2261 Unit 8 System  Clocks; Seven-Segment Displays; S19 Records

Measuring the Bus Clock Frequency• None of the HCS12’s clock signals are

brought out to pins on the chip. So we can’t directly measure the clock frequencies.

• But we can indirectly measure the bus clock frequency. (We’ll do this in Lab 9.) • Suppose we have a program that uses a delay

loop to toggle a pin on a port. The time delay from the delay loop depends on the bus clock frequency. (A faster clock frequency results in a shorter delay.)

• So by measuring the toggle rate, we can figure out what the bus clock frequency is.


Recommended