+ All Categories
Home > Documents > Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric...

Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric...

Date post: 20-Jan-2017
Category:
Upload: kuldeep
View: 220 times
Download: 1 times
Share this document with a friend
15
Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies Suvarcha Chauhan , Kuldeep Kumar Department of Chemistry, H. P. University, Shimla 171005, India abstract article info Article history: Received 28 September 2013 Received in revised form 28 February 2014 Accepted 3 March 2014 Available online 15 March 2014 Keywords: Saccharide Glycine Density Speed of sound Transfer apparent molar volume at innite dilution Transfer apparent molar isentropic compression at innite dilution Densities (ρ) and speeds of sound (u) of some saccharides in aqueous glycine solutions (0.000, 0.025, 0.050, and 0.100 mol kg 1 ) have been measured in the concentration range 0.0500.100 mol kg 1 at 293.15, 298.15, 303.15, 308.15, and 313.15 K. Using the ρ and u data, the apparent molar volumes at innite dilution (V φ o ), trans- fer apparent molar volumes at innite dilution (Δ tr V φ o ), partial molar expansion coefcients V o φ . T p , second derivatives 2 V o φ . T 2 p , isentropic compressibilities (κ s ), apparent molar isentropic compressions at innite di- lution (κ s,φ o ), and transfer apparent molar isentropic compressions at innite dilution (Δ tr κ s,φ o ) have been calcu- lated. The trends of variations of experimental and computed parameters have been deliberated in terms of different types of the interactions occurring in the present ternary system. © 2014 Published by Elsevier B.V. 1. Introduction Saccharides being the important chemicals of living organism are of considerable interest in various aspects of researches and applications. Saccharides help in stabilizing the native conrmation of ubiquitous globular proteins or reduce the extent of denaturation by other reagents [14]. Most of the saccharides located at the cell surface act as receptors to the viruses, hormones, enzymes, antibodies, etc. [5]. Therefore there interaction studies with proteins have been proved very useful for immunology, medicine and pharmacology. Besides, the interactions of amino acid with sugar help us in explicating the intramolecular interac- tions between amino acid residues of glycoproteins and the sugar part of the glycoprotein with proteolytic enzymes. Even if several mechanisms for the stabilization of proteins by sugars have been proposed [6], the understanding of the mechanism is still in- complete, probably due to the complex nature of their interactions. The simplest approach that may help in this regard and requires less com- plex measurement techniques is to study sugaramino acid interactions in solutions. Literature surveys point out that these interactions can be studied by different spectroscopic techniques [711], chromatography data [12,13] and computer calculations [1416]. In addition, recently, researchers have studied the thermodynamic properties of saccharides in aqueous electrolytic solutions [1721]. Anyhow, there is relatively little information available on such properties in aqueous amino acids solutions [2224]. In view of the above, and in light of our previous work [2531] on thermodynamic studies of ternary systems, in this paper we have explored the interactions between D () ribose, D (+) maltose monohydrate and D (+) rafnose pentahydrate (saccharides) and glycine (amino acid) in water. 2. Experimental 2.1. Materials The deionized distilled water with a conductivity of 12 × 10 7 s cm 1 and pH of 6.87.0 (at 298.15 K) was collected from a Millipore-Elix system. The specications of D () ribose (monosaccharide), D (+) maltose monohydrate (disaccharide), D (+) rafnose pentahydrate (trisaccharide) and glycine of high purity were provenance from LOBA Chemie and Calbiochem, respectively. The saccharides and glycine were recrystallized twice in distilled water and dried in vacuum oven. After this they were kept in a vacuum desiccator over anhydrous calci- um chloride at room temperature for a minimum of 48 h. The details of the chemicals used in the present work are also given in Table 1. 2.2. Methods and procedures Stock solutions of glycine (0.025, 0.050, and 0.100 mol kg 1 ) were prepared in distilled water and were used as solvents for the Journal of Molecular Liquids 194 (2014) 212226 Corresponding author. Tel.: +91 177 2830803; fax: +91 177 2830775. E-mail address: [email protected] (S. Chauhan). http://dx.doi.org/10.1016/j.molliq.2014.03.004 0167-7322/© 2014 Published by Elsevier B.V. Contents lists available at ScienceDirect Journal of Molecular Liquids journal homepage: www.elsevier.com/locate/molliq
Transcript
Page 1: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Journal of Molecular Liquids 194 (2014) 212–226

Contents lists available at ScienceDirect

Journal of Molecular Liquids

j ourna l homepage: www.e lsev ie r .com/ locate /mol l iq

Effect of glycine on aqueous solution behavior of saccharides at differenttemperatures: Volumetric and ultrasonic studies

Suvarcha Chauhan ⁎, Kuldeep KumarDepartment of Chemistry, H. P. University, Shimla 171005, India

⁎ Corresponding author. Tel.: +91 177 2830803; fax: +E-mail address: [email protected] (S.

http://dx.doi.org/10.1016/j.molliq.2014.03.0040167-7322/© 2014 Published by Elsevier B.V.

a b s t r a c t

a r t i c l e i n f o

Article history:Received 28 September 2013Received in revised form 28 February 2014Accepted 3 March 2014Available online 15 March 2014

Keywords:SaccharideGlycineDensitySpeed of soundTransfer apparent molar volume at infinitedilutionTransfer apparent molar isentropiccompression at infinite dilution

Densities (ρ) and speeds of sound (u) of some saccharides in aqueous glycine solutions (0.000, 0.025, 0.050, and0.100 mol kg−1) have been measured in the concentration range 0.050–0.100 mol kg−1 at 293.15, 298.15,303.15, 308.15, and 313.15 K. Using the ρ and u data, the apparentmolar volumes at infinite dilution (Vφ

o), trans-

fer apparent molar volumes at infinite dilution (ΔtrVφo), partial molar expansion coefficients ∂Vo

φ

.∂T

� �p, second

derivatives ∂2Voφ

.∂T2

� �p, isentropic compressibilities (κs), apparent molar isentropic compressions at infinite di-

lution (κ s,φo ), and transfer apparent molar isentropic compressions at infinite dilution (Δtrκ s,φ

o ) have been calcu-lated. The trends of variations of experimental and computed parameters have been deliberated in terms ofdifferent types of the interactions occurring in the present ternary system.

© 2014 Published by Elsevier B.V.

1. Introduction

Saccharides being the important chemicals of living organism are ofconsiderable interest in various aspects of researches and applications.Saccharides help in stabilizing the native confirmation of ubiquitousglobular proteins or reduce the extent of denaturation by other reagents[1–4]. Most of the saccharides located at the cell surface act as receptorsto the viruses, hormones, enzymes, antibodies, etc. [5]. Therefore thereinteraction studies with proteins have been proved very useful forimmunology, medicine and pharmacology. Besides, the interactions ofamino acid with sugar help us in explicating the intramolecular interac-tions between amino acid residues of glycoproteins and the sugar partof the glycoprotein with proteolytic enzymes.

Even if severalmechanisms for the stabilization of proteins by sugarshave been proposed [6], the understanding of themechanism is still in-complete, probably due to the complex nature of their interactions. Thesimplest approach that may help in this regard and requires less com-plexmeasurement techniques is to study sugar–amino acid interactionsin solutions. Literature surveys point out that these interactions can bestudied by different spectroscopic techniques [7–11], chromatographydata [12,13] and computer calculations [14–16]. In addition, recently,researchers have studied the thermodynamic properties of saccharidesin aqueous electrolytic solutions [17–21]. Anyhow, there is relatively

91 177 2830775.Chauhan).

little information available on such properties in aqueous amino acidssolutions [22–24].

In view of the above, and in light of our previous work [25–31] onthermodynamic studies of ternary systems, in this paper we haveexplored the interactions between D (−) ribose, D (+) maltosemonohydrate and D (+) raffinose pentahydrate (saccharides) andglycine (amino acid) in water.

2. Experimental

2.1. Materials

Thedeionizeddistilledwaterwith a conductivity of 1–2×10−7 s cm−1

and pH of 6.8–7.0 (at 298.15 K) was collected from a Millipore-Elixsystem. The specifications of D (−) ribose (monosaccharide), D (+)maltose monohydrate (disaccharide), D (+) raffinose pentahydrate(trisaccharide) and glycine of high purity were provenance from LOBAChemie and Calbiochem, respectively. The saccharides and glycinewere recrystallized twice in distilled water and dried in vacuum oven.After this they were kept in a vacuum desiccator over anhydrous calci-um chloride at room temperature for a minimum of 48 h. The detailsof the chemicals used in the present work are also given in Table 1.

2.2. Methods and procedures

Stock solutions of glycine (0.025, 0.050, and 0.100 mol kg−1) wereprepared in distilled water and were used as solvents for the

Page 2: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 1Specifications of chemicals used.

Chemical name CAS No. M. wt. (kg mol−1) Supplier Mole fraction puritya

Glycine 56-40-6 0.7510 Calbiochem 0.99D (−) ribose 50-69-1 0.1501 LOBA Chemie Pvt. Ltd. 0.99D (+) maltose monohydrate 6363-53-7 0.3603 LOBA Chemie Pvt. Ltd. N0.95D (+) raffinose pentahydrate 17629-30-0 0.5945 LOBA Chemie Pvt. Ltd. 0.99

a Purity as provided by suppliers.

Table 2Comparison of densities, ρ, and speeds of sound, u, values for pure liquids with literaturevalues at different temperatures.

T (K) ρexp (kg m−3) ρlit (kg m−3) uexp (m s−1) ulit (m s−1)

Water293.15 998.218 998.2201 1482.96 1483.1010

1483.0011

298.15 997.055 997.1002 1497.06 1497.0011

303.15 995.651 995.6401 1509.39 1509.4012

308.15 994.030 994.0583 1520.08 1519.8313

313.15 992.204 992.2104 1529.19 1529.1012

1,4-Dioxane293.15 1033.651 1033.6605 1363.15 –

298.15 1028.050 1028.1205

1027.88261344.15 1345.5014 1344.7415

1344.8516

303.15 1022.225 1022.2305

1022.21961322.65 –

308.15 1016.880 1016.8905

1016.59561300.95 –

313.15 1011.029 1011.0336 1278.05 1277.7014

Dimethylsulfoxide (DMSO)293.15 1100.403 1100.4107 1501.95 1502.6017

298.15 1096.011 1096.0208 1488.25 1489.0017 1484.5118

303.15 1090.523 1090.3809

1090.54081474.55 1474.0017 1477.009

308.15 1085.231 1085.2408 1455.81 1455.0017

313.15 1080.628 1080.6408 1436.57 –

1 N.G.Tsierkezos, I.E. Molinou, Journal of Chemical & Engineering Data 43 (1998) 989–993.

2 E.Rilo, L.M. Varela, O. Cabeza, Journal of Chemical & Engineering Data 57 (2012)21362142.

3 B. Lal, M. Sahin, E. Ayranci, Journal of Chemical Thermodynamics 54 (2012) 142147.4 D.R. Chiou, S.Y. Chen, L.J. Chen, Journal of Chemical & Engineering Data 55 (2010)

10121016.5 G.E. Papanastaslou, I.I Zlogas, Journal of Chemical & Engineering Data 37 (1992)

187172.6 S.M. Contreras, Journal of Chemical & Engineering Data 46 (2001) 11491152.7 M.M. Palaiologou, I.E. Molinou, N.G. Tsierkezos, Journal of Chemical & Engineering

Data 47 (2002) 1285–1289.8 U.R. Kapadi, S.K. Chavan, O.S. Yemul, Journal of Chemical & Engineering Data 42 (1997)

548–550.9 S.L. Oswal, N.B. Patel, Journal of Chemical & Engineering Data 40 (1995) 845–849.10 M.M. Palaiologou, G.K. Arianas, N.G. Tsierkezos, Journal of Solution Chemistry 35 (2006)

1551–1565.11 B. Gonzalez, A. Dominguez, J. Tojo, Journal of Chemical & Engineering Data 49 (2004)

1590–1596.12 A.G. Abuin, D. G. Diaz,M.D.L. Rubia, J.M. Navaza, Journal of Chemical & Engineering Data

56 (2011) 646–651.13 N. Bilaniuk, G.S.K.Wong, Journal of Acoustical Society of America 93 (1993) 1609–1612.14 I. Gascon, S. Martin, P. Cea, M.C. Lopez, F.M. Royo, Journal of Solution Chemistry 31

(2002) 905–915.15 K. Tamura, T. Yamasawa, Journal of Thermal Analysis and Calorimetry 69 (2002) 849–

863.16 T. Takigawa, Journal of Chemical Thermodynamics 32 (2000) 1045–1055.17 M.I. Aralaguppl, T.M. Amlnabhavl, S.B. Harogoppad, R.H. Balundg, Journal of Chemical &

Engineering Data 37 (1992) 298–303.18 K. Miyai, M. Nakamura, K. Tamura, S. Murakami, Journal of Solution Chemistry 26

(1997) 973–988.

213S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

preparation of different saccharide solutions. These solutions wereprepared by using Shimadzu balance with a precision of ±0.0001 g.Densities and speeds of sound of aqueous saccharide solutions withand without glycine were measured simultaneously using Anton PaarDSA-5000 instrument. The two-in-one instrument is equipped with adensity cell at a pulse–echo speed of sound cell. Both cells are tempera-ture controlled by a built-in Peltier thermostat. The instrument has abuilt-in thermostat to maintain the temperature between 0 and 70 °C.The instrumentwas calibrated at all studied temperatures with distilledwater, dimethylsulfoxide and 1,4-dioxane. The reproducibility indensity and speed of sound measurements were ±0.2 m s−1 and±2 × 10−6 g cm−3, respectively. The densities and speeds of sound ofthese solvents are found to be in good compliance with the literaturevalues as indexed in Table 2.

3. Results and discussion

3.1. Apparent molar volume

Densities and speeds of sound for different saccharides at molalitiesranging from 0.050 to 0.100 mol kg−1 in water and aqueous glycinesolutions (0.025, 0.050, and 0.100 mol kg−1) have been listed inTable 3. The apparent molar volumes, Vφ, have been estimated fromthe equation

Vφ ¼ Mρ− ρ−ρoð Þ

mρρo

� �ð1Þ

wherem is themolality (mol kg−1) of the solution,M is themolarmassof the saccharides (kg mol−1) and ρo and ρ are the densities of thesolvent and solution (kg m−3), respectively. By examining Table 4, theVφ values altered linearlywithmolalities of saccharides at all concentra-tion of glycine and temperatures, thence, apparent molar volumes atinfinite dilution, Vφ

o , have been obtained by least squares fitting ofexperimental data to the equation,

Vφ ¼ Vφo þ Svm ð2Þ

where Sv is the experimental slope. Vφo represents the solute−solvent

interactions and Sv means the solute–solute interactions. This type oflinear alteration in Vφ values is in contrast to our earlier studies ofSDS–saccharide and CTAB–glycine systems [32,33], where Vφ variesnon-linearly before CMC and then becomes almost constant above theCMC. The evaluated Vφ

o and Sv valueswith standard errors are expressedin Table 5. The Vφ

o values of different saccharides in water are found tobe in good compliance with corresponding literature values [17]. A sur-vey of Table 5 suggests that Vφ

o values are positive for all saccharides inall the studied systems indicating strong solute–solvent interactions [34].Further,Vφ

o values in aqueous glycine systems are higher than thosewith-out glycine and increase with the concentration of glycine. This behaviormaybe explained on thebasis of the following types of interactions occur-ring in the ternary saccharide–amino acid–water system [35]:

(1) hydrophilic–ionic interactions between the OH groups ofsaccharide and the zwitterionic center of glycine,

(2) hydrophilic–hydrophilic interactions between OH groups of sac-charide and the OH groups of glycine through the hydrogen bond,

(3) hydrophilic–hydrophobic interactions between OH groups ofsaccharide/glycine and thenon-polar groups of glycine/ saccharideand

Page 3: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 3Densities, ρ, and speeds of sound, u, of saccharides in water and aqueous glycine solutions at different temperatures (T/K).

ma (mol kg−1) ρ (kg m−3) u (m s−1)

293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

Ribose in glycine solutionsmGly

b (mol kg−1) = 0.0000.000 998.218 997.055 995.651 994.030 992.204 1482.96 1497.06 1509.39 1520.08 1529.190.050 1001.068 999.887 998.463 996.819 994.955 1485.21 1499.21 1511.34 1521.90 1530.870.055 1001.360 1000.174 998.749 997.103 995.237 1485.39 1499.37 1511.49 1522.05 1531.010.060 1001.651 1000.465 999.035 997.383 995.517 1485.58 1499.51 1511.63 1522.19 1531.150.065 1001.939 1000.749 999.317 997.667 995.796 1485.75 1499.67 1511.77 1522.33 1531.290.070 1002.229 1001.040 999.606 997.954 996.076 1485.92 1499.82 1511.89 1522.46 1531.430.075 1002.521 1001.330 999.887 998.237 996.357 1486.07 1499.95 1512.03 1522.59 1531.570.080 1002.815 1001.615 1000.170 998.519 996.637 1486.22 1500.09 1512.15 1522.73 1531.700.085 1003.108 1001.911 1000.470 998.806 996.917 1486.37 1500.22 1512.25 1522.84 1531.830.090 1003.400 1002.206 1000.750 999.089 997.196 1486.50 1500.35 1512.36 1522.97 1531.970.100 1003.979 1002.786 1001.330 999.652 997.754 1486.80 1500.59 1512.57 1523.19 1532.23

mGly (mol kg−1) = 0.0250.000 999.106 997.934 996.521 994.893 993.066 1484.28 1498.23 1510.59 1521.22 1530.310.050 1001.839 1000.607 999.118 997.448 995.573 1486.99 1500.85 1513.13 1523.60 1532.450.055 1002.123 1000.884 999.397 997.713 995.838 1487.26 1501.13 1513.38 1523.85 1532.710.060 1002.409 1001.163 999.675 997.985 996.105 1487.53 1501.41 1513.65 1524.12 1532.980.065 1002.702 1001.445 999.951 998.255 996.373 1487.79 1501.69 1513.90 1524.38 1533.230.070 1002.992 1001.725 1000.223 998.531 996.645 1488.07 1501.96 1514.17 1524.63 1533.470.075 1003.292 1002.015 1000.507 998.820 996.916 1488.33 1502.20 1514.44 1524.88 1533.710.080 1003.598 1002.306 1000.789 999.099 997.196 1488.59 1502.45 1514.71 1525.15 1533.950.085 1003.895 1002.585 1001.080 999.375 997.471 1488.88 1502.75 1514.95 1525.42 1534.200.090 1004.195 1002.873 1001.355 999.661 997.757 1489.19 1503.05 1515.25 1525.68 1534.440.100 1004.788 1003.455 1001.929 1000.222 998.310 1489.79 1503.63 1515.81 1526.21 1534.95

mGly (mol kg−1) = 0.0500.000 999.936 998.753 997.334 995.700 993.870 1485.50 1499.48 1511.84 1522.49 1531.560.050 1002.565 1001.345 999.885 998.218 996.340 1488.26 1502.17 1514.39 1524.78 1533.630.055 1002.838 1001.615 1000.151 998.478 996.601 1488.53 1502.43 1514.65 1525.00 1533.840.060 1003.113 1001.885 1000.420 998.739 996.870 1488.80 1502.70 1514.91 1525.23 1534.060.065 1003.388 1002.161 1000.691 999.011 997.137 1489.07 1502.96 1515.16 1525.44 1534.260.070 1003.668 1002.437 1000.964 999.282 997.401 1489.33 1503.22 1515.41 1525.66 1534.470.075 1003.947 1002.711 1001.239 999.555 997.671 1489.59 1503.48 1515.66 1525.87 1534.670.080 1004.231 1002.985 1001.515 999.825 997.940 1489.85 1503.74 1515.91 1526.10 1534.870.085 1004.513 1003.267 1001.793 1000.100 998.215 1490.11 1503.99 1516.16 1526.31 1535.070.090 1004.795 1003.543 1002.075 1000.380 998.489 1490.37 1504.25 1516.41 1526.52 1535.290.100 1005.363 1004.107 1002.634 1000.940 999.045 1490.89 1504.75 1516.90 1526.92 1535.71

mGly (mol kg−1) = 0.1000.000 1001.373 1000.175 998.744 997.099 995.261 1488.34 1502.29 1514.46 1525.02 1534.000.050 1003.893 1002.647 1001.176 999.498 997.616 1491.34 1505.22 1517.26 1527.60 1536.400.055 1004.151 1002.897 1001.427 999.745 997.857 1491.63 1505.51 1517.54 1527.86 1536.660.060 1004.409 1003.149 1001.675 999.992 998.101 1491.92 1505.80 1517.83 1528.12 1536.930.065 1004.668 1003.402 1001.925 1000.240 998.347 1492.21 1506.09 1518.11 1528.38 1537.190.070 1004.927 1003.655 1002.175 1000.490 998.591 1492.50 1506.39 1518.40 1528.65 1537.450.075 1005.195 1003.911 1002.429 1000.740 998.837 1492.78 1506.68 1518.69 1528.92 1537.720.080 1005.456 1004.166 1002.683 1000.990 999.081 1493.07 1506.97 1518.98 1529.20 1537.990.085 1005.717 1004.425 1002.940 1001.240 999.325 1493.36 1507.25 1519.27 1529.48 1538.280.090 1005.978 1004.682 1003.191 1001.490 999.569 1493.65 1507.54 1519.57 1529.75 1538.560.100 1006.506 1005.202 1003.708 1001.990 1000.060 1494.22 1508.11 1520.15 1530.30 1539.10

Maltose in glycine solutionsmGly (mol kg−1) = 0.0000.050 1004.991 1003.786 1002.313 1000.873 999.304 1488.15 1502.13 1514.21 1524.77 1533.730.055 1005.688 1004.478 1003.016 1001.549 999.975 1488.74 1502.67 1514.74 1525.27 1534.190.060 1006.385 1005.170 1003.699 1002.225 1000.646 1489.33 1503.21 1515.28 1525.81 1534.650.065 1007.082 1005.862 1004.402 1002.911 1001.315 1489.89 1503.71 1515.81 1526.28 1535.150.070 1007.779 1006.554 1005.085 1003.597 1001.998 1490.45 1504.25 1516.34 1526.79 1535.570.075 1008.476 1007.242 1005.768 1004.293 1002.689 1491.01 1504.79 1516.87 1527.33 1536.050.080 1009.173 1007.938 1006.461 1004.974 1003.383 1491.61 1505.43 1517.40 1527.87 1536.510.085 1009.870 1008.630 1007.144 1005.685 1004.091 1492.17 1505.95 1517.93 1528.31 1536.980.090 1010.567 1009.322 1007.847 1006.371 1004.782 1492.75 1506.53 1518.46 1528.85 1537.470.100 1011.954 1010.715 1009.245 1007.775 1006.193 1493.97 1507.65 1519.59 1530.02 1538.48

mGly (mol kg−1) = 0.0250.050 1005.557 1004.205 1002.607 1000.825 998.828 1489.43 1503.40 1515.67 1526.29 1535.390.055 1006.231 1004.843 1003.226 1001.415 999.407 1489.92 1503.92 1516.17 1526.82 1535.930.060 1006.901 1005.485 1003.841 1002.005 999.986 1490.42 1504.43 1516.68 1527.35 1536.450.065 1007.587 1006.131 1004.460 1002.593 1000.565 1490.89 1504.94 1517.17 1527.89 1536.990.070 1008.274 1006.787 1005.075 1003.181 1001.146 1491.36 1505.44 1517.68 1528.43 1537.510.075 1008.948 1007.437 1005.688 1003.773 1001.718 1491.85 1505.94 1518.19 1528.96 1538.050.080 1009.617 1008.096 1006.303 1004.362 1002.295 1492.35 1506.43 1518.71 1529.51 1538.600.085 1010.294 1008.735 1006.915 1004.954 1002.874 1492.85 1506.94 1519.22 1530.05 1539.130.090 1010.972 1009.383 1007.529 1005.541 1003.456 1493.35 1507.44 1519.75 1530.63 1539.670.100 1012.323 1010.669 1008.747 1006.714 1004.612 1494.37 1508.45 1520.87 1531.75 1540.75

214 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 4: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 3 (continued)

ma (mol kg−1) ρ (kg m−3) u (m s−1)

293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

Maltose in glycine solutionsmGly (mol kg−1) = 0.0500.050 1006.171 1004.839 1003.310 1001.560 999.595 1490.97 1504.89 1517.00 1527.59 1536.700.055 1006.790 1005.443 1003.903 1002.140 1000.170 1491.54 1505.44 1517.52 1528.11 1537.200.060 1007.409 1006.046 1004.495 1002.720 1000.750 1492.10 1505.99 1518.04 1528.63 1537.700.065 1008.027 1006.648 1005.085 1003.300 1001.320 1492.66 1506.54 1518.56 1529.16 1538.300.070 1008.645 1007.249 1005.675 1003.880 1001.890 1493.22 1507.09 1519.08 1529.68 1538.800.075 1009.262 1007.850 1006.263 1004.460 1002.470 1493.79 1507.64 1519.60 1530.21 1539.300.080 1009.878 1008.451 1006.849 1005.030 1003.040 1494.36 1508.19 1520.13 1530.74 1539.800.085 1010.493 1009.050 1007.434 1005.610 1003.620 1494.93 1508.74 1520.66 1531.27 1540.300.090 1011.107 1009.649 1008.018 1006.180 1004.190 1495.50 1509.29 1521.19 1531.81 1540.900.100 1012.335 1010.841 1009.181 1007.320 1005.350 1496.64 1510.40 1522.25 1532.87 1541.90

mGly (mol kg−1) = 0.1000.050 1007.836 1006.467 1004.795 1002.987 1000.987 1493.69 1507.59 1519.76 1530.21 1539.260.055 1008.517 1007.113 1005.417 1003.575 1001.572 1494.19 1508.10 1520.28 1530.73 1539.780.060 1009.183 1007.766 1006.037 1004.163 1002.157 1494.71 1508.60 1520.80 1531.25 1540.300.065 1009.874 1008.417 1006.661 1004.753 1002.751 1495.19 1509.10 1521.31 1531.77 1540.810.070 1010.601 1009.087 1007.279 1005.351 1003.343 1495.63 1509.58 1521.83 1532.27 1541.320.075 1011.271 1009.756 1007.905 1005.952 1003.941 1496.16 1510.06 1522.35 1532.78 1541.820.080 1011.979 1010.428 1008.529 1006.547 1004.534 1496.62 1510.54 1522.87 1533.29 1542.320.085 1012.658 1011.104 1009.151 1007.157 1005.126 1497.13 1511.01 1523.40 1533.78 1542.830.090 1013.349 1011.782 1009.778 1007.765 1005.721 1497.62 1511.48 1523.92 1534.28 1543.330.100 1014.755 1013.133 1011.025 1008.964 1006.891 1498.57 1512.43 1524.97 1535.31 1544.37

Raffinose in glycine solutionsmGly (mol kg−1) = 0.0000.050 1008.238 1006.989 1005.499 1003.828 1001.968 1491.78 1505.69 1517.80 1528.28 1537.290.055 1009.253 1008.000 1006.506 1004.819 1002.951 1492.62 1506.51 1518.59 1529.06 1538.070.060 1010.267 1009.009 1007.505 1005.816 1003.939 1493.46 1507.33 1519.39 1529.83 1538.840.065 1011.281 1010.020 1008.511 1006.814 1004.926 1494.30 1508.15 1520.18 1530.60 1539.610.070 1012.291 1011.021 1009.502 1007.808 1005.910 1495.14 1508.98 1520.99 1531.37 1540.380.075 1013.299 1012.030 1010.501 1008.799 1006.904 1495.98 1509.79 1521.79 1532.14 1541.130.080 1014.308 1013.031 1011.495 1009.795 1007.890 1496.82 1510.61 1522.59 1532.90 1541.890.085 1015.317 1014.035 1012.491 1010.782 1008.877 1497.65 1511.43 1523.39 1533.67 1542.650.090 1016.327 1015.033 1013.483 1011.782 1009.869 1498.48 1512.25 1524.19 1534.42 1543.400.100 1018.338 1017.016 1015.445 1013.751 1011.833 1500.14 1513.90 1525.81 1535.95 1544.91

mGly (mol kg−1) = 0.0250.050 1008.495 1007.200 1005.612 1003.874 1001.895 1493.97 1507.76 1519.95 1530.32 1539.340.055 1009.441 1008.150 1006.554 1004.809 1002.812 1494.94 1508.68 1520.81 1531.16 1540.170.060 1010.394 1009.105 1007.477 1005.721 1003.712 1495.89 1509.64 1521.71 1532.03 1541.020.065 1011.343 1010.040 1008.384 1006.654 1004.644 1496.85 1510.59 1522.65 1532.87 1541.810.070 1012.305 1010.979 1009.312 1007.554 1005.544 1497.79 1511.55 1523.55 1533.76 1542.650.075 1013.251 1011.923 1010.210 1008.452 1006.426 1498.75 1512.49 1524.49 1534.64 1543.520.080 1014.197 1012.845 1011.150 1009.385 1007.325 1499.70 1513.50 1525.37 1535.47 1544.350.085 1015.157 1013.806 1012.105 1010.269 1008.249 1500.65 1514.38 1526.25 1536.38 1545.140.090 1016.124 1014.731 1013.004 1011.222 1009.129 1501.61 1515.35 1527.22 1537.17 1546.000.100 1018.035 1016.622 1014.872 1012.995 1010.875 1503.56 1517.22 1529.05 1538.97 1547.72

mGly (mol kg−1) = 0.0500.050 1008.951 1007.632 1006.029 1004.233 1002.252 1495.81 1509.54 1521.81 1532.45 1541.550.055 1009.847 1008.515 1006.904 1005.082 1003.090 1496.85 1510.56 1522.80 1533.49 1542.560.060 1010.741 1009.400 1007.783 1005.923 1003.915 1497.89 1511.57 1523.80 1534.53 1543.570.065 1011.639 1010.280 1008.648 1006.774 1004.745 1498.92 1512.58 1524.78 1535.52 1544.550.070 1012.533 1011.161 1009.518 1007.611 1005.587 1499.95 1513.60 1525.78 1536.59 1545.540.075 1013.429 1012.039 1010.382 1008.457 1006.415 1500.98 1514.61 1526.83 1537.57 1546.550.080 1014.321 1012.916 1011.247 1009.307 1007.238 1502.03 1515.62 1527.82 1538.59 1547.580.085 1015.225 1013.795 1012.121 1010.144 1008.082 1503.08 1516.62 1528.79 1539.61 1548.570.090 1016.112 1014.678 1013.007 1010.987 1008.886 1504.16 1517.62 1529.76 1540.59 1549.600.100 1017.907 1016.424 1014.784 1012.657 1010.547 1506.28 1519.69 1531.66 1542.65 1551.62

mGly (mol kg−1) = 0.1000.050 1010.539 1009.192 1007.606 1005.829 1003.805 1498.71 1512.57 1524.54 1535.12 1544.240.055 1011.493 1010.113 1008.501 1006.713 1004.687 1499.79 1513.61 1525.57 1536.15 1545.260.060 1012.459 1011.047 1009.418 1007.621 1005.565 1500.79 1514.65 1526.61 1537.11 1546.270.065 1013.401 1011.975 1010.342 1008.509 1006.432 1501.82 1515.69 1527.59 1538.15 1547.250.070 1014.365 1012.914 1011.279 1009.410 1007.322 1502.84 1516.74 1528.62 1539.15 1548.300.075 1015.315 1013.871 1012.207 1010.341 1008.231 1503.90 1517.78 1529.55 1540.09 1549.250.080 1016.293 1014.801 1013.153 1011.275 1009.118 1504.85 1518.85 1530.49 1541.12 1550.280.085 1017.269 1015.773 1014.093 1012.189 1010.019 1505.87 1519.82 1531.42 1542.12 1551.390.090 1018.244 1016.749 1014.985 1013.105 1010.965 1506.91 1520.77 1532.55 1543.20 1552.350.100 1020.215 1018.703 1016.877 1014.974 1012.785 1508.89 1522.68 1534.63 1545.19 1554.48

a m is the molality of saccharides.b mGly is the molality of aqueous glycine solution.

215S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 5: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 4Apparent molar volumes, Vφ, and apparent molar isentropic compressions, κs,φ, of saccharides in water and aqueous glycine solutions at different temperatures (T/K).

ma (mol kg−1) Vφ × 106 (m3 mol−1) κs,φ × 103 (m3 mol−1 TPa−1)

293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

Ribose in glycine solutionsmGly

b (mol kg−1) = 0.0000.050 92.929 93.333 93.788 94.315 95.158 −11.4540 −9.5500 −6.5886 −4.5396 −2.21620.055 92.775 93.237 93.674 94.195 95.004 −11.0830 −9.0290 −6.2029 −4.3025 −2.05340.060 92.658 93.086 93.574 94.157 94.905 −10.8630 −8.4590 −5.7867 −3.9533 −1.89130.065 92.602 93.062 93.548 94.060 94.833 −10.4490 −8.0660 −5.3825 −3.7143 −1.74330.070 92.521 92.937 93.420 93.928 94.753 −10.1230 −7.7360 −4.9597 −3.4673 −1.63120.075 92.421 92.838 93.414 93.865 94.666 −9.7028 −7.2800 −4.6572 −3.2086 −1.54790.080 92.305 92.812 93.342 93.819 94.600 −9.3599 −6.9030 −4.3035 −3.0452 −1.39530.085 92.211 92.655 93.204 93.716 94.539 −9.0486 −6.6170 −3.9182 −2.7516 −1.26260.090 92.136 92.524 93.135 93.667 94.492 −8.6275 −6.3550 −3.5934 −2.5813 −1.19970.100 92.051 92.393 93.019 93.605 94.406 −8.1161 −5.7050 −2.9788 −2.0404 −0.9844

mGly (mol kg−1) = 0.0250.050 95.246 96.501 98.095 99.020 100.080 −14.8411 −12.2117 −9.5885 −6.7888 −3.10880.055 95.025 96.297 97.715 98.820 99.793 −15.0206 −12.5788 −9.8713 −7.0809 −3.82400.060 94.802 96.090 97.411 98.531 99.514 −15.2025 −12.9167 −10.2890 −7.6196 −4.54550.065 94.502 95.864 97.181 98.313 99.258 −15.3621 −13.2458 −10.4380 −7.9627 −4.99800.070 94.284 95.696 97.038 98.036 98.976 −15.6362 −13.4193 −10.6840 −8.2520 −5.35680.075 93.957 95.412 96.749 97.616 98.743 −15.8334 −13.4526 −11.0390 −8.6558 −5.65830.080 93.593 95.147 96.518 97.373 98.421 −16.0752 −13.5688 −11.3300 −9.0447 −6.02150.085 93.375 95.053 96.204 97.191 98.193 −16.4093 −13.8965 −11.4760 −9.3586 −6.35890.090 93.144 94.866 96.101 96.913 97.863 −16.8728 −14.2782 −11.8390 −9.6725 −6.70370.100 92.815 94.479 95.677 96.545 97.489 −17.4788 −14.8650 −12.4370 −10.1710 −7.2984

mGly (mol kg−1) = 0.0500.050 97.297 98.093 98.985 99.730 100.790 −13.4547 −11.4957 −8.8029 −5.0364 −1.61520.055 97.087 97.871 98.760 99.554 100.510 −13.5690 −11.5885 −9.0456 −5.0895 −1.88350.060 96.875 97.681 98.518 99.387 100.140 −13.6966 −11.7671 −9.2942 −5.2460 −2.31890.065 96.691 97.423 98.278 99.070 99.844 −13.8068 −11.9112 −9.4447 −5.3528 −2.49010.070 96.458 97.199 98.040 98.809 99.635 −13.8808 −12.0368 −9.6008 −5.5156 −2.68230.075 96.267 97.028 97.803 98.552 99.369 −13.9349 −12.1239 −9.7614 −5.6059 −2.84530.080 96.033 96.875 97.580 98.362 99.145 −14.0401 −12.2018 −9.9147 −5.7968 −2.97910.085 95.847 96.642 97.356 98.120 98.874 −14.1135 −12.2861 −10.0723 −5.8943 −3.16000.090 95.679 96.499 97.110 97.925 98.640 −14.1802 −12.3692 −10.2529 −5.9633 −3.43780.100 95.345 96.128 96.734 97.443 98.155 −14.3336 −12.5027 −10.4623 −6.0930 −3.8713

mGly (mol kg−1) = 0.1000.050 99.412 100.433 101.310 102.062 103.051 −14.1753 −11.9997 −9.4362 −6.1254 −3.21700.055 99.278 100.357 101.143 101.907 102.926 −14.1780 −12.0277 −9.5755 −6.2740 −3.52290.060 99.162 100.256 101.049 101.774 102.766 −14.1827 −12.0828 −9.7465 −6.4005 −3.91640.065 99.044 100.152 100.936 101.626 102.597 −14.2026 −12.1453 −9.8317 −6.5365 −4.19240.070 98.941 100.059 100.835 101.540 102.476 −14.2218 −12.2848 −9.9891 −6.6991 −4.40670.075 98.727 99.935 100.690 101.434 102.342 −14.2672 −12.3646 −10.1738 −6.8651 −4.69180.080 98.624 99.835 100.561 101.314 102.247 −14.3058 −12.4252 −10.3372 −7.1044 −4.92160.085 98.531 99.698 100.408 101.205 102.160 −14.3415 −12.4528 −10.5138 −7.3173 −5.25740.090 98.445 99.595 100.337 101.082 102.079 −14.3748 −12.5245 −10.6782 −7.4646 −5.49560.100 98.231 99.352 100.057 100.928 101.926 −14.4290 −12.6448 −10.9774 −7.7243 −5.8022

Maltose in glycine solutionsmGly (mol kg−1) = 0.0000.050 223.503 224.453 229.750 226.835 228.300 −24.2088 −21.1831 −16.4427 −13.9116 −10.82190.055 222.991 223.955 225.147 226.437 227.874 −25.4102 −21.9354 −17.6315 −14.5377 −11.20970.060 222.539 223.515 224.769 226.081 227.494 −26.4240 −22.5758 −18.4391 −15.4553 −11.54730.065 222.134 223.120 224.115 225.600 227.180 −27.0119 −22.7639 −19.3158 −15.7620 −12.16700.070 221.765 222.759 223.822 225.166 226.686 −27.5270 −23.2767 −19.8274 −16.3637 −12.23850.075 221.426 222.481 223.548 224.634 226.129 −27.9837 −23.6844 −20.2816 −17.2405 −12.85500.080 221.110 222.118 223.163 224.341 225.585 −28.6974 −24.8819 −20.7986 −17.8545 −13.29610.085 220.814 221.827 222.925 223.705 224.918 −29.0494 −25.0674 −21.1609 −18.0400 −13.90310.090 220.534 221.552 222.471 223.406 224.502 −29.5058 −25.6363 −21.6862 −18.6071 −14.41370.100 220.084 220.949 221.736 222.527 223.453 −30.6051 −26.4682 −22.9378 −20.3835 −15.7232

mGly (mol kg−1) = 0.0250.050 229.907 233.658 237.556 240.872 244.562 −17.6604 −13.9694 −9.1414 −6.0094 −2.97400.055 229.230 233.312 237.220 240.789 244.369 −17.9510 −14.2727 −9.3196 −6.2952 −3.44450.060 228.708 232.932 236.984 240.696 244.185 −18.2493 −14.5009 −9.5219 −6.5491 −3.66470.065 227.996 232.526 236.699 240.626 244.007 −18.4561 −14.7625 −9.5828 −6.8396 −4.03900.070 227.350 232.012 236.493 240.547 243.806 −18.6586 −15.0415 −9.7641 −7.1019 −4.23710.075 226.945 231.628 236.322 240.405 243.736 −18.8520 −15.2241 −9.9101 −7.3120 −4.46770.080 226.635 231.161 236.130 240.302 243.593 −19.0518 −15.4205 −10.1440 −7.6173 −4.80550.085 226.249 230.969 235.979 240.158 243.426 −19.3227 −15.5353 −10.2620 −7.8611 −5.00250.090 225.879 230.681 235.806 240.071 243.229 −19.5828 −15.6698 −10.5250 −8.2929 −5.27900.100 225.255 230.250 235.573 239.893 242.933 −20.1266 −15.8955 −11.2590 −8.8175 −5.7076

mGly (mol kg−1) = 0.0500.050 234.167 237.300 239.687 242.216 245.213 −17.4543 −13.3430 −7.9757 −4.9665 −2.87220.055 234.104 237.240 239.629 242.168 245.008 −17.7288 −13.4613 −8.0419 −5.0874 −3.08680.060 234.028 237.184 239.574 242.105 244.848 −17.8718 −13.5608 −8.0984 −5.2042 −3.2529

216 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 6: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 4 (continued)

ma (mol kg−1) Vφ × 106 (m3 mol−1) κs,φ × 103 (m3 mol−1 TPa−1)

293.15 298.15 303.15 308.15 313.15 293.15 298.15 303.15 308.15 313.15

Maltose in glycine solutionsmGly (mol kg−1) = 0.0500.065 233.957 237.130 239.537 242.077 244.690 −17.9931 −13.6457 −8.1340 −5.3652 −3.40820.070 233.876 237.078 239.485 242.034 244.580 −18.1101 −13.7192 −8.1781 −5.4356 −3.51790.075 233.800 237.015 239.449 241.991 244.411 −18.2923 −13.7952 −8.2056 −5.5736 −3.67170.080 233.728 236.941 239.425 241.949 244.258 −18.4518 −13.8732 −8.2920 −5.6952 −3.80720.085 233.660 236.884 239.399 241.931 244.083 −18.5925 −13.9321 −8.3689 −5.7832 −3.95810.090 233.595 236.817 239.372 241.901 243.913 −18.7175 −13.9946 −8.4380 −5.9348 −4.10260.100 233.443 236.723 239.336 241.838 243.560 −18.9566 −14.1342 −8.5399 −6.0811 −4.3373

mGly (mol kg−1) = 0.1000.050 229.439 232.995 238.007 241.496 245.013 −19.6746 −15.3143 −10.5888 −6.1806 −3.98100.055 228.659 232.542 237.553 241.369 244.643 −19.9453 −15.4623 −10.8463 −6.2751 −4.21070.060 228.235 232.023 237.185 241.239 244.312 −20.1632 −15.6052 −11.0472 −6.3696 −4.41790.065 227.468 231.593 236.790 241.078 243.869 −20.3333 −15.7129 −11.1964 −6.4906 −4.64050.070 226.273 230.929 236.516 240.803 243.499 −20.6051 −15.8883 −11.3449 −6.5448 −4.82020.075 225.981 230.348 236.153 240.505 243.077 −20.8968 −16.0402 −11.5781 −6.7137 −4.98240.080 225.229 229.784 235.842 240.303 242.754 −21.0592 −16.2167 −11.7716 −6.8087 −5.08260.085 224.891 229.221 235.575 239.929 242.465 −21.2623 −16.3549 −11.9998 −6.9222 −5.23720.090 224.439 228.682 235.265 239.603 242.159 −21.4370 −16.5065 −12.1969 −7.0767 −5.35140.100 223.387 227.771 234.767 239.181 241.800 −21.8390 −16.8042 −12.5549 −7.3896 −5.6247

Raffinose in glycine solutionsmGly (mol kg−1) = 0.0000.050 390.545 392.510 394.530 395.868 396.924 −23.1785 −18.2174 −13.3152 −9.4934 −7.45400.055 389.918 391.798 393.733 395.273 396.415 −23.1867 −18.2976 −13.3913 −9.5160 −7.51070.060 389.347 391.174 393.140 394.612 395.841 −23.2207 −18.3770 −13.4767 −9.5688 −7.57830.065 388.806 390.556 392.469 393.977 395.312 −23.2881 −18.5100 −13.5927 −9.6656 −7.66080.070 388.345 390.117 392.059 393.437 394.848 −23.3301 −18.6177 −13.7061 −9.7346 −7.73020.075 387.922 389.577 391.544 392.960 394.258 −23.3757 −18.6804 −13.8533 −9.7928 −7.78820.080 387.492 389.159 391.109 392.430 393.797 −23.4575 −18.7515 −13.9582 −9.8574 −7.85400.085 387.067 388.710 390.657 392.027 393.334 −23.4870 −18.8742 −14.1000 −9.9187 −7.95090.090 386.637 388.337 390.259 391.479 392.823 −23.5502 −18.9513 −14.2143 −9.9985 −8.04920.100 385.884 387.723 389.697 390.752 392.049 −23.6494 −19.0994 −14.4052 −10.1100 −8.1732

mGly (mol kg−1) = 0.0250.050 403.147 405.894 409.766 412.380 415.919 −22.0608 −16.7446 −10.7989 −5.3150 −1.53110.055 402.641 405.089 408.786 411.326 414.916 −22.4524 −17.0316 −10.7890 −5.4410 −1.58990.060 402.040 404.270 408.230 410.777 414.310 −22.7237 −17.7811 −10.9330 −5.5415 −1.62540.065 401.535 403.834 407.955 409.925 413.234 −23.0301 −18.0908 −11.2355 −5.6837 −1.60140.070 400.862 403.349 407.360 409.626 412.730 −23.3219 −18.5268 −11.4626 −5.8402 −1.62490.075 400.445 402.811 407.205 409.346 412.492 −23.5782 −18.8391 −11.6525 −5.9111 −1.69750.080 400.034 402.576 406.487 408.605 412.020 −23.7578 −19.4165 −11.8744 −6.0281 −1.69540.085 399.461 401.856 405.629 408.502 411.257 −24.0921 −19.4576 −12.2529 −6.1975 −1.71240.090 398.831 401.585 405.464 407.581 411.044 −24.5521 −19.7581 −12.6521 −6.2807 −1.77160.100 397.885 400.594 404.356 407.278 410.720 −25.3808 −20.2892 −13.3775 −6.5978 −1.8277

mGly (mol kg−1) = 0.0500.050 410.534 413.562 417.637 421.339 424.889 −22.5470 −15.8767 −10.6740 −7.0913 −4.37590.055 410.269 413.288 417.175 421.062 424.538 −22.8211 −16.2149 −10.9559 −7.7457 −4.75330.060 410.021 412.967 416.662 420.908 424.409 −23.0624 −16.4709 −11.3882 −8.2186 −4.92500.065 409.694 412.717 416.392 420.566 424.168 −23.2680 −16.6593 −11.4286 −8.3556 −4.91850.070 409.424 412.438 416.038 420.428 423.734 −23.4254 −16.9536 −11.7266 −8.9837 −5.17680.075 409.108 412.190 415.765 420.139 423.505 −23.6262 −17.1289 −12.3325 −8.9867 −5.42330.080 408.841 411.941 415.470 419.791 423.325 −23.9354 −17.3027 −12.4735 −9.3465 −5.75660.085 408.420 411.656 415.059 419.600 422.871 −24.3625 −17.4372 −12.5842 −9.5617 −6.02940.090 408.198 411.317 414.518 419.324 422.889 −24.8011 −17.6231 −12.8259 −9.5874 −6.16700.100 407.501 410.842 413.441 418.915 422.268 −25.5644 −18.2470 −13.1241 −10.1310 −6.7057

mGly (mol kg−1) = 0.1000.050 407.160 410.439 413.909 416.981 421.224 −25.3330 −20.3204 −14.3498 −11.6165 −9.51630.055 406.105 409.717 413.383 416.416 420.352 −26.6640 −21.0152 −14.9797 −12.2551 −10.16660.060 404.961 408.835 412.511 415.477 419.634 −27.1927 −21.8245 −15.9584 −12.5164 −10.60110.065 404.309 408.126 411.608 414.940 419.144 −27.6262 −22.4659 −16.3900 −13.2034 −10.60750.070 403.380 407.306 410.592 414.239 418.337 −28.2248 −23.2701 −17.3624 −13.6655 −11.48170.075 402.714 406.303 409.785 413.174 417.328 −28.9280 −24.1298 −17.3735 −13.9920 −11.74940.080 401.730 405.722 408.804 412.157 416.683 −29.0623 −24.8351 −17.6787 −14.9696 −12.33310.085 400.843 404.663 407.967 411.459 415.903 −29.6776 −25.2310 −17.8485 −15.4615 −13.53480.090 400.023 403.636 407.728 410.775 414.654 −30.3719 −25.5182 −18.8313 −16.4403 −14.13270.100 398.307 401.758 406.108 409.124 413.163 −31.2099 −26.1505 −20.4729 −17.5377 −15.7649

a m is the molality of saccharides.b mGly is the molality of aqueous glycine solution.

217S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

(4) hydrophobic–hydrophobic interactions between the non-polargroups of saccharide and glycine.

The considerable magnitude of positive values of Vφo for saccharides

in aqueous glycine solutions suggest robust about the above said

solute–solvent interactions. The increase in glycine concentrationleads to even stronger interactions, consequently, the Vφ

o values in-crease with glycine concentration for all the studied systems (Table 5).The temperature dependence Vφ

o values (Table 5) can be attributed bytaking into account the size of primary and secondary solvation layers

Page 7: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 5Apparent molar volumes at infinite dilution, Vφ

o , slopes, Sv, transfer apparent molar volumes at infinite dilution, ΔtrVφo , apparent molar isentropic compressions at infinite dilution, κ s,φ

o ,slopes, Sk, and transfer apparent molar isentropic compressions at infinite dilution, Δtrκ s,φ

o , of saccharides in water and aqueous glycine solutions at different temperatures (T/K).

T (K) Vφo × 106

(m3 mol−1)Sv × 106

(m3 mol−2 kg)ΔtrVφ

o × 106

(m3 mol−1)κs,φ × 103

(m3 mol−1 TPa−1)Sk × 103

(m3 mol−2 TPa−1 kg)Δtrκ s,φ

o × 103

(m3 mol−1 TPa−1)

Ribose in glycine solutionsmGly

a (mol kg−1) = 0.000293.15 93.75 ± 0.06 −17.77 ± 0.82 – −14.90 ± 0.09 68.74 ± 1.27 –

298.15 94.26 ± 0.05 −18.88 ± 0.68 – −13.11 ± 0.23 75.98 ± 3.02 –

303.15 94.51 ± 0.05 −15.11 ± 0.63 – −10.15 ± 0.10 72.89 ± 1.37 –

308.15 95.01 ± 0.06 −14.86 ± 0.86 – −6.95 ± 0.07 49.19 ± 0.99 –

313.15 95.81 ± 0.07 −14.74 ± 0.94 – −3.37 ± 0.06 24.40 ± 0.84 –

mGly (mol kg−1) = 0.025293.15 97.85 ± 0.12 −51.68 ± 1.63 4.09 −12.06 ± 0.21 −52.26 ± 2.92 2.85298.15 98.54 ± 0.07 −41.08 ± 0.99 4.27 −9.93 ± 0.22 −48.18 ± 2.92 3.18303.15 100.33 ± 0.12 −47.37 ± 1.62 5.79 −6.83 ± 0.09 −55.69 ± 1.25 3.32308.15 101.64 ± 0.12 −52.11 ± 1.58 6.59 −3.38 ± 0.15 −69.64 ± 2.01 3.57313.15 102.70 ± 0.07 −52.92 ± 0.92 6.89 0.47 ± 0.36 −80.22 ± 4.85 3.85mGly (mol kg−1) = 0.050293.15 99.26 ± 0.05 −39.78 ± 0.68 5.51 −12.65 ± 0.05 −17.20 ± 0.65 2.25298.15 100.01 ± 0.06 −39.31 ± 0.85 5.74 −10.52 ± 0.09 −20.60 ± 1.19 2.59303.15 101.26 ± 0.04 −45.80 ± 0.54 6.69 −7.26 ± 0.09 −32.94 ± 1.25 2.89308.15 102.11 ± 0.06 −46.77 ± 0.84 7.09 −3.87 ± 0.08 −23.11 ± 1.08 3.08313.15 103.32 ± 0.08 −52.20 ± 1.91 7.49 0.38 ± 0.15 −42.54 ± 1.97 3.27mGly (mol kg−1) = 0.100293.15 100.60 ± 0.05 −24.14 ± 0.74 6.85 −13.86 ± 0.03 −5.55 ± 0.42 1.04298.15 101.56 ± 0.03 −21.82 ± 0.43 7.24 −11.29 ± 0.05 −13.80 ± 0.66 1.83303.15 102.53 ± 0.03 −24.62 ± 0.44 7.99 −7.84 ± 0.04 −31.20 ± 0.59 2.30308.15 103.15 ± 0.05 −22.71 ± 0.68 8.09 −4.41 ± 0.07 −33.47 ± 0.99 2.48313.15 104.14 ± 0.09 −23.09 ± 1.22 8.29 0.69 ± 0.14 −52.78 ± 1.89 2.68

Maltose in glycine solutionsmGly (mol kg−1) = 0.000293.15 226.68 ± 0.23 −68.42 ± 3.11 – −18.89 ± 0.52 −119.91 ± 7.02 –

298.15 227.69 ± 0.17 −68.74 ± 2.30 – −15.99 ± 0.33 −106.20 ± 4.47 –

303.15 229.55 ± 0.30 −79.32 ± 4.02 – −11.04 ± 0.51 −120.69 ± 6.86 –

308.15 231.26 ± 0.10 −87.52 ± 1.36 – −7.81 ± 0.33 −123.32 ± 4.39 –

313.15 233.39 ± 0.21 −98.44 ± 2.84 – −5.85 ± 0.31 −95.38 ± 4.18 –

mGly (mol kg−1) = 0.025293.15 234.24 ± 0.39 −93.52 ± 5.31 7.56 −15.34 ± 0.44 −47.22 ± 5.88 3.54298.15 237.18 ± 0.24 −72.19 ± 3.35 9.49 −12.17 ± 0.29 −39.15 ± 3.89 3.82303.15 239.36 ± 0.16 −39.45 ± 2.17 9.81 −7.12 ± 0.30 −38.58 ± 3.97 3.92308.15 241.92 ± 0.04 −20.27 ± 0.58 10.66 −3.20 ± 0.08 −55.68 ± 1.16 4.61313.15 246.11 ± 0.05 −31.87 ± 0.77 12.72 −0.46 ± 0.14 −53.41 ± 1.94 5.39mGly (mol kg−1) = 0.050293.15 234.90 ± 0.01 −14.58 ± 0.11 8.22 −16.99 ± 0.07 −17.85 ± 0.88 2.81298.15 237.89 ± 0.01 −11.80 ± 0.18 10.20 −12.62 ± 0.02 −15.41 ± 0.29 3.37303.15 240.00 ± 0.01 −7.05 ± 0.14 10.45 −7.41 ± 0.05 −11.17 ± 0.70 3.63308.15 242.57 ± 0.02 −7.51 ± 0.33 11.31 −3.84 ± 0.08 −22.86 ± 1.09 3.97313.15 246.80 ± 0.04 −32.05 ± 0.52 13.41 −1.49 ± 0.05 −28.83 ± 0.74 4.36mGly (mol kg−1) = 0.100293.15 235.39 ± 0.42 −123.13 ± 5.67 8.71 −17.55 ± 0.12 −43.42 ± 1.66 1.33298.15 238.47 ± 0.12 −107.90 ± 1.64 10.78 −13.79 ± 0.14 −30.04 ± 1.82 2.20303.15 241.01 ± 0.13 −64.52 ± 1.72 11.46 −8.67 ± 0.08 −38.91 ± 1.09 2.37308.15 244.11 ± 0.17 −48.52 ± 2.29 12.85 −4.95 ± 0.17 −23.59 ± 2.27 2.86313.15 248.29 ± 0.21 −67.56 ± 2.79 14.90 −2.47 ± 0.15 −32.4 ± 2.12 3.38

Raffinose in glycine solutionsmGly (mol kg−1) = 0.000293.15 394.93 ± 0.20 −92.31 ± 2.70 – −22.64 ± 0.03 −9.98 ± 0.38 –

298.15 396.99 ± 0.33 −96.16 ± 4.45 – −17.31 ± 0.03 −18.08 ± 0.45 –

303.15 398.97 ± 0.36 −96.61 ± 4.89 – −12.13 ± 0.04 −22.88 ± 0.53 –

308.15 400.84 ± 0.25 −103.58 ± 3.31 – −8.81 ± 0.02 −12.98 ± 0.33 –

313.15 401.81 ± 0.14 −99.26 ± 1.81 – −6.71 ± 0.02 −14.65 ± 0.31 –

mGly (mol kg−1) = 0.025293.15 408.39 ± 0.11 −105.47 ± 1.48 13.40 −18.94 ± 0.18 −62.37 ± 2.38 3.70298.15 410.60 ± 0.32 −101.50 ± 4.27 13.70 −13.30 ± 0.31 −72.56 ± 4.21 4.02303.15 414.63 ± 0.32 −102.86 ± 4.26 15.70 −7.89 ± 0.27 −52.28 ± 3.66 4.25308.15 416.82 ± 0.51 −99.84 ± 6.80 16.00 −4.05 ± 0.04 −25.15 ± 0.53 4.76313.15 420.55 ± 0.67 −105.34 ± 9.01 18.70 −1.27 ± 0.03 −5.47 ± 0.45 5.44mGly (mol kg−1) = 0.050293.15 413.63 ± 0.08 −60.68 ± 1.03 18.70 −19.53 ± 0.27 −57.76 ± 3.57 3.12298.15 416.27 ± 0.04 −54.45 ± 0.57 19.30 −13.78 ± 0.12 −43.98 ± 1.65 3.53303.15 421.52 ± 0.24 −78.09 ± 3.20 22.60 −8.22 ± 0.24 −51.09 ± 3.23 3.91308.15 423.82 ± 0.08 −49.48 ± 1.07 23.00 −4.64 ± 0.35 −56.93 ± 4.76 4.17313.15 427.48 ± 0.14 −52.35 ± 1.92 25.60 −2.12 ± 0.15 −45.14 ± 2.06 4.58mGly (mol kg−1) = 0.100293.15 415.64 ± 0.20 −173.75 ± 2.68 20.70 −20.38 ± 0.41 −110.22 ± 5.55 2.26

218 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 8: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 5 (continued)

T (K) Vφo × 106

(m3 mol−1)Sv × 106

(m3 mol−2 kg)ΔtrVφ

o × 106

(m3 mol−1)κs,φ × 103

(m3 mol−1 TPa−1)Sk × 103

(m3 mol−2 TPa−1 kg)Δtrκ s,φ

o × 103

(m3 mol−1 TPa−1)

Raffinose in glycine solutionsmGly (mol kg−1) = 0.100298.15 419.26 ± 0.25 −172.67 ± 3.38 22.30 −14.44 ± 0.58 −123.74 ± 7.75 2.87303.15 422.09 ± 0.36 −162.33 ± 4.87 23.10 −9.06 ± 0.57 −110.49 ± 7.62 3.07308.15 425.20 ± 0.25 −160.62 ± 3.32 24.40 −5.50 ± 0.35 −118.70 ± 4.63 3.31313.15 429.37 ± 0.30 −160.64 ± 4.01 27.50 −3.17 ± 0.60 −120.85 ± 8.09 3.54

a mGly is the molality of aqueous glycine solution.

219S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

around the hydroxyl groups of saccharides and zwitterions of glycine.With a rise in temperature the electrostricted water molecules fromthe secondary solvation layer are released into the bulk of water, there-by expanding the solution and causing the large Vφ

o values [36]. The Svvalues in all the studied systems are found to be negative (Table 5),suggesting weak solute–solute interactions; however as documentedin literature they are indicative of hydrophobic hydration in the system[34]. Similar types of interactions have also been proclaimed by KeleiZhuo et al. [23], in their study of monosaccharides in aqueous aminoacid solutions at 298.15 K. In our case, the slopes becomemore negativefor di- and tri-saccharides, suggesting an enhancement of the effectwith the complexity of saccharides that may lead to volume andcompressibility reduction. Thus, it can be figured out that both polarand non-polar groups reduce themobility of water molecules in the hy-dration shell, which in turn leads to the volume and compressibilityreduction.

The transfer apparent molar volume at infinite dilution, ΔtrVφo , of

saccharides fromwater to aqueous glycine solutions have been calculatedby using the equation,

ΔtrVoφ ¼ Vφ

o aq:glycineð Þ−Vφo waterð Þ: ð3Þ

From this equation, it is clear that ΔtrVφo values provide information

only regarding the solute–solvent interactions. The ΔtrVφo values have

been summarized in Table 5 and illustrated in Fig. 1(a–c). The positiveΔtrVφ

o values can be rationalized by applying the cosphere model as de-veloped by Friedman and Krishnan [37]. The above said two types of in-teractions (1) and (2) lead to a positive contribution, while interactionsof the types (3) and (4) give a negative contribution towards the ΔtrVφ

o

values. The observed positive ΔtrVφo values specify that hydrophilic–

ionic/hydrophilic–hydrophilic interactions remain preeminent over hy-drophilic–hydrophobic/hydrophobic–hydrophobic interactions [17]. Itis also evident from Fig. 1(a–c) that ΔtrVφ

o values increase with glycineconcentration and with temperature at the same time. On a compara-tive basis, ΔtrVφ

o values follow the order ribose b maltose b raffinose atall concentrations of glycine (Fig. 2) which is well documented in liter-ature [18]. It may be due to the more dominating nature of interactiontypes (1) and (2) which become quite evident with increased concen-tration of glycine and complexity of saccharides as we move frommono- to di- to tri-saccharides. However, ΔtrVφ

o values of saccharidesfollow the reverse order in aqueous borax solutions where monosac-charides form a strong complex with borax [38]. The increase in Δtrφv

o

values with temperature may be due to the rise in Vφo values of saccha-

rides with temperature.Moreover, the positive ΔtrVφ

o values can be connected to the declinein shrinkage volume in aqueous glycine solutions according to Shahidi'sequation [39],

Voφ ¼ Vv:w: þ Vvoid:−Vshrinkage ð4Þ

where Vv.w. is van der Waal's volume, Vvoid is the associated void orempty volume, andVshrinkage is the shrinkage in volume caused bydiffer-ent solute–solvent interactions. If it is assumed that Vv.w and Vvoid havethe same magnitudes in water as well as in aqueous glycine solutions,

than the decrease in Vshrinkage is the only contributor to the positiveΔtrVφ

o values.

3.2. Expansion coefficient and second derivative

The partial molar expansion coefficients ∂Voφ

.∂T

� �pand second de-

rivatives ∂2Voφ

.∂T2

� �phave been determined by fitting the Vφ

o results in

the equation,

Voφ ¼ aþ bT þ cT2 ð5Þ

where a, b, and c are constants whose values are given in Table 6. The∂Vo

φ

.∂T

� �pvalues for different saccharides inwater and aqueous glycine

solutions are positive (Table 6). The variation of expansion coefficients,∂Vo

φ

.∂T

� �pversus temperature (Fig. 3(a–c)) shows that values increase

with temperature except for the raffinose–water system. This showsthat saccharides behave unlike common electrolytes [40], which is inagreement with the results cited in the literature [41]. Further, it is in-dicative of the prominent caging effect exhibited by saccharides [42].

The magnitudes of ∂2Voφ

.∂T2

� �pvalues give important information re-

garding the structure making or breaking behavior of the solute. Hepler

[43], has suggested the equation, ∂Cop;2

.∂T

� �T¼ −T ∂2Vo

φ

.∂T2

� �pto un-

derstand the structuremaking and breaking capacity of a solute in aque-ous solutions. For a structure breaking solute, the left hand side of above

equation should be positive, and hence ∂2Voφ

.∂T2

� �pshould be negative

for structure breaking and positive for structure making solutes. There-

fore, the positive values of ∂2Voφ

.∂T2

� �p(Table 6) except for raffinose in

water suggest that all saccharides behave as structure makers in aque-ous glycine solutions. This type of behavior of saccharides has alsobeen noticed by P. K. Banipal et al. [18].

3.3. Isentropic compressibility

The isentropic compressibility values have been computed by usingthe equation,

κs ¼1

ρu2 ð6Þ

where u is the speed of sound of solution (m s−1), which is a thermody-namic property at a condition of negligible sound absorption.

The isentropic compressibility, κs, values have been listed in Table 7and illustrated in Fig. 4(a–c). Table 7 and Fig. 4(a–c) reveal that, κsvalues decrease linearly with molal concentration of saccharides andtemperature aswell. This diminution shows that the addition of saccha-rides to the solutions increases the hydrophilic–ionic interactions,which pared the cavities in the solution and the system becomes lesscompressible. Though, the temperature effect on isentropic compress-ibility may be due to the thermal fissure of the water structure around

Page 9: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

0

2

4

6

8

10

mGly/ mol·kg-1

mGly/ mol·kg-1

mGly/ mol·kg-1

(a)

0

2

4

6

8

10

12

14

16 (b)

0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.02 0.04 0.06 0.08 0.1002468

10121416182022242628303234 (c)

φΔ t

rVo

x106 /

m3 ·

mol

-1φ

Δ trV

o x1

06 / m

3 ·m

ol-1

φΔ t

rVo

x106 /

m3 ·

mol

-1

Fig. 1. ΔtrV φo versus molality of glycine for (a) D (−) ribose, (b) D (+) maltose

monohydrate, and (c) D (+) raffinose pentahydrate. ■, T = 293.15 K; ●, T = 298.15 K;▲, T = 303.15 K;▼, T = 308.15 K; , T = 313.15 K.

0.00 0.02 0.04 0.06 0.08 0.100

2

4

6

8

10

12

14

16

18

20

22

24

mGly/ mol·kg-1

φΔ t

rVo

x106 /

m3 ·

mol

-1

Fig. 2. Comparative plot of ΔtrVφo versus molality of glycine at temperature 298.15 K.■, D

(−) ribose;●, D (+) maltose monohydrate; ▲, D (+) raffinose pentahydrate.

220 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

the zwitterions of glycine and hydrophilic OH groups of saccharides.However, these results are in contradiction with the results retrievedby Nain et al. [36]. In addition, due to the increase in the number ofthe OH group with the type of saccharides, the κs values decrease inthe following order: ribose N maltose N raffinose at all studied glycineconcentrations as reported in Table 7.

3.4. Apparent molar isentropic compression

The apparent molar isentropic compressions, κs,φ, have been calcu-lated using the relation,

κs;φ ¼ κs−κoð Þmρo

� �þ κsVφ ð7Þ

where κs and κo are the isentropic compressibilities of the solution andsolvent (m2N−1), respectively. The apparentmolar isentropic compres-sions, κs,φ, have been recorded in Table 4. As the κs,φ values vary linearlywith molal concentration of saccharides, the apparent molar isentropiccompressions at infinite dilution, κ s,φ

o , and slopes, Sk, can be obtained byusing the method of linear regression of the following relation,

κs;φ ¼ κos;φ þ Skm ð8Þ

where κ s,φo measures the solute–solvent interactions and Sk affords in-

formation regarding solute–solute interaction. The values of κs,φo and Skat different temperatures and concentrations of glycine along withtheir standard errors have been indexed in Table 5. In literature, to thebest of our knowledge, no compressibility data of these saccharides inaqueous amino acid solutions is available for comparison purposes.The negative κ s,φ

o values (Table 5) showing the presence of strong sol-ute–solvent interactions results in less compressible solutions [35].Table 5 pinpoints that all the κ s,φ

o values rise with temperature, but de-cline with glycine concentration. The increase in κ s,φ

o values with tem-perature may be due to the release of large water molecules from thesecondary solvation layer of zwitterions of glycine into the bulk ofwater, which makes the solutions more compressible [44]. However,the magnitudes of different types of ionic interactions seem to be in di-rect relation with increase in glycine concentration in the systemwhichin turn results in more negative κ s,φ

o values. These results further sub-stantiate the fact that hydrophilic–ionic/hydrophilic–hydrophilic inter-actions exceed hydrophilic–hydrophobic/hydrophilic–hydrophobic

Page 10: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 6Values of coefficients, a, b, and c, of Eq. (5), partialmolar expansion coefficients, ∂Vo

φ

.∂T

� �p, and ∂2Vo

φ

.∂T2

� �pof saccharides inwater and aqueous glycine solutions at different temperatures

(T/K).

mGlya (mol kg−1) a b c ∂Vo

φ

.∂T

� �p� 106 (m3 mol−1 K−1) ∂2Vo

φ

.∂T2

� �p� 106 m3 mol−1 K−2

293.15 298.15 303.15 308.15 313.15

Ribose in glycine solutions0.000 624.69 −3.57 0.006 −0.052 0.008 0.068 0.128 0.188 0.0120.025 1980.26 12.87 0.022 0.028 0.248 0.468 0.688 0.908 0.0440.050 929.32 −5.76 0.010 0.100 0.200 0.300 0.400 0.500 0.0200.100 61.80 0.07 0.0002 0.191 0.193 0.195 0.197 0.199 0.0004

Maltose in glycine solutions0.000 543.87 −2.43 0.005 0.27 0.31 0.36 0.40 0.45 0.0100.025 794.11 −4.13 0.008 0.33 0.40 0.48 0.55 0.63 0.0160.050 943.60 −5.11 0.009 0.17 0.27 0.35 0.44 0.53 0.0180.100 1118.12 −6.23 0.011 0.22 0.33 0.44 0.55 0.66 0.022

Raffinose in glycine solutions0.000 −1396.43 11.38 −0.018 0.827 0.647 0.467 0.287 0.107 -0.0360.025 3159.05 −18.39 0.031 −0.332 0.024 0.284 0.592 0.900 0.0620.050 2822.98 −16.17 0.027 −0.220 0.052 0.324 0.596 0.868 0.0540.100 2213.94 −12.34 0.021 0.092 0.304 0.516 0.728 0.940 0.042

a mGly is the molality of aqueous glycine solution.

221S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

interactions. Relatively, lesser Sk values for all the studied systems sug-gest very weak solute–solute interactions.

The transfer apparentmolar isentropic compressions at infinite dilu-tion, Δtrκ s,φ

o , from water to aqueous glycine solutions were calculatedfrom the following equation:

Δtrκos;φ ¼ κo

s;φ aq:glycineð Þ−κos;φ waterð Þ: ð9Þ

The Δtrκ s,φo values are listed in Table 5 and illustrated in Fig. 5(a–c).

Table 5 shows thatΔtrκ s,φo values are positive, and increasewith temper-

ature, but becomes more negative with greater glycine concentration.All these observations show the predominance of hydrophilic–ionic/hydrophilic–hydrophilic interactions in present systems, which are re-sponsible for the release of a large number of water molecules fromthe secondary solvation layer around the glycine zwitterions into thebulk of water. Such type of behavior has also been reported in literature[35]. Relatively, it can be noticed from Fig. 6, that Δtrκ s,φ

o values of vari-ous saccharides increase systematically with their complexity frommono- to di- to tri-saccharides in all concentrations of glycine. Thismay be credited as a result of increased disruption of the solvationlayers around charged centers as a result of escalation in hydroxylgroups–zwitterions i.e. hydrophilic–ionic interactions. These resultsare in compliance with that of results accessed from partial molar vol-ume studies.

4. Conclusions

The increase inΔtrVφo valueswith intricacy of saccharides and glycine

concentration is due to stronger hydrophilic–ionic interactions betweenOH groups of saccharide and zwitterions of glycine amino acid. Despitethis, the rise in ΔtrVφ

o values with temperature is due to the release ofwater molecules from secondary solvation layer around the zwitterions

into the bulk of water. The positive ∂2Voφ

.∂T2

� �pvalues are argued of

structure making behavior of saccharides in aqueous glycine solutions.Further, the positive Δtrκ s,φ

o values in all the studied systems are indica-tive of stronger solute–solvent interactions. All these observationscollectively show the preeminence of hydrophilic–ionic over hydropho-bic–hydrophobic interactions in the present ternary system.

Acknowledgment

Kuldeep Kumar thanks UGC for the award of UGC-BSR researchfellowship Vide UGC Letter F. No. 7-75/2007 (BSR).

References

[1] C. Ebel, H. Eisenberg, R. Ghirlando, Biophys. J. 78 (2000) 385–393.[2] N. Jovanovic, A. Bouchard, G.W. Hofland, G.J. Witkamp, D.J.A. Crommelin, W. Jiskoot,

Eur. J. Pharm. Sci. 27 (2006) 336–345.[3] Y.H. Liao, M.B. Brown, G.P. Martin, Eur. J. Pharm. Biopharm. 58 (2004) 15–24.[4] A. Taravati, M. Shokrzadeh, A.G. Ebadi, P. Valipour, A.T.M. Hassan, F. Farrokhi, World

Appl. Sci. J. 2 (2007) 353–362.[5] D.E. Metzler, Biochemi. The Chemical Reactions of Living Cells, vol. 1Academic Press,

New York, 1977.[6] H.B. Dunford, W.D. Hewson, Biochemistry 16 (1977) 2949–2957.[7] J.L. Dashnau, B. Zelent, J.M. Vanderkooi, Biophys. Chem. 114 (2005) 71–83.[8] X.C. Tang, M.J. Pikal, Pharm. Res. 22 (2005) 1167–1175.[9] W.W. Wright, J.C. Baez, J.M. Vanderkooi, Anal. Biochem. 307 (2002) 167–172.

[10] W.W. Wright, G.T. Guffanti, J.M. Vanderkooi, Biophys. J. 85 (2003) 1980–1995.[11] M.A. Johnson, A. Rotondo, B.M. Pinto, Biochemistry 41 (2002) 2149–2157.[12] K.A. Karlsson, Pure Appl. Chem. 59 (1987) 1465–1476.[13] T. Osawa, T. Tsuji, Annu. Rev. Biochem. 56 (1987) 21–42.[14] K. Bock, Pure Appl. Chem. 55 (1983) 605–622.[15] H. Thogersen, R.U. Lemieux, K. Bock, B. Meyer, Can. J. Chem. 60 (1982) 44–57.[16] K. Bock, M.E. Breimer, A. Brignole, G.C. Hansson, K.A. Karlsson, G. Larson, H. Leffler, B.

E. Samuelsson, N. Stromberg, C.S. Eden, Thurin, J. Biol. Chem. 260 (1985)8545–8551.

[17] P.K. Banipal, A.K.C. Hundal, T.S. Banipal, Carbohydr. Res. 345 (2010) 2262–2271.[18] P.K. Banipal, A.K. Chahal, T.S. Banipal, J. Chem. Thermodyn. 41 (2009) 452–483.[19] K. Zhuo, J. Wang, Y. Yue, H. Wang, Carbohydr. Res. 328 (2010) 383–391.[20] K. Zhuo, J. Wang, H. Zheng, X. Xuan, Y. Zhao, J. Solut. Chem. 34 (2005) 155–170.[21] T. Samanta, S.K. Saharay, J. Chem. Thermodyn. 42 (2010) 1131–1135.[22] C. Zhao, P. Ma, J. Li, J. Chem. Thermodyn. 37 (2005) 37–42.[23] K. Zhuo, Q. Liu, Y. Wang, Q. Ren, J. Wang, J. Chem. Eng. Data 51 (2006) 919–927.[24] A. Pal, N. Chauhan, J. Chem. Eng. Data 56 (2011) 1687–1694.[25] S. Chauhan, K. Sharma, D.S. Rana, G. Kumar, A. Umar, J. Mol. Liq. 175 (2012)

103–110.[26] S. Chauhan, M.S. Chauhan, D. Kaushal, V.K. Syal, J. Jyoti, J. Solut. Chem. 39 (2010)

622–638.[27] S. Chauhan, M.S. Chauhan, J. Jyoti, Rajni, J. Mol. Liq. 148 (2009) 24–28.[28] S. Chauhan, J. Jyoti, G. Kumar, J. Mol. Liq. 159 (2011) 196–200.[29] S. Chauhan, M.S. Chauhan, J. Jyoti, R.S. Thakur, J. Polym. Mater. 28 (2011)

59–73.[30] S. Chauhan, Seema, D.S. Rana, Rajni, M.S. Chauhan, A. Umar, Adv. Sci. Eng. Mater. 4

(2012) 81–84.[31] S. Chauhan, M.S. Chauhan, G.S. Chauhan, Sonika, J. Jyoti, Int. J. Thermophys. 33

(2012) 279–288.[32] S. Chauhan, K. Sharma, D.S. Rana, G. Kumar, A. Umar, J. Solut. Chem. 42 (2013)

634–656.[33] S. Chauhan, K. Kumar, K. Singh, J. Jyoti, J. Surfactant Deterg. 17 (2014) 169–175.[34] V.R. Karanth, D.K. Bhat, J. Chem. Eng. Data 58 (2013) 271–278.

Page 11: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

/m3·mol-1·K-1

/m3·mol-1·K-1

/m3·mol-1·K-1

T/ K

(a)

0.2

0.3

0.4

0.5

0.6

0.7

T/ K

(b)

290 295 300 305 310 315

290 295 300 305 310 315

290 295 300 305 310 315-0.5

0.0

0.5

1.0

T/ K

(c)

Fig. 3. ∂Voφ

.∂T

� �p

versus temperature for (a) D (−) ribose, (b) D (+) maltose

monohydrate, and (c) D (+) raffinose pentahydrate. ■, mgly = 0.000 mol kg−1; ●,

mgly = 0.025 mol kg−1; ▲, mgly = 0.050 mol kg−1; ▼, mgly = 0.100 mol kg−1.

222 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

[35] A. Pal, N. Chauhan, J. Mol. Liq. 149 (2009) 29–36.[36] A.K. Nain, R. Pal, R.K. Sharma, J. Chem. Thermodyn. 43 (2011) 603–612.[37] H.L. Friedman, C.V. Krishnan, F. Franks (Eds.), Water: A Comprehensive Treatise, vol.

3, Plenum, New York, 1973, (Chapter 1).[38] P.K. Banipal, V. Singh, T.S. Banipal, J. Chem. Eng. Data 58 (2013) 2355–2374.[39] F. Shahidi, P.G. Farrell, J.T. Edward, J. Solut. Chem. 5 (1976) 807–816.[40] F.J. Millero, Chem. Rev. 71 (1971) 147–176.[41] W. Zielenkiewicz, G.L. Perlovich, G.E. Nikitina, A.S. Semeykin, J. Solut. Chem. 25

(1996) 135–153.[42] F.J. Millero, R.A. Horne (Eds.), Structure and Transport Processes inWater and Aque-

ous Solutions, Wiley Interscience, New York, 1971, (Chapter 15).[43] L.G. Hepler, Can. J. Chem. 47 (1969) 4613–4617.[44] M.A. Riyazuddeen, Usmani, J. Chem. Eng. Data 56 (2011) 3504–3509

Page 12: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 7Isentropic compressibility, κs of saccharides in water and aqueous glycine solutions at different temperatures (T/K).

ma (mol kg−1) κs (TPa−1)

293.15 298.15 303.15 308.15 313.15

Ribose in glycine solutionsmGly

b (mol kg−1) = 0.0000.000 455.53 447.51 440.85 435.38 430.990.050 452.86 444.96 438.47 433.12 428.860.055 452.61 444.74 438.26 432.91 428.660.060 452.37 444.53 438.05 432.71 428.470.065 452.13 444.31 437.85 432.51 428.270.070 451.90 444.09 437.65 432.31 428.070.075 451.68 443.88 437.45 432.12 427.870.080 451.45 443.67 437.26 431.91 427.680.085 451.23 443.47 437.07 431.73 427.480.090 451.02 443.26 436.88 431.53 427.290.100 450.58 442.86 436.51 431.16 426.90mGly (mol kg−1) = 0.0250.000 454.31 446.41 439.76 434.35 429.990.050 451.43 443.67 437.15 431.88 427.710.055 451.13 443.38 436.88 431.63 427.460.060 450.84 443.09 436.61 431.36 427.190.065 450.55 442.80 436.34 431.09 426.940.070 450.25 442.52 436.07 430.83 426.690.075 449.96 442.25 435.79 430.57 426.440.080 449.67 441.98 435.51 430.30 426.180.085 449.36 441.68 435.25 430.02 425.930.090 449.04 441.37 434.95 429.75 425.670.100 448.41 440.78 434.38 429.22 425.15mGly (mol kg−1) = 0.0500.000 453.19 445.31 438.68 433.27 428.950.050 450.33 442.57 436.09 430.88 426.730.055 450.04 442.29 435.82 430.65 426.500.060 449.76 442.02 435.56 430.41 426.260.065 449.47 441.74 435.29 430.17 426.040.070 449.19 441.47 435.03 429.93 425.810.075 448.91 441.19 434.77 429.69 425.580.080 448.62 440.92 434.51 429.45 425.360.085 448.34 440.65 434.24 429.21 425.130.090 448.06 440.38 433.98 428.98 424.890.100 447.49 439.84 433.45 428.51 424.42mGly (mol kg−1) = 0.1000.000 450.82 443.01 436.55 431.23 426.980.050 447.88 440.20 433.88 428.74 424.650.055 447.59 439.92 433.61 428.49 424.400.060 447.30 439.64 433.34 428.24 424.150.065 447.01 439.36 433.07 427.99 423.900.070 446.72 439.08 432.80 427.73 423.650.075 446.43 438.80 432.52 427.48 423.400.080 446.15 438.52 432.25 427.21 423.150.085 445.86 438.24 431.97 426.95 422.890.090 445.57 437.96 431.69 426.69 422.630.100 444.99 437.40 431.14 426.17 422.13

Maltose in glycine solutionsmGly (mol kg−1) = 0.0000.050 449.31 441.51 435.14 429.75 425.410.055 448.64 440.89 434.53 429.17 424.870.060 447.98 440.27 433.92 428.58 424.330.065 447.33 439.68 433.31 428.03 423.770.070 446.68 439.06 432.72 427.45 423.250.075 446.04 438.44 432.12 426.85 422.690.080 445.37 437.77 431.52 426.26 422.150.085 444.73 437.17 430.93 425.71 421.590.090 444.08 436.53 430.33 425.12 421.030.100 442.75 435.28 429.09 423.88 419.89mGly (mol kg−1) = 0.0250.050 448.28 440.58 434.17 428.91 424.690.055 447.69 440.00 433.62 428.36 424.150.060 447.09 439.42 433.06 427.81 423.610.065 446.50 438.84 432.51 427.26 423.070.070 445.92 438.26 431.96 426.71 422.540.075 445.33 437.69 431.40 426.16 422.000.080 444.74 437.12 430.85 425.60 421.460.085 444.14 436.55 430.29 425.05 420.920.090 443.54 435.98 429.73 424.48 420.380.100 442.35 434.84 428.58 423.37 419.31

(continued on next page)

223S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 13: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

Table 7 (continued)

ma (mol kg−1) κs (TPa−1)

293.15 298.15 303.15 308.15 313.15

Maltose in glycine solutionsmGly (mol kg−1) = 0.0500.050 447.09 439.43 433.11 427.87 423.640.055 446.47 438.85 432.55 427.33 423.110.060 445.86 438.27 432.00 426.79 422.580.065 445.25 437.68 431.45 426.25 422.050.070 444.65 437.10 430.90 425.71 421.530.075 444.03 436.52 430.36 425.17 421.000.080 443.43 435.95 429.81 424.64 420.480.085 442.82 435.37 429.26 424.10 419.950.090 442.21 434.79 428.71 423.56 419.430.100 441.00 433.64 427.62 422.49 418.39mGly (mol kg−1) = 0.1000.050 444.72 437.15 430.90 425.80 421.650.055 444.12 436.58 430.33 425.26 421.110.060 443.52 436.01 429.78 424.72 420.580.065 442.94 435.44 429.22 424.18 420.060.070 442.36 434.87 428.66 423.65 419.530.075 441.75 434.31 428.11 423.12 419.010.080 441.17 433.74 427.55 422.59 418.490.085 440.57 433.18 426.99 422.06 417.970.090 439.98 432.62 426.43 421.53 417.450.100 438.81 431.50 425.32 420.47 416.40

Raffinose in glycine solutionsmGly (mol kg−1) = 0.0000.050 445.68 438.03 431.71 426.52 422.310.055 444.74 437.11 430.83 425.66 421.470.060 443.79 436.20 429.95 424.81 420.640.065 442.85 435.29 429.07 423.96 419.800.070 441.91 434.38 428.19 423.12 418.970.075 440.97 433.48 427.32 422.28 418.150.080 440.04 432.59 426.45 421.44 417.330.085 439.11 431.69 425.59 420.61 416.510.090 438.19 430.80 424.72 419.78 415.700.100 436.36 429.02 423.00 418.13 414.08mGly (mol kg−1) = 0.0250.050 444.27 436.74 430.44 425.36 421.220.055 443.27 435.79 429.55 424.50 420.380.060 442.29 434.83 428.65 423.63 419.540.065 441.31 433.88 427.73 422.77 418.720.070 440.34 432.93 426.84 421.91 417.890.075 439.36 431.98 425.93 421.05 417.060.080 438.40 431.01 425.04 420.20 416.240.085 437.43 430.11 424.15 419.34 415.430.090 436.45 429.16 423.24 418.51 414.600.100 434.51 427.31 421.45 416.80 412.97mGly (mol kg−1) = 0.0500.050 442.97 435.52 429.21 424.03 419.860.055 441.96 434.55 428.28 423.09 418.960.060 440.96 433.59 427.34 422.17 418.070.065 439.96 432.63 426.43 421.27 417.200.070 438.97 431.68 425.50 420.33 416.310.075 437.98 430.73 424.55 419.44 415.430.080 436.99 429.78 423.64 418.53 414.540.085 435.99 428.84 422.74 417.63 413.660.090 434.98 427.90 421.83 416.75 412.780.100 432.99 426.01 420.05 414.96 411.03mGly (mol kg−1) = 0.1000.050 440.57 433.11 427.00 421.88 417.750.055 439.52 432.12 426.05 420.95 416.840.060 438.51 431.13 425.08 420.04 415.930.065 437.50 430.14 424.15 419.11 415.040.070 436.50 429.15 423.18 418.19 414.120.075 435.47 428.15 422.28 417.29 413.230.080 434.50 427.16 421.37 416.35 412.320.085 433.50 426.21 420.47 415.43 411.370.090 432.49 425.26 419.48 414.48 410.470.100 430.52 423.38 417.57 412.65 408.61

a m is the molality of saccharides.b mGly is the molality of aqueous glycine solution.

224 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 14: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

450(a)

κ s/T

Pa-1

κ s/T

Pa-1

κ s/T

Pa-1

m/ mol·kg-1

m/ mol·kg-1

m/ mol·kg-1

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

446(b)

0.05 0.06 0.07 0.08 0.09 0.10

0.05 0.06 0.07 0.08 0.09 0.10

0.05 0.06 0.07 0.08 0.09 0.10

406408410412414416418420422424426428430432434436438440442 (c)

Fig. 4. κs versus molality of (a) D (−) ribose, (b) D (+) maltose monohydrate, and(c) D (+) raffinose pentahydrate in 0.100 mol kg−1 aqueous glycine solution. ■, T =293.15 K;●, T = 298.15 K; ▲, T = 303.15 K;▼, T = 308.15 K;◄, T = 313.15 K.

0

1

2

3

4

5

mGly/ mol·kg-1

mGly/ mol·kg-1

mGly/ mol·kg-1

(a)

0

1

2

3

4

5

6

(b)

0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.02 0.04 0.06 0.08 0.10

0.00 0.02 0.04 0.06 0.08 0.100

1

2

3

4

5

6

(c)

Δ trκ

ο s,φ

x103 /

m3 ·

mol

-1·T

Pa-1

Δ trκ

ο s,φ

x103 /

m3 ·

mol

-1·T

Pa-1

Δ trκ

ο s,φ

x103 /

m3 ·

mol

-1·T

Pa-1

Fig. 5. Δtrκ s,φo versus molality of glycine for (a) D (−) ribose, (b) D (+) maltose

monohydrate, and (c) D (+) raffinose pentahydrate. ■, T = 293.15 K; ●, T = 298.15 K;▲, T = 303.15 K;▼, T = 308.15 K; , T = 313.15 K.

225S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226

Page 15: Effect of glycine on aqueous solution behavior of saccharides at different temperatures: Volumetric and ultrasonic studies

0.00 0.02 0.04 0.06 0.08 0.100

1

2

3

4

5

mGly/ mol·kg-1

Δ trκ

ο s,φ

x103 /

m3 ·

mol

-1·T

Pa-1

Fig. 6. Comparative plot ofΔtrκs,φo versusmolality of glycine at temperature 298.15 K.■, D(−) ribose;●, D (+) maltose monohydrate; ▲, D (+) raffinose pentahydrate.

226 S. Chauhan, K. Kumar / Journal of Molecular Liquids 194 (2014) 212–226


Recommended