+ All Categories
Home > Documents > Effect of Substrate on Proliferation and Differentiation ...

Effect of Substrate on Proliferation and Differentiation ...

Date post: 02-Oct-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
56
Jaco Botha BIOMEDICIN 10th Semester, Medicine with Industrial Specialization Effect of Substrate on Proliferation and Differentiation of Stem Cells
Transcript
Page 1: Effect of Substrate on Proliferation and Differentiation ...

Page 1 of 56

Jaco Botha

BIOMEDICIN 10th Semester, Medicine with Industrial Specialization

Effect of Substrate on Proliferation and

Differentiation of Stem Cells

Page 2: Effect of Substrate on Proliferation and Differentiation ...

Page 2 of 56

Page 3: Effect of Substrate on Proliferation and Differentiation ...

Page 3 of 56

Medicine with Industrial Specialization

Biomedicine

Department of Health Science and Technology

Fredrik Bajers Vej 7

9220 Aalborg

Denmark

Title: Effect of Substrate on Proliferation and Differentiation of Stem Cells

Keywords: Limbal Stem Cell Deficiency (LSCD), Limbal Epithelial Stem Cells (LESCs),

Human Adipose-Derived Stem Cells (ASCs), Collagen Cell Carrier (CCC), Collagen type I,

Amniotic Membrane, Adhesion, Proliferation.

Period: 01.09.12 – 31.05.13

Group: 805 Synopsis:

________________________

Jaco Botha

Supervisors: Vladimir Zachar

Edition size: 3

Number of pages: 56

Appendix: 0

Finished: 31.05.2013

See abstract on page 6.

Page 4: Effect of Substrate on Proliferation and Differentiation ...

Page 4 of 56

Page 5: Effect of Substrate on Proliferation and Differentiation ...

Page 5 of 56

Abstract

Page 6: Effect of Substrate on Proliferation and Differentiation ...

Page 6 of 56

Page 7: Effect of Substrate on Proliferation and Differentiation ...

Page 7 of 56

Preface

Page 8: Effect of Substrate on Proliferation and Differentiation ...

Page 8 of 56

Page 9: Effect of Substrate on Proliferation and Differentiation ...

Page 9 of 56

Table of Contents

1 INTRODUCTION ....................................................................................................................................................... 11 1.1 ANATOMY OF THE CORNEA .............................................................................................................................. 12 1.2 LIMBAL EPITHELIAL STEM CELLS AND THE LIMBAL NICHE ................................................................... 15 1.3 LIMBAL STEM CELL DEFICIENCY .................................................................................................................... 18 1.4 CULTURED LIMBAL EPITHELIUM .................................................................................................................... 19 1.5 SUBSTRATES FOR CLET ...................................................................................................................................... 21 2 AIM .............................................................................................................................................................................. 23 3 METHODS .................................................................................................................................................................. 24 3.1 CELL CULTURES AND MEDIUM ........................................................................................................................ 24

3.1.1 NIH/3T3 MURINE FIBROBLAST CELL CULTURES ......................................................................................................24 3.1.2 Γ-IRRADIATION OF NIH/3T3 FIBROBLASTS ................................................................................................................24 3.1.3 GREEN FLUORESCENT PROTEIN (GFP) EXPRESSING HUMAN ADIPOSE-DERIVED STEM CELLS (ASCS) ...................25 3.1.3 LIMBAL EPITHELIAL CELL MEDIUM FOR 3T3 FEEDER SYSTEM ................................................................................25 3.1.4 SERUM- AND FEEDER-FREE LIMBAL EPITHELIAL CELL MEDIUM..............................................................................25 3.1.5 ISOLATION OF HUMAN LIMBAL EPITHELIAL CELLS FROM CORNEOSCLERAL RINGS ................................................25

3.2 SUBSTRATES .......................................................................................................................................................... 26 3.2.1 PREPARATION OF AMNIOTIC MEMBRANE ...................................................................................................................26 3.2.2 PRODUCTION OF ACELLULAR AMNIOTIC MEMBRANE (AAM) ...................................................................................26 3.2.3 PRODUCTION OF EPITHELIALLY DENUDED AMNIOTIC MEMBRANE (DAM) ...............................................................27 3.2.4 PRODUCTION OF PLASTIC COMPRESSED COLLAGEN MEMBRANES ............................................................................27 3.2.5 PREPARATION OF SUBSTRATES FOR CELL CULTURES ................................................................................................28 3.2.6 CELL GROWTH ASSAY ................................................................................................................................................28 3.2.7 POLY-(N-ISOPROPYLACRYLAMIDE) (PIPAA) .............................................................................................................28

3.3 FIXATION AND STAINING OF CELLS ................................................................................................................ 28 3.4 MICROSCOPY ........................................................................................................................................................ 29 3.5 DATA ANALYSIS .................................................................................................................................................... 29 4 RESULTS .................................................................................................................................................................... 30 4.1 PRODUCTION OF ACELLULAR AND EPITHELIALLY DENUDED AMNIOTIC MEMBRANE .................... 31 4.2 PRODUCTION OF PLASTIC COMPRESSED COLLAGEN MEMBRANES ...................................................... 32 4.3 CELL GROWTH ASSAY ........................................................................................................................................ 37 4.4 GROWTH AND DETACHMENT OF CELLS FROM PIPAA ............................................................................... 37 4.5 ISOLATION OF LIMBAL EPITHELIAL CELLS FROM CORNEOSCLERAL RINGS ..................................... 40 5 DISCUSSION .............................................................................................................................................................. 42 5.1 HUMAN AMNIOTIC MEMBRANE ....................................................................................................................... 42 5.2 PLASTIC COMPRESSED COLLAGEN MEMBRANES ....................................................................................... 43 5.3 ATTACHMENT, PROLIFERATION AND MORPHOLOGY OF CELLS ............................................................ 44

5.3.1 AMNIOTIC MEMBRANE................................................................................................................................................44 5.3.2 PLASTIC COMPRESSED COLLAGEN AND CCC™ ........................................................................................................44 5.3.3 PIPAA .........................................................................................................................................................................45

5.3 ISOLATION OF LECS FROM CORNEOSCLERAL RINGS ................................................................................ 45 5.3.1 DISPASE .......................................................................................................................................................................45 5.3.2 COLLAGENASE.............................................................................................................................................................46 5.3.3 LEC CULTURES AND VIABILITY OF CORNEOSCLERAL RINGS ....................................................................................46

6 CONCLUSION ............................................................................................................................................................ 48 7 PERSPECTIVES ......................................................................................................................................................... 49 8 BIBLIOGRAPHY ........................................................................................................................................................ 50

Page 10: Effect of Substrate on Proliferation and Differentiation ...

Page 10 of 56

Page 11: Effect of Substrate on Proliferation and Differentiation ...

Page 11 of 56

1 Introduction

Page 12: Effect of Substrate on Proliferation and Differentiation ...

Page 12 of 56

1.1 Anatomy of the Cornea

Page 13: Effect of Substrate on Proliferation and Differentiation ...

Page 13 of 56

Page 14: Effect of Substrate on Proliferation and Differentiation ...

Page 14 of 56

Page 15: Effect of Substrate on Proliferation and Differentiation ...

Page 15 of 56

1.2 Limbal Epithelial Stem Cells and the Limbal Niche

Page 16: Effect of Substrate on Proliferation and Differentiation ...

Page 16 of 56

Page 17: Effect of Substrate on Proliferation and Differentiation ...

Page 17 of 56

Page 18: Effect of Substrate on Proliferation and Differentiation ...

Page 18 of 56

1.3 Limbal Stem Cell Deficiency

Page 19: Effect of Substrate on Proliferation and Differentiation ...

Page 19 of 56

1.4 Cultured Limbal Epithelium

Page 20: Effect of Substrate on Proliferation and Differentiation ...

Page 20 of 56

Page 21: Effect of Substrate on Proliferation and Differentiation ...

Page 21 of 56

1.5 Substrates for CLET

Page 22: Effect of Substrate on Proliferation and Differentiation ...

Page 22 of 56

Page 23: Effect of Substrate on Proliferation and Differentiation ...

Page 23 of 56

2 Aim

Page 24: Effect of Substrate on Proliferation and Differentiation ...

Page 24 of 56

3 Methods

3.1 Cell Cultures and Medium

3.1.1 NIH/3T3 Murine Fibroblast Cell Cultures

3.1.2 γ-Irradiation of NIH/3T3 Fibroblasts

Page 25: Effect of Substrate on Proliferation and Differentiation ...

Page 25 of 56

3.1.3 Green Fluorescent Protein (GFP) Expressing Human Adipose-derived Stem

Cells (ASCs)

3.1.3 Limbal Epithelial Cell Medium for 3T3 Feeder System

3.1.4 Serum- and Feeder-Free Limbal Epithelial Cell Medium

3.1.5 Isolation of Human Limbal Epithelial Cells from Corneoscleral Rings

Page 26: Effect of Substrate on Proliferation and Differentiation ...

Page 26 of 56

3.2 Substrates

3.2.1 Preparation of Amniotic Membrane

3.2.2 Production of Acellular Amniotic Membrane (aAM)

Page 27: Effect of Substrate on Proliferation and Differentiation ...

Page 27 of 56

3.2.3 Production of Epithelially Denuded Amniotic Membrane (dAM)

3.2.4 Production of Plastic Compressed Collagen Membranes

Page 28: Effect of Substrate on Proliferation and Differentiation ...

Page 28 of 56

3.2.5 Preparation of Substrates for Cell Cultures

3.2.6 Cell Growth Assay

3.2.7 Poly-(N-isopropylacrylamide) (PIPAA)

3.3 Fixation and Staining of Cells

Page 29: Effect of Substrate on Proliferation and Differentiation ...

Page 29 of 56

3.4 Microscopy

3.5 Data Analysis

Page 30: Effect of Substrate on Proliferation and Differentiation ...

Page 30 of 56

4 Results

Page 31: Effect of Substrate on Proliferation and Differentiation ...

Page 31 of 56

4.1 Production of Acellular and Epithelially Denuded Amniotic

Membrane

Page 32: Effect of Substrate on Proliferation and Differentiation ...

Page 32 of 56

4.2 Production of Plastic Compressed Collagen Membranes

Page 33: Effect of Substrate on Proliferation and Differentiation ...

Page 33 of 56

Page 34: Effect of Substrate on Proliferation and Differentiation ...

Page 34 of 56

Page 35: Effect of Substrate on Proliferation and Differentiation ...

Page 35 of 56

Page 36: Effect of Substrate on Proliferation and Differentiation ...

Page 36 of 56

Page 37: Effect of Substrate on Proliferation and Differentiation ...

Page 37 of 56

4.3 Cell Growth Assay

4.4 Growth and Detachment of Cells from PIPAA

Page 38: Effect of Substrate on Proliferation and Differentiation ...

Page 38 of 56

Page 39: Effect of Substrate on Proliferation and Differentiation ...

Page 39 of 56

Page 40: Effect of Substrate on Proliferation and Differentiation ...

Page 40 of 56

4.5 Isolation of Limbal Epithelial Cells from Corneoscleral Rings

Page 41: Effect of Substrate on Proliferation and Differentiation ...

Page 41 of 56

Page 42: Effect of Substrate on Proliferation and Differentiation ...

Page 42 of 56

5 Discussion

5.1 Human Amniotic Membrane

Page 43: Effect of Substrate on Proliferation and Differentiation ...

Page 43 of 56

5.2 Plastic Compressed Collagen Membranes

Page 44: Effect of Substrate on Proliferation and Differentiation ...

Page 44 of 56

5.3 Attachment, Proliferation and Morphology of Cells

5.3.1 Amniotic Membrane

5.3.2 Plastic Compressed Collagen and CCC™

Page 45: Effect of Substrate on Proliferation and Differentiation ...

Page 45 of 56

5.3.3 PIPAA

5.3 Isolation of LECs from Corneoscleral Rings

5.3.1 Dispase

Page 46: Effect of Substrate on Proliferation and Differentiation ...

Page 46 of 56

5.3.2 Collagenase

5.3.3 LEC Cultures and Viability of Corneoscleral Rings

Page 47: Effect of Substrate on Proliferation and Differentiation ...

Page 47 of 56

Page 48: Effect of Substrate on Proliferation and Differentiation ...

Page 48 of 56

6 Conclusion

Page 49: Effect of Substrate on Proliferation and Differentiation ...

Page 49 of 56

7 Perspectives

Page 50: Effect of Substrate on Proliferation and Differentiation ...

Page 50 of 56

8 Bibliography

1. Kaiser, L. The future of multihospital systems. Topics in health care financing 18, 32–45 (1992). 2. Lysaght, M. & Craiger, J. “Origins”. Tissue Engineering Part A 15, 1449–50 (2009). 3. Mason, C. & Dunnill, P. A brief definition of regenerative medicine. Regenerative medicine 3, 1–

5 (2008). 4. World Health Organization Blindness: Vision 2020 - The Global Initiative for the Elimination of

Avoidable Blindness. Fact sheet N°213 (2013).at <http://www.who.int/mediacentre/factsheets/fs213/en/>

5. Whitcher, J. P., Srinivasan, M. & Upadhyay, M. P. Corneal blindness: a global perspective. Bulletin of the World Health Organization 79, 214–21 (2001).

6. Pellegrini, G., De Luca, M. & Arsenijevic, Y. Towards therapeutic application of ocular stem cells. Seminars in cell & developmental biology 18, 805–18 (2007).

7. Tan, D. World Sight Day: Singapore’s Contribution to Alleviating Corneal Blindness. Annals of the Academy of Medicine, Singapore 41, 427–29 (2012).

8. Notara, M. et al. In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Experimental eye research 90, 188–95 (2010).

9. Sangwan, V. & Matalia, H. Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian journal of Ophthalmology 54, 29–34 (2006).

10. Nuijts, R. M. Autologous limbal transplantation in unilateral chemical burns. Documenta ophthalmologica. Advances in ophthalmology 98, 257–66 (1999).

11. Frucht-Pery, J. et al. Limbal cell autograft transplantation for severe ocular surface disorders. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 236, 582–7 (1998).

12. Shanmuganathan, V. a et al. Epithelial proliferative potential of organ cultured corneoscleral rims; implications for allo-limbal transplantation and eye banking. The British journal of ophthalmology 90, 55–8 (2006).

13. Dua, H. & Azuara-Blanco, A. Allo-limbal transplantation in patients with limbal stem cell deficiency. The British journal of ophthalmology 83, 414–19 (1999).

14. Coster, D. J., Aggarwal, R. K. & Williams, K. a Surgical management of ocular surface disorders using conjunctival and stem cell allografts. The British journal of ophthalmology 79, 977–82 (1995).

15. Pellegrini, G., Traverso, C. & Franzi, A. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet 349, 990–3 (1997).

16. Baylis, O., Figueiredo, F., Henein, C., Lako, M. & Ahmad, S. 13 Years of Cultured Limbal Epithelial Cell Therapy: a Review of the Outcomes. Journal of cellular biochemistry 112, 993–1002 (2011).

17. Shortt, A. J. et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Survey of ophthalmology 52, 483–502 (2007).

18. DelMonte, D. W. & Kim, T. Anatomy and physiology of the cornea. Journal of cataract and refractive surgery 37, 588–98 (2011).

19. Geneser, F. Øjet. Histologi - På Molekylærbiologisk Grundlag 701–742 (2007). 20. Ordonez, P. & Di Girolamo, N. Limbal epithelial stem cells: role of the niche microenvironment.

Stem cells (Dayton, Ohio) 30, 100–7 (2012). 21. Rüfer, F., Schröder, A. & Erb, C. White-to-White Corneal Diameter: Normal Values in Healthy

Humans Obtained With the Orbscan II Topography System. 24, 259–261 (2005).

Page 51: Effect of Substrate on Proliferation and Differentiation ...

Page 51 of 56

22. Watsky, M., McDermott, M. & Edelhauser, H. In vitro corneal endothelial permeability in rabbit and human: the effects of age, cataract surgery and diabetes. Experimental eye research 49, 751–767 (1989).

23. Yee, R. & Matsuda, M. Changes in the normal corneal endothelial cellular pattern as a function of age. Current eye research 4, 671–675 (1985).

24. Boote, C. Collagen Fibrils Appear More Closely Packed in the Prepupillary Cornea: Optical and Biomechanical Implications. Investigative Ophthalmology & Visual Science 44, 2941–2948 (2003).

25. Meek, K. M. & Boote, C. The organization of collagen in the corneal stroma. Experimental Eye Research 78, 503–512 (2004).

26. Jester, J. V et al. The cellular basis of corneal transparency: evidence for “corneal crystallins”. Journal of cell science 112 ( Pt 5, 613–22 (1999).

27. Gipson, K., Yankauckas, M., Spurr-michaud, S. J., Tisdale, A. S. & Rineharr, W. Characteristics of a Glycoprotein in the Ocular Surface Glycocalyx. 33, 218–227 (1992).

28. Li, W., Hayashida, Y., Chen, Y.-T. & Tseng, S. C. G. Niche regulation of corneal epithelial stem cells at the limbus. Cell research 17, 26–36 (2007).

29. Wiley, L., SundarRaj, N., Sun, T. T. & Thoft, R. a Regional heterogeneity in human corneal and limbal epithelia: an immunohistochemical evaluation. Investigative ophthalmology & visual science 32, 594–602 (1991).

30. Sharma, A. & Coles, W. H. Kinetics of corneal epithelial maintenance and graft loss. A population balance model. Investigative ophthalmology & visual science 30, 1962–71 (1989).

31. Kinoshita, S., Friend, J. & Thoft, R. Sex chromatin of donor corneal epithelium in rabbits. Investigative ophthalmology & visual science 21, 434–41 (1981).

32. Buck, R. C. Measurement of centripetal migration of normal corneal epithelial cells in the mouse. Investigative ophthalmology & visual science 26, 1296–9 (1985).

33. Huang, A. & Tseng, S. Corneal epithelial wound healing in the absence of limbal epithelium. Investigative ophthalmology & visual science 32, 96–105 (1991).

34. Alomar, T. S., Nubile, M., Lowe, J. & Dua, H. S. Corneal intraepithelial neoplasia: in vivo confocal microscopic study with histopathologic correlation. American journal of ophthalmology 151, 238–47 (2011).

35. Hamam, R., Bhat, P. & Foster, C. Conjunctival/corneal intraepithelial neoplasia. International ophthalmology clinics 49, 63–70 (2009).

36. Franke, W. W., Schmid, E., Osborn, M. & Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proceedings of the National Academy of Sciences of the United States of America 75, 5034–8 (1978).

37. Franke, W. W. et al. Identification and Characterization of Epithelial Cells in Mammalian Tissues by Immunofluorescence Microscopy Using Antibodies to Prekeratin. Differentiation 15, 7–25 (1979).

38. Schermer, a, Galvin, S. & Sun, T. T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. The Journal of cell biology 103, 49–62 (1986).

39. Kurpakus, M. a, Stock, E. L. & Jones, J. C. Expression of the 55-kD/64-kD corneal keratins in ocular surface epithelium. Investigative ophthalmology & visual science 31, 448–56 (1990).

40. Yang, A., Kaghad, M., Wang, Y. & Gillett, E. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Molecular Cell 2, 305–316 (1998).

41. Pellegrini, G. et al. P63 Identifies Keratinocyte Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 98, 3156–61 (2001).

Page 52: Effect of Substrate on Proliferation and Differentiation ...

Page 52 of 56

42. Di Iorio, E. et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proceedings of the National Academy of Sciences of the United States of America 102, 9523–8 (2005).

43. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature medicine 7, 1028–34 (2001).

44. Chen, Z. et al. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22, 355–366 (2004).

45. Chee, K., Kicic, A. & Wiffen, S. Perspective Limbal stem cells : the search for a marker. Clinical and Experimental Ophthalmology 34, 64–73 (2006).

46. Bath, C. et al. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation. Stem Cell Research 10, 349–360 (2013).

47. Li, L. & Xie, T. Stem cell niche: structure and function. Annual review of cell and developmental biology 21, 605–31 (2005).

48. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–78 (2004).

49. Gipson, I. K. The epithelial basement membrane zone of the limbus. Eye (London, England) 3 ( Pt 2), 132–40 (1989).

50. Dua, H. S., Shanmuganathan, V. a, Powell-Richards, a O., Tighe, P. J. & Joseph, a Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. The British journal of ophthalmology 89, 529–32 (2005).

51. Shanmuganathan, V. a et al. Morphological characteristics of the limbal epithelial crypt. The British journal of ophthalmology 91, 514–9 (2007).

52. Xie, H.-T., Chen, S.-Y., Li, G.-G. & Tseng, S. C. G. Isolation and expansion of human limbal stromal niche cells. Investigative ophthalmology & visual science 53, 279–86 (2012).

53. Chen, S., Hayashida, Y., Chen, M., Xie, H. & Tseng, S. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Engineering Part C: Methods 17, 537–548 (2011).

54. Xie, H.-T., Chen, S.-Y., Li, G.-G. & Tseng, S. C. G. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem cells (Dayton, Ohio) 29, 1874–85 (2011).

55. Higa, K., Shimmura, S., Miyashita, H., Shimazaki, J. & Tsubota, K. Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells. Experimental eye research 81, 218–23 (2005).

56. Stepp, M. a., Zhu, L., Sheppard, D. & Cranfill, R. L. Localized distribution of alpha 9 integrin in the cornea and changes in expression during corneal epithelial cell differentiation. Journal of Histochemistry & Cytochemistry 43, 353–362 (1995).

57. Hayashi, R. et al. N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem cells (Dayton, Ohio) 25, 289–96 (2007).

58. Matic, M. et al. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation; research in biological diversity 61, 251–60 (1997).

59. Ljubimov, A. et al. Human corneal basement membrane heterogeneitiy: topographical differences in the expression of type IV collagen and laminin isoforms. Laboratory Investigation 72, 461–73 (1995).

60. Tuori, A., Uusitalo, H., Burgeson, R., Terttunen, J. & Virtanen, I. The immunohistochemical composition of the human corneal basement membrane. Cornea 15, 286–94 (1996).

61. KWAN, M., Niinikoski, J. & Hunt, T. In vivo measurements of oxygen tension in the cornea, aqueous humor, and anterior lens of the open eye. Investigative Ophthalmology 11, 108–14 (1972).

Page 53: Effect of Substrate on Proliferation and Differentiation ...

Page 53 of 56

62. Zachar, V. et al. The effect of human embryonic stem cells (hESCs) long-term normoxic and hypoxic cultures on the maintenance of pluripotency. In vitro cellular & developmental biology. Animal 46, 276–83 (2010).

63. Yang, S. et al. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Engineering Part C: Methods 18, 593–602 (2012).

64. Zachar, V. et al. Hypoxia and adipose-derived stem cell-based tissue regeneration and engineering. Expert opinion on biological therapy 11, 775–86 (2011).

65. Miyashita, H. et al. Hypoxia enhances the expansion of human limbal epithelial progenitor cells in vitro. Investigative ophthalmology & visual science 48, 3586–93 (2007).

66. O’Callaghan, A. R., Daniels, J. T. & Mason, C. Effect of sub-atmospheric oxygen on the culture of rabbit limbal epithelial cells. Current eye research 36, 691–8 (2011).

67. Lim, P., Fuchsluger, T. a & Jurkunas, U. V Limbal stem cell deficiency and corneal neovascularization. Seminars in ophthalmology 24, 139–48 (2009).

68. Boulton, M. & Albon, J. Stem cells in the eye. The international journal of biochemistry & cell biology 36, 643–57 (2004).

69. Tseng, S. C. Regulation and clinical implications of corneal epithelial stem cells. Molecular biology reports 23, 47–58 (1996).

70. Thoft, R. & Friend, J. The X, Y, Z hypothesis of corneal epithelial maintenance. Investigative ophthalmology & visual science 24, 1442–43 (1983).

71. Dua, H. S. & Azuara-Blanco, a Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. The British journal of ophthalmology 84, 273–8 (2000).

72. Dua, H. S., Miri, A. & Said, D. G. Contemporary limbal stem cell transplantation - a review. Clinical & experimental ophthalmology 38, 104–17 (2010).

73. Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–43 (1975).

74. Tseng, S. & Chen, S. Critical appraisal of ex vivo expansion of human limbal epithelial stem cells. Current molecular medicine 10, 841–850 (2010).

75. Tsai, R., Li, L. & Chen, J. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. New England Journal of Medicine 343, 86–93 (2000).

76. Nakamura, T., Inatomi, T., Sotozono, C., Koizumi, N. & Kinoshita, S. Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmologica Scandinavica 82, 468–471 (2004).

77. Kawashima, M., Kawakita, T., Satake, Y., Higa, K. & Shimazaki, J. Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Archives of ophthalmology 125, 1337–44 (2007).

78. Espana, E. M. Novel Enzymatic Isolation of an Entire Viable Human Limbal Epithelial Sheet. Investigative Ophthalmology & Visual Science 44, 4275–4281 (2003).

79. Nakamura, T. et al. Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 113, 1765–72 (2006).

80. Schwab, I., Reyes, M. & Isseroff, R. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 19, 421–6 (2000).

81. Kawakita, T. et al. Greater growth potential of p63-positive epithelial cell clusters maintained in human limbal epithelial sheets. Investigative ophthalmology & visual science 50, 4611–7 (2009).

82. Sangwan, V., Vemuganti, G., Iftekhar, G., Bansal, A. & Rao, G. Use of autologous cultured limbal and conjunctival epithelium in a patient with severe bilateral ocular surface disease induced by acid injury: a case report of unique application. Cornea 22, 478–81 (2003).

Page 54: Effect of Substrate on Proliferation and Differentiation ...

Page 54 of 56

83. Li, W., Hayashida, Y., He, H., Kuo, C.-L. & Tseng, S. C. G. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Investigative ophthalmology & visual science 48, 605–13 (2007).

84. Tan, E. K., He, H. & Tseng, S. C. G. Epidermal differentiation and loss of clonal growth potential of human limbal basal epithelial progenitor cells during intrastromal invasion. Investigative ophthalmology & visual science 52, 4534–45 (2011).

85. Grueterich, M. Modulation of Keratin and Connexin Expression in Limbal Epithelium Expanded on Denuded Amniotic Membrane with and without a 3T3 Fibroblast Feeder Layer. Investigative Ophthalmology & Visual Science 44, 4230–4236 (2003).

86. Miyashita, H. et al. A novel NIH/3T3 duplex feeder system to engineer corneal epithelial sheets with enhanced cytokeratin 15-positive progenitor populations. Tissue Engineering Part A 14, 1275–82 (2008).

87. Lekhanont, K. et al. A serum- and feeder-free technique of culturing human corneal epithelial stem cells on amniotic membrane. Molecular vision 15, 1294–302 (2009).

88. Dua, H. S., Gomes, J. A. P., King, A. J. & Maharajan, V. S. The amniotic membrane in ophthalmology. Survey of Ophthalmology 49, 51–77 (2004).

89. Gomes, J. a P., Romano, A., Santos, M. S. & Dua, H. S. Amniotic membrane use in ophthalmology. Current opinion in ophthalmology 16, 233–40 (2005).

90. Sangwan, V. & Matalia, H. Amniotic membrane transplantation for reconstruction of corneal epithelial surface in cases of partial limbal stem cell deficiency. Indian journal of Ophthalmology 52, 281–5 (2004).

91. Hsi, B. L., Yeh, C. J. & Faulk, W. P. Human amniochorion: tissue-specific markers, transferrin receptors and histocompatibility antigens. Placenta 3, 1–12 (1982).

92. Grueterich, M., Espana, E. & Tseng, S. C. G. Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Investigative ophthalmology & visual science 43, 63–71 (2002).

93. Chen, Y.-T. et al. Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem cells (Dayton, Ohio) 25, 1995–2005 (2007).

94. Tsai, R. J.-F. & Tsai, R. Y.-N. Ex vivo expansion of corneal stem cells on amniotic membrane and their outcome. Eye & contact lens 36, 305–9 (2010).

95. Levis, H. & Daniels, J. T. New technologies in limbal epithelial stem cell transplantation. Current opinion in biotechnology 20, 593–7 (2009).

96. Griffith, M. Functional Human Corneal Equivalents Constructed from Cell Lines. Science 286, 2169–2172 (1999).

97. Liu, Y. et al. A simple, cross-linked collagen tissue substitute for corneal implantation. Investigative ophthalmology & visual science 47, 1869–75 (2006).

98. Torbet, J. et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials 28, 4268–76 (2007).

99. Dravida, S. et al. A biomimetic scaffold for culturing limbal stem cells : a promising alternative for clinical transplantation. Journal of Tissue Engineering and Regenerative Medicine 2, 263–71 (2008).

100. McIntosh Ambrose, W. et al. Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. Journal of biomedical materials research. Part B, Applied biomaterials 90, 818–31 (2009).

101. Chandran, P. L., Paik, D. C. & Holmes, J. W. Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connective tissue research 53, 285–97 (2012).

102. Robins, S. Cross-linking of collagen. Isolation, structural characterization and glycosylation of pyridinoline. Biochemical Journal 215, 167–73 (1983).

103. Robins, S. & Duncan, A. Cross-linking of collagen. Location of pyridinoline in bovine articular cartilage at two sites of the molecule. Biochemical Journal 215, 175–82 (1983).

Page 55: Effect of Substrate on Proliferation and Differentiation ...

Page 55 of 56

104. Eyre, D. R., Dickson, I. R. & Van Ness, K. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. The Biochemical journal 252, 495–500 (1988).

105. Zeiger, E., Gollapudi, B. & Spencer, P. Genetic toxicity and carcinogenicity studies of glutaraldehyde--a review. Mutation research 589, 136–51 (2005).

106. Gratzer, P. F. & Lee, J. M. Control of pH Alters the Type of Cross-linking Produced by Treatment of Acellular Matrix Vascular Grafts. Journal of Biomedical materials research 58, 172–79 (2001).

107. Levis, H. J., Brown, R. a & Daniels, J. T. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31, 7726–37 (2010).

108. Di Girolamo, N., Chui, J., Wakefield, D. & Coroneo, M. T. Cultured human ocular surface epithelium on therapeutic contact lenses. The British journal of ophthalmology 91, 459–64 (2007).

109. Echevarria, T. J., Chow, S., Watson, S., Wakefield, D. & Di Girolamo, N. Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. Investigative ophthalmology & visual science 52, 8138–47 (2011).

110. Higa, K., Takeshima, N. & Moro, F. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. Journal of biomaterial science. Polymer edition 22, 2261–76 (2010).

111. Nishida, K. et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England journal of medicine 351, 1187–96 (2004).

112. Nishida, K. et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77, 379–85 (2004).

113. Yang, J. et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 26, 6415–22 (2005).

114. Rafat, M. et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29, 3960–72 (2008).

115. Bowdler, A. & Chan, T. The time course of red cell lysis in hypotonic electrolyte solutions. The Journal of Physiology 201, 437–52 (1969).

116. Collier, H. Factors affecting the hemolytic action of“ lysolecithin” upon rabbit erythrocytes. The Journal of general physiology 35, 617–28 (1952).

117. Seeman, P. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. The Journal of cell biology 22, 55–70 (1967).

118. Bramley, T., Coleman, R. & Finean, J. Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities. Biochimica et Biophysica Acta 241, 752–69 (1971).

119. Meyer, S., Chiu, B. & Churchill, T. Comparison of aortic valve allograft decellularization techniques in the rat. Journal of Biomedical materials research Part A 79, 254–62 (2006).

120. Meyer, S. R. et al. Decellularization reduces the immune response to aortic valve allografts in the rat. The Journal of thoracic and cardiovascular surgery 130, 469–76 (2005).

121. Mirsadraee, S. et al. Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue engineering 12, 763–73 (2006).

122. Rosario, D. J. et al. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regenerative medicine 3, 145–56 (2008).

123. Feril, Jr, L. B., Kondo, T., Takaya, K. & Riesz, P. Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. International Journal of Radiation Biology 80, 165–175 (2004).

124. Arechabala, B., Coiffard, C., Rivalland, P., Coiffard, L. J. & De Roeck-Holtzhauer, Y. Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test, MTT assay and LDH release. Journal of applied toxicology : JAT 19, 163–5 (1999).

Page 56: Effect of Substrate on Proliferation and Differentiation ...

Page 56 of 56

125. Zhao, B. et al. [Flushing of phenanthrene in sandy soils by triton X-100 and sodium dodecyl sulfate]. Huan Jing Ke Xue 31, 1631–7 (2010).

126. Wilshaw, S.-P., Kearney, J. N., Fisher, J. & Ingham, E. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue engineering 12, 2117–29 (2006).

127. Cheema, U., Nazhat, S. & Alp, B. Fabricating tissues: analysis of farming versus engineering strategies. Biotechnology and Bioprocess Engineering 12, 9–14 (2007).

128. Hadjipanayi, E. & Ananta, M. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. Journal of Tissue Engineering and Regenerative Medicine 5, 505–19 (2011).

129. Koizumi, N. et al. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 245, 123–34 (2007).

130. Shortt, A. J. et al. The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials 30, 1056–65 (2009).

131. Guo, Q. et al. A new candidate substrate for cell-matrix adhesion study: the acellular human amniotic matrix. Journal of biomedicine & biotechnology 2012, 306083 (2012).

132. Schlie-Wolter, S., Ngezahayo, A. & Chichkov, B. N. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro. Experimental cell research 319, 1553–61 (2013).

133. Hu, K. et al. Compressed collagen gel as the scaffold for skin engineering. Biomedical microdevices 12, 627–35 (2010).

134. Schmidt, T. & Stachon, S. Evaluation of a thin and mechanically stable collagen cell carrier. Tissue Engineering Part C: Methods 17, 1161–70 (2011).

135. Li, G.-G., Zhu, Y.-T., Xie, H.-T., Chen, S.-Y. & Tseng, S. C. G. Mesenchymal stem cells derived from human limbal niche cells. Investigative ophthalmology & visual science 53, 5686–97 (2012).


Recommended