+ All Categories
Home > Documents > EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON...

EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON...

Date post: 12-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
14
1- PhD Scholar, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Telephone: 81-776278595, Fax: 81-776278746, E-mail: [email protected] 2- Dr. of Eng., Professor, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Telephone: 81- 776278595, Fax: 81-776278746, E-mail: [email protected] 3- Dr. of Eng., Associate Professor, Dept. of Civil Engineering and Urban Design, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan; E-mail: [email protected] 4- PhD Student, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON SOIL WETTING PATTERN EFFET D'UNE IRRIGATION SOUS DIFFÉRENCE DE PRESSION NÉGATIVE SUR LE SOL MOUILLANT MOTIF S. M. Moniruzzaman 1 , Teruyuki Fukuhara 2 , Yoshihiro ISHII 3 and Hiroaki Terasaki 4 ABSTRACT Negative pressure difference irrigation (NPDI) is considered to be a highly efficient water saving method, which consists of a porous pipe and a water reservoir. The water use efficiency of the NPDI is higher than that of other irrigation methods such as surface irrigation, sprinkler irrigation and drip irrigation. In order to investigate the effect of negative pressure difference on the soil wetting pattern and water balance of the NPDI, laboratory experiments were carried out using a soil column in a temperature and humidity controlled room. The supplied water (M sup ), soil water storage (M soil ), evaporation (M eva ), wetted soil surface area and configuration of wetted soil around the porous pipe were measured for three different negative pressures. Empirical equations were proposed for the calculation of wetted soil volume, M soil , M eva and M sup . The proposed simple methodology could well reproduce the temporal variations in the wetted soil volume, water use efficiency, M soil , M eva and M sup . RÉSUMÉ ET CONCLUSIONS Le manque d’eau est une contrainte majeure dans le domaine de l’agriculture en milieux arides et semi-arides. Le système d’irrigation sous différence de pression négative (NPDI) pourrait être un des meilleurs moyens pour économiser cette eau étant donner qu’il dirige l’eau directement vers la racine de la zone visée. Le système NPDI est composé d'un tuyau poreux enterré verticalement dans un sol, un conduit d'alimentation en eau et un réservoir d'eau. Le réservoir est placé à une hauteur inférieure à celle du tuyau poreux de manière à obtenir une différence de pression négative, notée P n , dans le tuyau poreux. Lorsque le potentiel matriciel, noté ψ, du sol environnant est inférieur à la pression P n , l’eau va alors se déplacer du réservoir vers le tuyau poreux et s’écouler dans le sol environnant. Au contraire, lorsque ψ est supérieur à P n , l’écoulement s’arrête automatiquement sans aucune opération manuelle. La différence de pression entre ψ et P n est le moteur de l’eau conduite par
Transcript
Page 1: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

1- PhD Scholar, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil

Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Telephone: 81-776278595, Fax: 81-776278746, E-mail: [email protected]

2- Dr. of Eng., Professor, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Telephone: 81-776278595, Fax: 81-776278746, E-mail: [email protected]

3- Dr. of Eng., Associate Professor, Dept. of Civil Engineering and Urban Design, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan; E-mail: [email protected]

4- PhD Student, Environmental Heat and Hydraulics Laboratory, Department of Architecture and Civil Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON SOIL WETTING PATTERN

EFFET D'UNE IRRIGATION SOUS DIFFÉRENCE DE PRESSION NÉGATIVE SUR LE SOL MOUILLANT MOTIF

S. M. Moniruzzaman1, Teruyuki Fukuhara

2, Yoshihiro ISHII

3 and

Hiroaki Terasaki4

ABSTRACT

Negative pressure difference irrigation (NPDI) is considered to be a highly efficient water saving method, which consists of a porous pipe and a water reservoir. The water use efficiency of the NPDI is higher than that of other irrigation methods such as surface irrigation, sprinkler irrigation and drip irrigation. In order to investigate the effect of negative pressure difference on the soil wetting pattern and water balance of the NPDI, laboratory experiments were carried out using a soil column in a temperature and humidity controlled room. The supplied water (Msup), soil water storage (Msoil), evaporation (Meva), wetted soil surface area and configuration of wetted soil around the porous pipe were measured for three different negative pressures. Empirical equations were proposed for the calculation of wetted soil volume, Msoil , Meva and Msup. The proposed simple methodology could well reproduce the temporal variations in the wetted soil volume, water use efficiency, Msoil, Meva and Msup.

RÉSUMÉ ET CONCLUSIONS

Le manque d’eau est une contrainte majeure dans le domaine de l’agriculture en milieux arides et semi-arides. Le système d’irrigation sous différence de pression négative (NPDI) pourrait être un des meilleurs moyens pour économiser cette eau étant donner qu’il dirige l’eau directement vers la racine de la zone visée. Le système NPDI est composé d'un tuyau poreux enterré verticalement dans un sol, un conduit d'alimentation en eau et un réservoir d'eau. Le réservoir est placé à une hauteur inférieure à celle du tuyau poreux de manière à obtenir une différence de pression négative, notée Pn, dans le tuyau poreux. Lorsque le potentiel matriciel, noté ψ, du sol environnant est inférieur à la pression Pn, l’eau va alors se déplacer du réservoir vers le tuyau poreux et s’écouler dans le sol environnant. Au contraire, lorsque ψ est supérieur à Pn, l’écoulement s’arrête automatiquement sans aucune opération manuelle. La différence de pression entre ψ et Pn est le moteur de l’eau conduite par

Page 2: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

le système NPDI. La présence d’un sol humide autour du tuyau poreux affecte l’efficacité de l’eau utilisée dans le domaine agricole. C'est pourquoi, il est important de comprendre la relation entre la configuration du sol mouillé et Pn au fil du temps l'approvisionnement en eau. Ce document vise, dans un premier temps, à décrire l’influence d’une différence de pression négative sur un sol humide autour d’un tuyau poreux, et, dans un second temps, à prédire une méthode simple d’équilibre de l’eau au sein du système NPDI. En vue d'atteindre l'objectif ci-dessus, un test d'équilibre de l'eau du système NPDI a été réalisée à une température et humidité ambiante contrôlée (25°C et 30%, respectivement) pour trois différents Pn (-0,02 m, -0,07 m et - 0,10 m H2O).Une colonne de terre (diamètre = 0,20 m et hauteur = 0,21 m) a été remplie avec du sable Kawanishi, celui-ci ayant une densité à sec de 1410 kg/m3. Un tuyau poreux (longueur = 0,1 m, rayon extérieur = 12,5 mm et épaisseur = 6 mm) a été enterré verticalement au centre de la colonne de terre. Pn représente la différence de hauteur entre la surface de l’eau dans le réservoir et le milieu du tuyau poreux, comme le montre la Figure 2. Deux balances électriques (pesée minimum = 100 mg) ont été utilisées pour mesurer simultanément la masse d’eau cumulée dans le réservoir, notée Msup et la masse d’eau cumulée dans le sol, notée Msoil. Par différence (Msup – Msoil), l’évaporation cumulée peut alors être déterminée, celle-ci étant noté Meva. Enfin, la terre sèche a été séparée de la colonne de terre dans le but d’évaluer la configuration de la terre humide à t = 24 h, t = 48 h et t = 72 h. Les principales conclusions tirées de cette étude sont les suivantes :

(1) Précision de mesure des Msup et Msoil a été assurée par le résultat, Msup = Msoil, obtenu à partir d'un test d'équilibre de l'eau. Dans cet essai, l'équilibre de l'eau, l'évaporation n'a pas été autorisée à partir de la surface du sol.

(2) L’équation empirique pourrait concorder avec les résultats expérimentaux concernant la variation du temps au sein de Msup, Msoil et Meva, ainsi qu’avec l’expansion du temps d’humidité du sol.

(3) L’efficacité de l’utilisation de l’eau (=Msoil / Msup) est comprise entre 1 et 0,92. De plus, l’efficacité accroit lorsque Pn diminue.

(4) Cette méthode est efficace pour l’évaluation de l’équilibre de l’eau du système NPDI.

1. INTRODUCTION

Water loss due to evaporation, deep percolation below the root zone and conveyance of water from the source to the agricultural field cannot be avoided in irrigation systems. In a sprinkler irrigation system, spray losses can become as high as 45% under extreme weather conditions such as bright sunlight, high temperature and low humidity (Frost and Schwalen, 1955). Irrigation techniques that help save water are indispensable to regions and countries with limited water resources and severe external evaporation conditions. The water wasted in the NPDI is less than that of the drip irrigation (Yabe et al., 1986). NPDI system is a kind of subsurface irrigation and is composed of a water reservoir and a porous pipe installed in soil. The water reservoir is placed at a lower elevation than the porous pipe to generate negative pressure, Pn. NPDI system may be divided into two categories according to the installation direction of the porous pipe, i.e. horizontal and vertical installation. Most of the past studies on NPDI (For example, Kato et al., 1982, Tanigawa et al., 1988, Ashrafi et al., 2002 and Siyal et al., 2009) were dealt with soil wetting pattern around a porous pipe installed horizontally in soil. On the other hand, the soil wetting pattern around a vertically installed porous pipe has been hardly investigated except two groups of researchers (Peifu et al., 2004 and Akhoond et al., 2008). It can be easily expected that the soil wetting pattern will be different for vertically installed porous pipe from that of horizontally installed porous pipe. Since the configuration of the wetting front affects evaporation from the soil surface, it is important to examine the effects of the negative pressure on the temporal expansion of the wetting front.

Page 3: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Besides thatechnique, isystem and discussed idevelop a sbalance in a

In the NPDreservoir anthe soil watethan the negreservoir to surrounding stops autom(supplied waPn|. Saving which is in wetting proc

Figure 1. M

Figure 2 stemperaturechloride pipewith a heighwith Kawaniporous pipe was installeMarriott tubethe differencintermediate

at, intelligentincluding NP

the water n the past simple meth

a NPDI syste

2.

DI system, wd a porous per matric potgative pressthe porous soil. On the

matically withater rate) is water can bproportion t

cess of the so

Mechanism ofdu système

3

hows a sce and humidie (diameter =ht of 0.03 m ishi sand wit(length, l =

ed vertically e in a water sce in elevat

e elevation of

t operation PDI, would use efficiencstudies. Th

hodology form with a vert

MECHAN

water movespipe installedtential (hereasure in the p

pipe and the contrary, whout any arin proportion

be enhancedto the NPD, oil progresse

f a negative pe d’irrigation

. EXPERI

chematic diaty controlled= 0.20 m andeach and u

th a bulk den0.1 m, outerin the centesupply tank wtion betweenf the porous

and managdepend on cy. The waterefore, an r predicting tically installe

NISM OF A

s in a wated vertically inafter referredporous pipe, hen percolat

when ψ is eqrtificial workn to the negd by the NP

lessens or es.

pressure diffpar différenc

IMENTAL

agram of thd room (25°Cd height = 0sed as a sonsity of 1410r radius, Rp =er of the sowas used to n the waterpipe (b-b) (s

gement of athe water b

ter balance experimentsoil wetting

ed porous pi

A NPDI SYS

r supply con the soil as sd to as matric

Pn, water mes through tual to or larg. The suppl

gative pressuPD because

becomes z

ference irrigace de pressio

PROCEDU

he experimeC and 30%, r.21 m) was cil column. T0 kg/m3 for a= 12.5 mm aoil column a

keep Pn conr surface in see Figure 2)

any subsurfabalance in thas been, h

tal study is g pattern anpe.

STEM

nduit that lishown in Figc potential),

moves up frothe porous ger than Pn, lied water pure differencthe suppliedero automat

ation system on négative)

URE

ental arrangrespectively)composed ohe soil columall experimenand thicknessas shown in nstant. Pn wa

the reservo).

ace irrigationthe irrigationhowever, noessential to

nd the wate

nks a wategure 1. Whenψ, is smalle

om the watepipe into thethe seepage

per unit timece (NPD), |ψd water ratetically as the

(Mécanisme

gement in a). A Polyvinyf seven ringsmn was filledntal cases. As, tp = 6 mmFigure 2. A

as defined asoir (a-a) and

n n ot o r

er n r r e e e ψ-e, e

e

a yl s d A )

A s d

Page 4: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Water was pump to remreading of 0supply tank, to measure tthe other breservoir (suintervals. EvMsup:

For easy evwas wrappeaccuracy tesimple watethe water ba0.02, - 0.07

After measurremoved frophotograph visualized anwas collectedwas obtainedmeasured at

4.1 MeasureFigure 3 shmeasuremei.e. the meaduring the co

circulated bemove air bubb.1 g were pla respectivelythe amount oalance was upplied watevaporation fro

valuation of ted so that evest). Conseqr balance ofalance test wand - 0.1m H

Figur

ring Msup andom the soil

in Figure 4nd measured d in a heat -pd by the gravt three elapse

4

ement accuhows the tent accuracy asurement eourse of the

etween the bles in the siaced under ty. The electriof water storused to me

er), Msup, simom the soil s

the measureaporation fro

quently, the f Msup = Msoil

was carried H20).

re 2. A Sche(Schéma

d Msoil at the column whil). Subsequewith a came

proof tray andvimetric soil saed time, t = 24

4. RESUL

racy emporal vartest for Pn =

error (= |Msup

experiment.

porous pipeilicon tube. Tthe soil columc balance pl

red in the soieasure the ultaneously. surface, Meva

sueva MM

ement accuraom the soil smeasureme

l. After this mout for three

matic diagraa du test d’éq

end of the tee taking off

ently, the coera and a scad the volumetampling meth4, 48 and 72

TS AND D

riations in M - 0.02 m. Tp-Msoil|/Msup)

e and the reTwo electric bmn and undeaced under til, Msoil (soil wamount of wAll data we

a, was given

soilup M

acy of Msup asurface was pent accuracymeasuremene different ne

am of a waterquilibre de l’e

est, dry soil af seven ringsonfiguration oale, respectivetric water conhod. All data hours.

DISCUSSIO

Msup (> 0) he differencewas negligi

servoir by ubalances witer the reservothe soil colum

water storagewater supplre recorded by subtracti

and Msoil, theprevented (my was evalunt accuracy wegative pres

r balance teseau)

around the wes one at a of the wettinely. Finally, thntent of the wexcept Msup a

ONS

and Msoil (<e between Mbly small (1

using a smalth a minimumoir and watemn was usede, SWS), andied from theat 60-minuteing Msoil from

(1

e soil columnmeasuremenuated for thewas securedsures (Pn =

st

etted soil wastime (see a

ng front washe wetted so

wetted soil, θm

and Msoil were

< 0) for theMsup and Msoil

.4% or less

ll m er d d e e m

)

n nt e d, -

s a s il

m, e

e l,

s)

Page 5: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

4.2 Soil wetFigure 4 sho0.10 m, respA small phoPn = - 0.02 horizontal plassumed to proposed foThe volume

where r is thRm is the correspondinthe wetting fwetting frontparameters. integration:

After substitporous pipe

tting patternows the obsepectively. otograph in m at t = 24 lane. Howevbe similar t

r calculating of a truncate

Figure 3.(L'équilibr

he radial coomaximum rang to Rm anfront and thet (H, Rm and

The trunc

uting Eq. (2)from Vt and

n erved wetting

Figure 4 shohours. The

ver, in the veto a truncatethe wetted s

ed ellipsoid is

. Water balanre de l'eau da

R

r

ordinate, z isadial spread

nd B is the de vertical coo

B) are definated ellipso

V t

) into Eq. (3),d is given by

g front at t =

ows the wetconfiguratiortical plane,

ed ellipsoid. soil volume, Vs given acco

nce in measans l'essai d'

22

2

B

Hz

R

r

m

s the verticald of the weistance betwordinate of Rned in Figureoid volume,

rHB

0 2

, Vwet is obtathe following

=24 hours for

tted soil aron of the wetthe configurConsequentVwet.

ording to Aca

urement acc'exactitude d

12

H

coordinate etting front

ween the maRm . The repre 4. H, Rm an

Vt, is deri

dzz

ained by subtg equation:

r Pn = - 0.02,

ound the portted soil is cation of the wtly, a simple

ar et al., 2009

curacy test de mesure)

(z = 0 : the , H is the

aximum verticresentative lend B are calleived from t

tracting the v

, - 0.07 and

rous pipe focircular in thewetted soil is

e approach is

9:

(2

soil surface)e value of zcal spread oengths of theed geometricthe following

(3

volume of the

-

or e s s

)

), z

of e c g

)

e

Page 6: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 4. mo

Figure 5 shoThe former wwas obtainephotographstruncated elexpanded wrelation of P Figure 6 shogeometric pa0.10 m). Sol

Wetting fronuillage dans

VV twet

ows the comwas obtaineded from thes and with a llipsoid as lo

with the decrPn to the temp

ows the exparameters aid lines in Fig

w

nt in vertical ple plan verti

B

RlR m

p2

3

mparison betd by substitue configuratruler. It is s

ong as Kawrease in |Pn| poral variatio

pansion of thssociated wigure 6 expre

where q = 0.0

plane for diffcal pour diffé

HBBm

2

2

tween the cauting B, H antion of the seen that thewanishi sand

at the sameons in H, Rm a

he wetting froith the chang

ess Eqs. (5), qptH

jm itR

nmtB 05, j = 0.14,

ferent negativérentes press

HB2 2

alculated Vwe

nd Rm measuwetting fro

e wetted soil is used. Se t (see Figuand B.

ont, i.e. the ge in Pn (for (6) and (7) f

n = 0.14 an

ve pressuressions négativ

lRH p2

et and the obured in Eq. (4ont, measure can be conince the weure 4), we e

temporal incPn = - 0.02,

for 24 ≤ t ≤ 72

nd

s (Front de ves)

(4

bserved one4). The latteed from the

nsidered as aetting front isexamined the

crease in the - 0.07 and 2 hours.

(5

(6

(7

)

e. r e a s e

e -

5)

)

)

Page 7: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 5

The relationregardless oFigure 7 shobserved Vw

is seen that

Figure 6. T

5. Accuracy o

n between eof Pn as long hows the cowet. Vwet was Eq. (4) is ap

Temporal vartemporel

p

of wetted soi

i

m

each of theas Kawanish

omparison ofcalculated b

pplicable to p

riations in geles des para

07.0 nPp

il volume (Pr

10.0 nPi

06.0 nPm

geometric hi sand is usf the tempoy substitutingredict the va

ometric paraamètres géom

08.0

récision du vo

04.0

04.0

parameters sed. oral variationg Eqs. (5) th

alue of Vwet.

ameters, H, Rmétriques, H

olume de so

and t has

ns in the cahrough (10) in

Rm and B (Le

H, Rm et B)

(8

l mouillé)

(9

(10

a similarity

alculated andnto Eq. (4). I

es variations

)

)

)

y,

d It

Page 8: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 7. Cvolume (Co

4.3 Soil waFigure 8 shoPn. The timewith a decreTime depend

In Eq. (11), t

Comparison omparaison d

ater storageows the teme gradient of ease in |Pn |. dency of m f

the co-efficie

of observeddes valeurs o

du volu

poral variatiom, dm /dt, i

for each Pn c

ents, s and u

s

.4u

and calculatobservées etume de sol m

ons in the vos very small

can be expre

m u

are given in

08.0 nPs

1.035. 2 nP

ted temporalcalculées de

mouillé)

olumetric wafor t 72 ho

essed by (for

sut

terms of Pn

09.0

07.01 nP

variations in

es variations

ater content, ours but tend

r 24 ≤ t ≤ 72 h

as follows:

n wetted soil s temporelles

m, for everyds to increase

hours):

(11

(12

(13

s

y e

)

)

)

Page 9: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 8. Temporal variations in volumetric water content

(Les variations temporelles de la teneur en eau volumétrique)

Finally, Msoil is calculated by the following equation:

wetmwsoil VM (14)

where w is the density of water.

Figure 9 shows the observed Msoil obtained from the electric balance reading and Msoil calculated by substistuting Eqs. (4) and (11) into Eq. (14). Initially, Msoil increased remarkably with t and then the time increment of Msoil gradually became small. Both the observed and calculated Msoil are in good agreement with each other.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60 70 80

Elapsed time, t (hour)

Vo

lum

etri

c w

ater

co

nte

nt

(fo

r w

ette

d s

oil

volu

me)

, Ѳ

m

Pn (m) -0.02 -0.07 -0.10Symbol

Page 10: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 9. Cstorage (Co

4.4 EvaporFigure 10 shporous pipe variation in Ahours:

where c1 = 1

Figure 11 shlinear relatiodMheva /dAwe

small with th

When the sfollowing eq

Comparison omparaison d

ration hows the reland t. Awet i

Awet is descri

10-6 and

hows the reon to Awet aet means thehe increase in

oil surface iuation:

of observeddes valeurs o

de stock

lation betweencreased witbed by the fo

0003.0d

lation betweapproximatele evaporationn |Pn| and is

m

s wet, the e

M

and calculaobservées etkage de l'eau

en the wetteth a decreasollowing linea

tcAwet 1

0005.03 nP

en evaporaty, regardlesn mass flux,given by the

58.4heva Pm

evaporation r

hevheva mM

ted temporat calculées leu du sol)

ed soil surfacse in |Pn| at tar equation f

d

0167.0 nn P

tion rate, Mh

ss of Pn. Th, mheva. The

e following eq

58.0nP

rate, Mheva, c

wetva A

l variations ines variations

ce area, Awe

the same t. Tfor every Pn f

2

heva and Awet.he gradient

value of mh

quation:

can be calcu

n soil water temporelles

et, around thThe temporafor 24 ≤ t ≤ 72

(15

(16

. Mheva has aof Mheva, i.eheva becomes

(17

ulated by the

(18

e al 2

5)

6)

a e. s

)

e

8)

Page 11: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

In order tmade in t

1. a

2. Tc

The values orespectively

Figure 10. T

Figure 12 illuwetted soil sFigure 12 crespectivelythese three the calculatithe critical S

Figure 11.

to calculate tthis study. Evaporation appearance The appearcommencemof ti observed.

Temporal var

ustrates the surface, i.e. correspond t. Since the dvalues [= (Mon of Meva w

SWS in this p

Relation betwentre le t

the temporal

from the of the wettedance time o

ment time of ed were 4, 8

riations in wedans le

decision proMc accordingto Mc at obdeviations beMc1+Mc2+Mc3)was started apaper.

ween evapoaux d’évapo

variation in

soil surfacd soil surfaceof the wetteevaporation, and 16 hour

etted soil sure sol mouillé s

ocedure of Mg to the aboserved ti foetween Mc1, )/3] was ado

at time (t = tic

ration rate aration et la s

Meva, the foll

e begins se. ed soil surfa

ti. rs for Pn = - 0

rface area (Lsurface)

Msoil required fove assumptr Pn = - 0.0Mc2 and Mc3

opted as Mc (c) when Msoil

nd wetted sosurface de so

lowing assum

simultaneous

ace is the s

0.02, - 0.07a

es variations

for the appeaions. Mc1, M02, - 0.07 a3 were small,(= 0.014 kg)l reached Mc

oil surface arol humide)

mptions were

sly with the

same as the

and - 0.10 m

s temporelles

arance of theMc2 and Mc3 inand - 0.1 m the mean o. As a result

c. Mc is called

rea (Relation

e

e

e

m,

s

e n

m, of t, d

Page 12: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

Figure 12. Decision procedure of critical soil water storage (Procédure de décision de stockage en eau du sol critiques)

Figure 13 shows the comparision of the observed Meva and calculated one. After substituting Eqs. (15) and (17) into Eq. (18), Meva was calculated by the following equation:

t

thevaeva

ic

dtMM (19)

It is seen that there is little discrepancy between the calculated Meva and the observed one for every Pn even though the maximum difference between ti and tic was about 5 hours (see Figure 12).

Figure 13. Comparison of observed and calculated temporal variations in evaporation

(Comparaison des valeurs observées et calculées les variations temporelles de l'évaporation)

irncid1
Stamp
irncid1
Stamp
Page 13: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

4.5 SupplieFigure 14 shMsup calculaincreased resmall. Both t

Figure 14.water (Comp

4.6 Water uThe water ucalculated w15 shows thEf decreasedecreased grelation agre

Figure 15. efficien

ed water hows the obated by subemarkably wthe observed

. Comparisonparaison des

use efficiense efficiency

water use effhe comparisoed remarkabgradually. Ef eed with obse

Comparisonncy (Compar

tem

bserved Msup

bstistuting Ewith t and thed Msup and th

n of observes valeurs obs

cy y, Ef, is definiciency was on of the obsbly with t at

ranged fromerved one fo

n of observedraison des va

mporelles l'eff

p obtained frEqs. (14) anen the time he calculated

d and calculservées et cal'eau fournie

ed as the raobtained by served Ef ant the comm

m 1.0 to 0.92r every Pn.

d and calculaaleurs observficience d'uti

rom the elecnd (19) intoincrement o

d one show g

ated temporaalculées les v

e)

tio of Msoil tousing Eqs.

nd the calculmencement o2 at different

ated temporavées et calculisation de l'e

ctric balance o Eq. (1). Iof Msup gradugood agreem

al variations variations tem

Msup, i.e. Ms

(1), (14) andated one for

of evaporatiot Pn. The cal

al variations iulées des vaeau)

reading andInitially, Msu

ually becamement.

in supplied mporelles de

soil / Msup. Thed (19). Figurer different Pn

on and thenlculated Ef -

in water use ariations

d up e

e

e e n. n t

irncid1
Stamp
irncid1
Stamp
Page 14: EFFECT OF NEGATIVE PRESSURE DIFFERENCE IRRIGATION ON …irncid.org/GetFileArticles.aspx?FilePrm=1111_84616.pdf · Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;

5. CONCLUSIONS For investigating the soil wetting pattern and water balance in the negative pressure difference irrigation (NPDI) system, a laboratory experiment was performed using a soil column, a porous pipe vertically installed in soil and a water reservoir under conditions of constant air temperature and humidity. The supplied water, soil water storage, evaporation, wetted soil surface area and configuration of wetted soil around the porous pipe were measured for three different negative pressures, -0.02, -0.07 and -0.1 m.

The main conclusions drawn from the present study are as follows: 1) The wetted soil can be considered as a truncated ellipsoid as long as Kawanishi

sand is used. 2) The proposed empirical model can well reproduce the temporal variations in the

wetted soil volume, soil water storage, evaporation and supplied water. 3) The commencement time of evaporation is delayed as the negative water

pressure decreases. 4) With a decrease in the negative pressure, the water use efficiency increases and

is above 92% in all the cases.

6. REFERENCES

1. Acar, B., Topak, R., and Mikailsoy, F., 2009. Effect of applied water and

discharge rate on wetted soil volume in loam or clay-loam soil from an irrigated trickle source. African J. of Agric. Res., 4(1):49 - 54.

2. Akhoond, A. M. and Golabi, M., 2008. Subsurface porous pipe irrigation with vertical option as a suitable irrigation method for light soils. Asian J. of Scientific Research, 1(3):180-192.

3. Ashrafi, S., Gupta, A. D., Babel, M. S., Izumi, N. and Loof, R., 2002. Simulation of infiltration from porous clay pipe in subsurface irrigation. Hydrological Sciences-Journal, 47(2):253-268.

4. Frost, K. R. and Schwalen, H. C., 1955. Sprinkler evaporation losses. Agric. Eng., 36(8): 526 - 528.

5. Kato, Z., and Tejima, S., 1982. Theory and fundamental studies on subsurface irrigation method by use of negative pressure. Trans. JSIDRE, 101:46-54.

6. Peifu, J., Lei, T., Xiao, J., Yu, Y. and Bralts, V. F., 2004. A new irrigation system of zero/ negative pressure and the experimental verification of its feasibility. ASAE/CSAE Annual International Meeting Presentation, paper no. 042253, Ontario, Canada.

7. Siyal, A. A. and Skaggs, T. H., 2009. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. J. of Agricultural Water Management, 96:893-904.

8. Tanigawa, T., Yabe, K. and Tejima, S., 1988. Comparison of prediction of actual measurement about dynamic distribution of soil moisture tension. Trans. JSIDRE, 137:9-16.

9. Yabe, K., Kato, Z. and Tejima, S., 1986. Disparities of water management in the sub-irrigation method by negative pressure difference and the drip irrigation method. Trans. JSIDRE, 123:11-16.


Recommended