+ All Categories
Home > Documents > Effect of the electron-phonon coupling on phonons in iron based superconductors · 2019. 4. 15. ·...

Effect of the electron-phonon coupling on phonons in iron based superconductors · 2019. 4. 15. ·...

Date post: 02-Feb-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
19
Ilya Sergeev, PETRA III, Hamburg, Germany Effect of the electron-phonon coupling on phonons in iron based superconductors
Transcript
  • Ilya Sergeev, PETRA III, Hamburg, Germany

    Effect of the electron-phonon coupling on phonons

    in iron based superconductors

  • Outline

    • Fe superconductors: overview

    • Study of lattice dynamics in LnFeAsO

    • Study of lattice dynamics in EuFe2As2

  • Fe-superconductors. Overview

    Crystallographic structures of Fe-superconductors

    J. Paglione and R.L.Greene,

    Nature Physics, 6(2010)645

    • superconductivity originates within Fe layer

    • suppression of magnetism by doping or by pressure leads to SC

    • unconventional superconductors: magnetic(?) excitations are the “glue” of the Cooper pair

    F. Wang and D.-H.Lee,

    Science, 332(2011)200

    / pressure

    Phase diagrams of Fe-superconductors

  • Measurements of phonons in FeSCs

    nuclear inelastic scattering

    Higashitaniguchi et al., PRB 78(2008)174507

    inelastic neutron scattering

    Christianson et al., PRL 101 (2008) 157004

    inelastic X-ray scattering

    Le Tacon et al., PRB 78 (2008) 140505(R)

    Eg, R

    Eg, FeAs

    Eg, Fe

    A1g, As

    B1g, As

  • Theoretical phonon calculations

    Electron-phonon properties of LaFeAsO

    Boeri et al., PRL, 101(2008)026403

    The theory predicts Tc=0.8K due to

    the phonon mediated Cooper pairing.

    Much smaller than exp. Tc = 25K

    Dependence of phonons on magnetism

    T. Yildirim, Physica

    C 469(2009) 425

    122-family

    Zbiri et al.,J.Phys.

    Cond.Matt

    22(2010)315701

    1111-family

    Wang et al.,Physica

    C 472(2012)29

    11-

    family Theory predicts significant effect of the local

    magnetic moment on the phonon structure. It

    suggest to use phonons to reveal presence of the

    Fe magnetic moment.

    FeSe

  • Fe PDOS for parent 1111 compounds

    Fe PDOS for different compounds

    at room temperature

    0.00

    0.05

    0.10

    La57

    FeAsO

    0.00

    0.05CeFeAsO

    0.00

    0.05 PrFeAsO

    Fe

    PD

    OS

    0.00

    0.05 Nd57

    FeAsO

    0 10 20 30 40

    0.00

    0.05149

    Sm57

    FeAsO

    Energy / meV

    0.0

    0.1

    Sm

    PD

    OS

    0 10 20 30

    Energy / meV

    LaFeAsO

    NdFeAsO

    0.00

    0.05

    0.10

    PD

    OS

    / m

    eV

    -1

    SmFeAsO

    0 10 20 30

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    PD

    OS

    /E2 / 1

    0-4 m

    eV

    -1

    -40 -20 0 20 40 60

    101

    102

    103

    104

    NIS

    / c

    ounts

    Energy / meV

    SmFeAsO at

    295 K

    70 K

    57Fe nuclear

    resonance

    102

    103

    104

    105

    NF

    S /

    counts instr. function

    Sergueev et al., PRB 87 (2013) 064302 Measurements at ID18. E = 0.7 meV

  • Fe PDOS for LaFeAsO1-xFx at 0 and 296 K

    0 10 20 30 40

    0.00

    0.05

    0.10

    Energy / meV

    PD

    OS

    / m

    eV-1

    296 K - above TN

    0 10 20 30 40

    0.00

    0.05

    0.10

    LaFeAsO

    52 K - below TN

    Above and below Neel temperature

    With doping Q. Huang et al. PRB 78 (2008) 054529

    Phase-diagram for LaFeAsO1-xFx

    0 10 20 30 40

    0.00

    0.05

    0.10

    PD

    OS

    (m

    eV

    -1)

    Energy (meV)

    parent @ 52K

    0 20 40

    0.00

    0.05

    0.10 doped @ 42K

    shift ~ 0.8 meV

    0 10 20 30 40

    0.00

    0.05

    0.10

    PD

    OS

    (m

    eV

    -1)

    Energy (meV)

    parent @ 296 K

    0 20 40

    0.00

    0.05

    0.10 doped @ 296 K

  • Fe PDOS for parent / doped 1111 compounds

    Room temperature Low temperature

    LaFeAsO1-xFx

    NdFeAsO1-xFx

    SmFeAsO1-xFx

  • How to find “peak” energy

    0 10 20 30 40

    0.00

    0.05

    0.10

    PD

    OS

    (m

    eV

    -1)

    Energy (meV)

    Options to find peaks:

    • Fit by peak function ? peak shape unknown

    • Use COM position ? depends on chosen E-range

    • Our solution: search or relative shift compared to

    reference spectrum by least square fit. Obtain value

    with statistical error.

    Interpolation: D(E)

    Theoretical function for LSF:

    F(E) = β D( E(1+α) )

    α = E / E – relative “peak” shift

    β (1/ α) – scaling factor

    0 10 20 30 40

    0.00

    0.05

    0.10

    PD

    OS

    (m

    eV

    -1)

    Energy (meV)

  • Peaks positions vs T for parent and doped conpounds

  • Raman scattering data with 1111 compounds

    Raman scattering of NdFeAsO1-xFx Zhang et al., PRB 79 (2009) 052507

    Eg of As and Fe

    at ~ 16 meV (130 cm-1)

    weak or invisible for

    1111 family

    T-dependence of other modes

  • Raman scattering on BaFe2As2 Chauviere et al. PRB 80 (2009) 094504

    Baum et al., PRB 98(2018) 075113

    Raman scattering data with 122 compounds

    Gap between B2g(1) and B3g

    (1):

    theory : 2.8 meV

    exp : 1.2 meV

  • EuFe2As2. NIS measurements at room T

    0 10 20 30 40

    0.00

    0.05

    0.10

    Fe P

    DO

    S

    IP

    OP

    Energy (meV)

    0.0

    0.2

    Eu P

    DO

    S

    ab

    c

    EuFe2As2

    NIS on single crystal

    0 10 20 30 400.0

    0.1

    Energy (meV)

    Fe P

    DO

    S

    EuFe2As2

    NIS on powder

  • Phase diagram of EuFe2As2

    Ren et al., PRB 79 (2009) 094426

    Phase diagram of EuFe2-xNixAs2 NIS on EuFe2As2 at low and room T

    102

    103

    104

    105

    -40 -20 0 20 40

    101

    102

    103

    104

    NIS

    / c

    ounts

    Energy / meV

    295 K

    25 K Eu57Fe2As2

    NF

    S /

    counts

    instr. function

  • T – dependence of phonons in EuFe2As2

    0.48

    0.52

    E16/E

    32

    TN=190K

    0 50 100 150 200 250 300

    2

    4

    6

    8

    / m

    eV

    Temperature / K

    gap ~ 0.5 meV

    25K

    170K

    205K

    10 11 12 13 14 15 16 17 18 19 20

    Energy / meV

    295 K

    235K

    90K

    Fe

    DO

    S /

    me

    V-1

    EuFe1.8Ni0.2As2, 25K

    T – dependence of the phonon line position

    and width obtained by Lorentz fit

  • Theory proposition for spin-dynamics

    Nature Physics 5 (2009) 141

    * domain walls fixed

    * all domains with same direction

    (x/y symmetry broken)

    * dynamic domain walls

    * all domains with same direction

    (x/y symmetry broken)

    * dynamic domain and twin walls

    * twins at different directions

    (x/y symmetry conserve)

    / pressure

    • AF magnetic

    • orthorhombic

    • paramagnetic

    • orthorhombic

    • paramagnetic

    • tetragonal

  • Conclusion

    • There are anomalies in the T – dependence of the phonon structure

    for FeSc of 1111 and 122 families.

    • They can be related to the structural transition, spin-lattice coupling,

    e-ph coupling, …???

    • Characteristic E scale of anomalies is 0.1 – 1 meV. E –resolution of

    current HRM is 0.7 – 1 meV

    Investigation of the T evolution of the phonon anomalies requires

    monochromator with 0.1 meV E resolution (spectrograph).

    Other useful capability of the spectrograph is simultaneous

    measurements of different samples ( doped / parent FeSc )

  • Acknowledgment

    U. Pelzer

    R. Rüffer,

    A. Chumakov

    J.-P. Celse

    M. A. McGuire

    A.S. Sefat

    B.C. Sales

    D.Mandrus

    R. P. Hermann

    D. Bessas

    M. Angst

    W. Schweika

    A. Möchel

  • Thank you for your

    attention


Recommended