+ All Categories
Home > Documents > Effect of Thermo Mechanical Processing on Titanium Alloy

Effect of Thermo Mechanical Processing on Titanium Alloy

Date post: 14-Apr-2018
Category:
Upload: tony-lim
View: 221 times
Download: 0 times
Share this document with a friend

of 69

Transcript
  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    1/69

    ARMYRESEARCH LABORATORY

    TheEffectof Thermo-mechanicalProcessingontheBallisticLimitVelocityof ExtraLow Interstitial TitaniumAlloyTi-6AL-4V MatthewS .BurkinsJeffreyS .HansenJack I.PaigePaulC .Turner

    ARL-MR-486 ULY2000

    2 0 0 0 0 7 2 76 3 Approvedforpublicrelease;distributionisunlimited.[was Q T M W Y wseaosoD *

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    2/69

    Thefindingsin thisreportar enot tobe construedas an officialDepartmentof theArmypositionunlesssodesignatedby otherauthorized documents.Citationof manufacturer'sor tradenamesdoesno tconstituteanofficialendorsementor approvaloftheus ethereof.

    Destroythisreportwhenitisnolongerneeded.Donot return itto th eoriginator.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    3/69

    ArmyResearchLaboratoryAberdeenProvingGround,M D1005-5066ARL-MR-486 uly2000

    TheEffectofThermo-mechanicalProcessingon theBallisticLimitVelocityof Extra Low InterstitialTitanium AlloyTi-6AL-4V MatthewS .BurkinsWeapons& MaterialsResearch Directorate,ARLJeffreyS .HansenJackI .PaigePaulC .TurnerU . S .DepartmentofEnergy

    Approvedforpublicrelease;distribution isunlimited.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    4/69

    AbstractAlthoughitaniumlloysaveee nwidelysedorerospaceapplications,theyhaveeldombeenusedinrmorystems.nnefforttoprovideincreasedinformationtoarmoredvehicledesigners,th eU . S .ArmyResearchLaboratory(ARL)andth eU . S .DepartmentofEnergy'sAlbanyResearchCenter(AR C )performeda jointresearchprogram toevaluateth eeffectofthermo-mechanicalprocessingontheballisticlimitvelocity foranextra-lowinterstitialgradeofth etitaniumalloy i-6A1-4V.RCbtainedMIL-T-9046J,AB-2platesromRMI1itaniumCompany,olledheseplatesoinalhickness,performedth eannealing,andcollectedmechanicalandmicro-structuralinformation.R Lthenevaluatedth eplateswith20-mmfragment-simulating projectilesand12.7-mm armor-piercing M 2 bulletsin ordertoetermineheballisticimitelocityofeachplate.itaniumprocessingndnnealingidavenffectnheallisticimitvelocity,bu tth emagnitudeof theeffectdependedon whichpenetratorw asused.

    1 formerlyRefractoryMetals,Inc.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    5/69

    TABLEO F ONTENTS P a g e

    ListofFigures vListofTables i i

    1.ntroduction 1 2 .ackground 1 3.rojectiles 3 4.ethodology 5 5.etallographicAnalysis 6 6.esults 7 7.onclusions 4

    References 7 AppendicesA .MetallographicAnalysisandTensileData9 B . allisticData 3 Distribution List 1 ReportDocumentation Page 9

    in

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    6/69

    INTENTIONALLY LEFTB L A N K

    IV

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    7/69

    LISTO FFIGURESFigure age

    1 .rojectiles 5 2 .chematicofSetup 63.50Differencefor VariousProcessingConditions10 4.rossSection ofImpactCrater From20-mmF S P forBeta-Processed Plate N o. 315,TypeC 5 ,S h o tNo. 4065 1 1 5.rossSection ofImpactCrater From20-mmF S PforAlpha-Beta-ProcessedPlateN o.317 ,TypeCl,Shot N o. 43191 1 6.ea rSurfaceofBeta-ProcessedPlateN o. 302,TypeS 2,ShotN o. 5472 Aftera NearlyPerforatingImpact by a12 .7-mmA P M 2Projectile. 1 3 7.earSurfaceofAlpha-Beta-ProcessedPlateN o.312,TypeS 1 ,S h o tN o.5450 Aftera NearlyPerforatingImpactby a12.7-mmA P M 2 Projectile 1 3 8.ffectofSurfaceFinishon V50Differenceforth e20-mmF S P14

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    8/69

    INTENTIONALLY LEFTB L A N K

    VI

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    9/69

    L I STOFTABLES Table age

    1 .hemicalCompositionof TitaniumPlatesbyWeightPercent22.inimum TransverseMechanicalPropertiesRequiredfor25.4-mm-ThickTitanium Plates 23.ransverseMechanicalPropertiesObtainedfor 25.4-mm-Thick TitaniumPlates44.50BallisticLimitResultsforth e20-mm FS P8 5.50BallisticLimitResultsfo rth e12.7-mmAPM2 96.ffectof SurfaceFinish on V 5 0 BallisticLimit for the20-mm FS P...4

    Vll

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    10/69

    IN T E N T IO N A L L YLEFTBLANK

    Vlll

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    11/69

    TH EE F F E C T O F T H E R M O - M E C H A N I C A LP R O C E S S I N G O N TH EB A L L I S TI C LIMIT VE L O CI TYO F EXTR A LO W IN TER STIT IAL TI TA NI U M A L L O YTi-6AL-4V

    1.ntroductionAlthoughtitaniumalloyshavebeenusedsuccessfullyinaircraftfo rmanyyears,th erelatively highcostoftitanium,coupledwithth esparseinformationaboutits ballisticproperties,hasprevented widespreaduseoftitaniumingroundvehicles.Asearlyas950,PitlerandHurlich[1 ]notedthattitaniumshowedpromiseasa structuralarmoragainstsmallarmsprojectiles.y1964,Ti-6A1-4Valloy,extra-lownterstitialELI)rade,adecomehematerialfhoiceorrmorapplications.allistictestinghadindicated thatreductionsininterstitialelements suchascarbon,oxygen,nitrogen,andhydrogenimprovedtheductilityandthus,th eballisticprotectionofth eplate. [2 ]onsequently,heMIL-A-46077rmorspecificationw asevelopedforELIgradeTi-6A1-4V.owever,withtitanium productionmethodologytillntsnfancy,heffectfhermo-mechanicalprocessing on ballisticperformancew asnevercompletelyexplored.Innfforttorovidencreasedinformationormoredehicleesigners,heU . S .ArmyResearchLaboratoryARL)ndheU . S .DepartmentofEnergy'sAlbanyResearchCenter( A R C )performedajointresearchprogramtoevaluateth effectfthermo-mechanicalprocessingnheballisticimitelocityofanELIgradeofTi-6A1-4V.RC obtainedMIL-T-9046J,AB-2platesro mR M I 1 Titaniumompany,olledheselatesoinalhickness,erformedheannealing,ndollectedmechanicalndmicro-structuralnformation.IL-T-9046J, Navypecificationnommonsebyheerospaceommunity,assimilarchemicalcompositionrequirementsasMIL-A-46077bu thasnoballistic requirements.R Lthenvaluatedth eplateswith20-mmfragment-simulatingprojectilesF S P s )nd2.7-mmrmor-piercingAP)M 2ulletsnrderodetermineth eballisticlimitvelocityofeachplate.heballisticlimitvelocities werethencomparedtoassessth eeffectofchangesin rolling andheattreatment. 2.Background Titaniumca nexistinahexagonalcloselypackedcrystaltructureknownshealphaphase)nd body-centeredcubictructureknownshebetaphase) .nunalloyedtitanium,th ealphaphaseisstableata lltemperaturesashighas883C ,whereittransformstoth ebetaphase.histransformation temperatureisknownas'formerlyRefractory Metals ,Inc.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    12/69

    th ebetat ransustemperature.hebetaphaseisstablefrom883C tothemeltingpoint.slloyingelementsreaddedtopuretitanium,hephasetransformationtemperaturendhemountofeachhasehange.lloydditionsoitanium,excepttinandzirconium,tendtostabilizeeitherth ealphaorbetaphase.i-6A1-4V,th emostcommontitaniumalloy,ontainsmixturesofalphaandbetaphasesandshereforelassifiedsnlpha-betalloy.heluminumsnlpha stabilizer,hichtabilizeshelphahaseoigheremperatures,ndhevanadium isabetastabilizer,whichstabilizes thebetaphasetolowertemperatures. Thedditionfheselloyinglementsaisesheetaransusemperatureoapproximately996 .lpha-betalloys,uchasTi-6A1-4V,refinterestforarmorpplicationsecauseheyreenerallyweldable,aneea treated,ndoffermoderatetohighstrength. [3 ]Ti-6A1-4Vlloyanerderedomeet arietyofcommercialndmilitaryspecifications.LIradelates,with hemicalompositionimultaneously conformingtoth eMIL-T-9046J,AB-2aerospace)andMIL-A-46077D(armor)specifications,wereelectedorthisnalysisbecausehisshenlyoff-the-shelfrmoralloy.hespecificationsefinealloychemistryranges,minimum mechanicalproperties,and,in th ecaseofMIL-A-46077D,ballisticrequirements.ThehemicalompositionndminimummechanicalropertiesreistednTables nd2 ,respectively.ransversepropertiesaredeterminedfromsamples takenperpendiculartothefinalrolling direction.

    Table1 . hemicalCompositionof TitaniumPlatesbyWeightPercentA l V C O N H Fe Other Ti

    MIL-A-46077D 5.5-6.5 3.5-4.5 0.04 0.14 0.02 0.0125 0.25 0.40 Balancemax. max. max. max. max. max.MIL-T-9046J 5.5-6.5 3.5-4.5 0.08 0.13 0.05 0.0125 0.25 0.30 BalanceAB-2 max. max. max. max. max. . max.As Delivered 6.12 4.02 0.01 0.12 0.008 0 .0014 0.19

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    13/69

    Thestartingmaterialw ascommerciallyproduced,27-mm-thickTi-6A1-4VELI alloyplateproductmanufactured by th eR M I Titanium Company.ach platew ascoatedwithasilica-basedmaterialtoreduceoxygencontamination,placedintoth efurnace,ndsoakedfor2hoursateither,066 (beta)r954 alpha-beta),ndstepforgedto08mmfirstandthen9mm.hetepforgingw asdonewithoutre-heating.Uponcompletion,th eplateswerereturnedtoth efurnaceande-heatedor0minutes.helates er ehenithernidirectionally(straight)olledrrossolledtheameemperaturesednheorgingoperation(1,066C or 954C ).herollingscheduleconsistedoftw opassesat12%eductionnhickness,w oassest5%eductionnhickness,hreepassesat20%reductionin thickness,andon efinalpassatth efinalmillsetting of25 .4mm.achlatew ase-heatedor0minutesfterveryecondassthroughth emill.ollowingth efinalpass,th eplateswereplacedon arackandair cooledtoroom temperature.Fourdifferentnnealingheattreatmentswereusedatth ecompletionofrolling andircooling:1) betaannealt,038 or30minuteswithnircool(AC) ;2)abetaplusalpha-betaannealat,038C fo r30 minuteswithanAC ,followedby 788C fo r30minuteswithanA C ;(3 )analpha-betaannealat788C fo r30minuteswithanA C ;nd(4) solutiontreatmentandagingS T A )t927Cfo r30 minuteswithawaterquenching(WQ),followedby538 fo r6hours ithnAC .snxperimentalontrol,.th einalea treatmentw asomittedforsomeof th eplates.ollowingheattreatment,allth eplatesweresandblastedtoremoveanyremainingprotectivecoating.Tw oplateswereproducedfo reachof1 1 processingconditions.able3liststh eprocessingconditionsndhemechanicalropertiesbtainedbyveragingheresultsfrom fourspecimens takenfromeach condition.inceth eMIL-A-46077Darmorspecificationhasminimumrequirementsforth etransversedirectiononly,ultimateensiletrength,ieldtrength,longation,ndreductionnreawereobtainedfo ronlyth etransversedirection.otethatonlyplatetypeC 4metth eminimumelongationrequirementsof MIL-A-46077D.lso,inmanycases,th eplatesailedomeetheieldtrengthndeductionnreaequirements. Charpyimpacttesting,lthoughnotarequirementofMIL-A-46077D,w asls oconductedinth etransverselongitudinaldirection. 3.rojectiles The20-mmF S Pandth e2.7-mmAPM 2projectiles,howninFigure,wereselectedfo rthistudybecausebothprojectilesreistedinMIL-A-46077Dsappropriatefo rth egivenplatethickness.The0-mmF S P ,whichsimulateshesteelragmentsjectedro mhigh-explosivertilleryounds,w asmanufacturedfrom4340H steelinaccordancewithspecificationMIL-P-46593A.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    14/69

    C /3 4c 3

    C

    o1 c H

    wo C N

    -a C O C'X)O00aoC u "w u'c03 SZoc/3 >CC O

    co

    c oa,Uc2so cUDO3- oa *oo w ooso N O so\\ o NN-^~CO CN C Nq C No CN-*

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    15/69

    The12.7-mmAP M 2isastandardmachinegunbullet thathasbeenin servicefo rmanyecadeshroughoutheworld.heA PM 2as opperjacketve rhardened(R e60-65)teelcore.ach projectilew asfiredfromth eappropriate rifledM a n nbarrel,andthepropellantloadw asvariedinordertoadjustvelocity. Forbothrojectiles,teast0mmfundisturbedmaterialw asmaintainedbetweenadjacentprojectileimpacts on th eplate.

    20.9m

    0.9m

    20-mmS P Steel,e9-31Mass:3.812.7-mmP2oreSteel,e0-65Mass:5.4

    Figure1 .rojectiles.4.MethodologyProjectileelocitieseremeasured ithnrthogonallash-rayystem developedbyGrabarekandHerr.[4]hetitanium plateswereplacedsothatth eprojectileimpactednormaltoth eplate(0 obliquity).heorthogonalpairofx- ra yubesermittedhemeasurementfprojectileelocity,erticalitch,ndhorizontalawjustbeforeheprojectileimpactedheitaniumplate.inglepairofx-raytubesw asusedtomeasureth evelocityandlengthofanyprojectile orargetragmentsjectedro mheea rurfacefheargetlate.heperforationofapaperbreakscreeninitiatedth eflashx-rays.Wheneverpossible,th eresidualpenetratorandtargetmaterialejectedfromth eplatewerecollected fo ranalysis . schematicofth etargetsetupiss how ninFigure2.Evaluationaserformedobtain 5oallisticimitelocity,ereafterreferredtoasaV 5 0 .hemethodologyfo robtainingaV50isexplainedinU . S . ArmyTestandEvaluation Command(ATEC)testoperationsprocedure(TOP)2-2-710[5 ]bu tissummarizedhere.heV 5 0 isobtainedby holdingtargetthickness andobliquityconstantwhilevaryingprojectilevelocitybyadjustingth eweightofpropellant.hen rojectilempacts target,heesultsither ompletepenetration(CP)or apartialpenetration(PP).orthisinvestigation,aC Poccurs

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    16/69

    wheneverapieceof penetrator or targetmaterialperforatesth erearbreakscreenandsubsequentlyappearsinth ex-rayimage. PPisanyimpactthatisno taC P .F orth e20-mmS P ,nyPPresultwhenheotalawvectorumofverticalpitch andhorizontalyaw)w asgreaterthan5w asexcludedfrom analysisinordertokeepprojectileorientationfrominfluencingtheresults.orth e2.7-mmA P M 2,PPresultswhenth etotalya ww asreaterthan3wereexcludedfromth eanalysisfor thesamereason.

    X-Royubes

    G un Tube._U.'Line-of-Fire

    STRIKING i.o meters-

    RESIDUAL

    ^argetFigure2.chematicof Setup.

    A srojectileelocitysncreased,herojectilempacthouldroducetransitionromPPstoC Pstsomecriticalelocity.ssumingthatthetarget-penetratornteractionanemodeledy umulativeormalGaussian)distribution,thenamean(V 50)andstandarddeviation(SD)ca nbedetermined ifasufficientumberfhotser eired.he50w asetermined ithqua lnumbersofPPandC Presultsoveradesignatedvelocityr angepecifiedbyth eMIL-A-46077titaniumarmorspecification.5.MetallographicAnalysisAample asakenromachfhe1lateypesnrderoerform metallographicnalysesndmechanicaltensiletesting.hoto-micrographsndtensileestinga tarerovidednAppendixA.lllatesorged,olled,rannealednheet aegionad ypicaltructurefplate-likelphandintergranular betawithalphaatth epriorbetagrainboundaries. llplatesforged,rolled,ndannealedinth ealpha-beta regionhadatypicaltructureofequiaxedalphagrainsandintergranularbeta.

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    17/69

    6.ResultsOfth e22platesprovided,half of th eplateswereevaluatedwithth e20-mmFSPandth eotherhalfwereevaluatedwithth e2.7-mmAPM 2.50limitvelocitieswerebtainedorlllates.able4istsherocesses,platehicknesses,V50limitelocities,ndtandardeviationsorinvestigationwithhe0-mmF S P . Table5providesth esameinformationfo rth e12.7-mm A P M 2. etailed ballistictestdataarepresentedinAppendixB.inceth ethicknessofth elatesariedslightly,th eV50resultshadtobe normalized toasinglereference. Themechanismfo rnormalizingth edataw asouseth edifferencebetweenhelimitelocitybtainedhroughestingndheimitelocityorheamethicknessplatebtainedro mheMIL-A-46077Dpecification.quation1)showsth ecalculationfo rth eV50difference:

    V50Difference=TestV50 -RequiredV501)in whichrequiredV50isderivedfromth eMIL-A-46077Dspecification.Normalization isachievedbecauseth erequiredV5o termchangesasafunction ofthickness,thuspreventing th eresultsfromfavoringth ethickerplates. positivenumberobtainedfo rth eV5o differenceisthemarginby whichth eplateexceedsth epecificationminimum.lateshatxceedhepecificationminimumre listedinboldin Tables4and5.onversely,anegativevalueforV50difference indicatesth emarginby whichth eplatefailedth especification.igure3howsgraphicallytheV50differencefo r th e1 1 plateconditions.Regardlessofth epenetrator used,onlythreeplatetypes(SI,Cl,andC 4)passed th eballisticequirementsofMIL-A-46077D.otethattw oofthesethreeplatetypeslsoailedtomeetth elongationrequirementsofMIL-A-46077D.riordata[6 ]seemedtoshowsomecorrelationbetweenreductioninareaandballisticperformance,utlateypeIrovidedoo dallisticerformance ithrelativelypooreductionnrea.orhisrogram,herew asoorrelationbetweendequateallisticerformanceasequirednMIL-A-46077D)ndultimatetensilestrength,yieldstrength,longation,reductioninrea,rCharpy impactenergy. Beta-processedlatesthosehatwereeitherrolledrannealedttemperatures aboveth ebetatransus)h adlowerV 5o ballisticlimitvelocitiesforboth th e20-mm F S P andth e2.7-mmA PM 2.hemagnitudeofth eeffectw asmuch greaterforth e20-mmFSP(-200m/s)thanfo rth eA P M 2 (

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    18/69

    (X o n PH E io

    3tnU

    P Q

    IS-oc c>

    o>

    c.S E

    K J 3< uaCx

    UO ^ ~ a.oO S E Hco , 4ro (1 ) O S u

    C ) oa, < l) a > a a,> > a - H

    fto \oTI Ifi IT ) VO fttN O N i" HO t" ~ \0 C O V O I/ O " tf Tf TfOv\ O N O N O Ns

    noft eoC 4 oo< ^ r^on/>~-~*fttr-- TtJ -Offt-~-- N Oo

    r^moon/inn~- N OOJN | ;innT !nnC 4NSNN CS eo >nn

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    19/69

    e sOH

    0 0o

    H

    e s( D3cuCS< fU

    zz ao E 0)Hco_ fo ( ! ) e s s_

    z' S&O HH

    l - tTfNO" t f00000000vvvoNOSOONO00xr ~ o o o o t - ~v o O V O OO ONt-~ V O O

    o00ONVO VO r ~ < o o r -

    oo o r *CNu o - 3 -t ^v o v o v o OMonoo^ont^oooo co/ovOoT3j=oca > 3

    in>oo o nMn- omn ro mmmo CO C O U

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    20/69

    -250 S 1 C 1234523456PlateType 12.7-mmAP g20-mmFSP

    Figure3.V50 Differencefor VariousProcessingConditions.(ClndS2 ) .orth eAPM 2valuations,crossollingprovidednoignificantdifferencein V50ascomparedto straightrolling(S IversusClandC 5versusS2) . F or th e20-mmF S P evaluations,crossrollingseemedtoprovideaslightlyhigherV50thanstraightrolling inth ealpha-betaregion(S IversusCl);however,straightrollingseemedtobeslightlybetterthancrossrolling inth ebetaregion(C 5versus S2) . F orth e20-mmF S P ,th elargedifferenceinth eV50limitvelocitiesbetweenthebeta-processedndalpha-beta-processedplatestendsondicatethatthefailuremechanismswereinsomew aydifferent.bservationofth eea rplateurfacefailuresuponperforatingandnear-perforating impactsshowedthistobe th ecase.Theeta-processedlatesailedy rocessfdiabatichearlugging,sshownn igure.h islugging, ownergyailuremodehatausedtitaniumlu goejectedromheea rurfacefhelatefterheSPpenetratedpproximately mmntohelate,asee nescribednreviouswork. [6,7,8]heplatesthatwerealpha-beta processedfailedbyamixedprocessofbulging,delaminating,shear ing,andspalling,asshowninFigure5.owever,thisfailureoccurredonlyafterth eF S Phadpenetratedapproximately15mmintoth eplate,requiring theF S P toburrow significantlydeeper intoth earmorthanforth ebeta-processedplates.

    1 0

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    21/69

    . r--v;v

    Figure4. CrossectionofImpactCraterFrom20-mmF S Pfo rBeta-ProcessedPlateNo. 315,TypeC 5 ,S h ot No. 4065 .

    V

    0I 6JScale,cm

    Figure5. CrossectionofImpactCraterFrom20-mmF S Pfo rAlpha-Beta-Processed PlateN o. 317,TypeCl,ShotNo. 4319.

    1 1

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    22/69

    Conversely,orhe2.7-mmAPM 2,heelativelymallifferencesnV50performanceetweenhebeta-ndlpha-beta-processedlateswouldeemoindicateittleifferencenheailuremechanisms.gain,bservationofrearplateurfaceailuresuponnearlyperforatingimpactsconfirmedthis.herearsurfacefailureofabeta-processedplate(seeFigure6)looksremarkablysimilarto th eearurfaceailureofnlpha-beta-processedlatesee igure).hefailuremodeforboth th ebeta-andth ealpha-beta-processed platesappearedtobe acombination ofbulging,petaling,andspalling. Afterthisbatteryofevaluationshadbeenperformed,someconcernsaroseaboutwhetherth esurfaceoxidelayer(alphacase)ofth etitanium platew asresponsiblefo rth elargeperformancedifferencebetweenth ealpha-beta-andbeta-processed plates.odetermineifthealphacasecausedth elowerperformancefo rth ebeta-processedplates,fourplates(onealpha-betaprocessedandthreebetaprocessed)wereelectedndeturnedoA R Coehemicallymilledchem-milled)oremoveth ealphacase.hem-millingisthecontrolleddissolutionofamaterialthroughontactwith tronghemicaleagent .heartoerocessedscleanedandthencoveredwithastrippable,chemicallyresistantmask.hemask istrippedromreaswherehemicalctionsesired,ndhenheartssubmergedin th echemicalreagenttodissolveth eexposedmaterial .[3]Sincehesea tahowedthatprocessinghangesnitaniumproduce reaterchangeinV50forth eF S P thanforth eAP M 2 ,thefourplates(No.303,311,315 ,and322)werechosenfromth eplatepopulationthathadbeentestedwith th eF S P . Afterchem-milling,helatesweressignedewdentificationumbers377,378,379,and380,respectively)byA R C .heseplateswerethenevaluatedonceagainwithhe0-mmF S P ,ndV50ballisticimitelocitieswereetermined. ThedataaregiveninTable6.otethatchem-millingreducedth ethicknessofth eplatesndthereforealsoreducedtherequiredV 5odeterminedfromMI L -A -46077D.heV50differences,calculatedwithEquation(1),areplottedinFigure8. Threefheou rlateonditionsvaluatedC 4,5 ,nd2)howednapproximately25-m/sincreaseinth eV50differenceafterchem-milling.orth efourthonditionS6) ,herew asotatisticallyignificanthangenheV50difference.inceheerformancemprovementccurredorothlpha-beta- andeta-processedlatesC 4nd5 ,espectively),helphaasesot responsibleorheargeifferencesnV50sbtainedetweenlpha-beta-ndbeta-processedplates.asedontheseresults,chem-millingappearstoprovidea slightperformanceimprovementoversandblasting.tisbeyondth escopeofthisreporttodiscusstheeconomicsofsandblastingversuschem-milling.

    12

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    23/69

    Figure6.ea rSurfaceofBeta-ProcessedPlateNo.302,TypeS 2,Sho tN o. 5472 AfteraNearlyPerforatingImpactbya12.7-mmA P M 2 Projectile.

    H4Wa

    CO .

    P~lDl

    FJ5HftZsSiiJ

    E= p=O 1 2p

    Figure7.ea rSurfaceofAlpha-Beta-Processed PlateNo.312,TypeSI,S h o tN o. 5450 AfteraNearlyPerforatingImpactbya12.7-mmA P M 2 Projectile.

    13

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    24/69

    Table6. ffectof SurfaceFinishonV50 BallisticLimitfor the20-mmFS P A sReceived Chem-m liedPlate Thickness TestedV50 S D Required V50 ThicknessestedV50 S D RequiredType (mm) (m/s) (m/s) (m/s) (mm) (m/s) (m/s) V50(m/s)

    S 2 25 . 27 757 7 94 7 24.89 78 3 9 92 8 S 6 25 .43 78 4 4 95 3 24.94 75 6 18 930C 5 25 .35 73 4 15 95 0 24.77 74 2 20 922C 4 25 .60 98 4 7 96 1 25 .25 995 10 945

    w AsReceivedChem-milled-250 C4 C5 S2 S6PlateType

    Figure8.ffectof SurfaceFinishon V50 Differenceforthe20-mmFSP .7. onclusions Rolling orannealing attemperaturesaboveth ebetatransusreducesth eV50ballisticlimitvelocity forboth th e20-mmF S Pandth e2.7-mmA P M 2.hemagnitudeofth eeffectw asmuchreaterfo rth e20-mmF S P-200m/s)hanortheA PM2(

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    25/69

    requirementsofMIL-A-46077D,tw ofailedtomeetth eelongationrequirementsofMIL-A-46077D.neneral,hereasoorrelationetweendequate ballisticperformanceasrequiredinMEL-A-46077Dandultimatetensilestrength,yieldstrength,elongation,reductionin area,or Charpyimpactenergy.heplates thatreceivednoadditionalannealingtreatment(C 4andS 5)gaveaperformance comparableoimilarlyrocessedlateshateceivednlpha-betannealtreatment(ClndS2) .dditionally,crossrollingversusstraightrollingshowedasmalldifferenceinV50fo rth eF S PbutnosignificantdifferenceinV50forth eAPM2.Thefailuremodebetweenth ebeta-andalpha-beta-processed platesw asdifferentfo rth e20-rnmF S P .hebeta-processedplatesfailedby processofadiabaticshearlugging.h islugging, ownergyailuremodeha tccurredapproximately6mmintoth eplate,asbeendescribedinpreviouswork. [6,7,8]Thelpha-beta-processedlatesailedyixedrocessfulging,delaminating,hearing,ndpalling,whichequiredmorenergyecauseheF S Padourrowmucheeper-15mm)ntohermorlateeforeearsurfaceailureccurred.heailuremodeorbeta-ndlpha-beta-processedplatesppearedoeheameorhe2.7-mmA PM 2.h isbservationsconsistentwithth erelativelysmallifferencesnV 5operformancebetweenth ebeta-andalpha-beta-processed plates.Theemovalofsurfacexideayeralphacase)yhem-millingidaveneffecton th eV 5o ballisticlimitofth eplateswhentestedagainstth e20-mmF S P . N oevaluationw asperformedwithth e2.7-mmAPM 2inceth eatashowedthatprocessingchangesintitaniumproduceagreaterchangeinV50fo rth eFSPthanfo rth eA P M 2. f th efourplatetypesthatwerechem-milled(C4,C 5 ,S 2 ,andS6) ,threeplates(C4,C 5,andS 2)showedaV50increaseofapproximately25 m/s.hefourth plate(S6)didnot show anystatisticallysignificantchangeinV 5o .Sinceheerformancemprovementccurredorothlpha-beta-ndeta-processedplates(C 4andC 5,respectively),thealphacaseisnotresponsibleforthelargedifferencesinV5o dataobtained betweenalpha-beta-andbeta-processedplates.asedontheseresults,hem-millingmayprovide slightperformance improvementoversand blasting.

    1 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    26/69

    INTE NTIONA L L YLEFT B L A N K

    1 6

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    27/69

    References 1 .itler, . ,ndA.urlich,S o m eMechanicalndBallisticropertiesfTitaniumnditanium lloys."AL-TR-401/17,Water townrsenalLaboratory,M A ,Ma rch1950.2.liney,. ,StatusndotentialofTitaniumArmor."roceedingsofth e MetallurgicalAdvisoryommitteenRolledArmor.M R AM S4-04,U .S .A rmyMaterials Research Agency,January1964.3.onachie,M .,Titanium:TechnicalGuide."S M International,Metals Park,O H ,989.4.rabarek,C,andE.L.Herr,"X-RayMulti-Flash Systemfo rMeasurementofProjectileerformancetheTarget."BRL-TN-1634,U . S .ArmyBallisticResearchLaboratory,AberdeenProvingGround,M D,September1966.5..S .rmyes tndvaluationommand,Ballisticestsf rmorMaterials."TOP-2-2-710 (A DA137873) ,AberdeenProvingGround,M D,July1993.6.urkins,M . S . ,W . W .Love,andJ .R .Wood,"Effect ofAnnealingTemperature on th eBallisticLimitVelocityof Ti-6A1-4VELI."ARL-MR-359 ,U . S .ArmyResearchLaboratory,August1997.7.orrigan,D.,"MetallurgicalStudyofTitaniumAlloyArmor,PartI-Ti-4A1-4V."WAL-TR-710 .6 /2t.,Water townArsenalLaboratory,M A ,anuary1961.8.oepke,. ,MetallurgicaltudyfBackpallormationni-6A1-4VArmorlate."AL-TN-710.6/3,atertownrsenalaboratory,A ,February1963.

    17

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    28/69

    INTE NTIONA L L Y LEFT B L A N K

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    29/69

    A P P E N D I XA M E T A L L O G R A P H I C A NA L Y S I S A N DTENSILE T E S T I N G DATA

    19

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    30/69

    INTE NTIONA L L Y LEFT B L A NK

    2 0

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    31/69

    METALLOGRAPHICANALYSISANDTENSILEDATATableA-l.MetallographicAnalysisandTensileTestingDataforPlateNos.302and303,TypeS 2

    PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M I Titanium H T854209/11 Annealed5 . 062/5 . 125"thickStepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:.0 "thickStraight Rolledin8 passes(12% for2passes;5% fo r2passes;20% for3 passes;1as sforfinalhickness)Alpha-Beta 1450F fo r30 min,A irCool Sand-Blasted 30 0B H N Re30 M E C H A N I C A LPROPERTIESDirection U TS (ksi) YS (ksi) Elong(%) R A (%)Transverse 130.9 120.5 11.0 12.5Transverse 131.5 121.5 10.8 12.5 Transverse 131.4 121.5 11.4 13.8TransverseAvg 131.3 121.2 11.1 12.9C H A R P YIMPACTDirection TestTemperature(C) ImpactVelocity(fps) Energy(ft-lb)TL -40 12.02 21.42 TLTLTL A va

    K-

    -40

    50X

    12.02 21.42 ^

    |&^//"//;vS

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    32/69

    TableA-2 .MetallographicAnalysisand TensileTestingDatafo rPlateNos.30 4and 305,TypeS 3

    50X 500X

    2 2

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    33/69

    TableA-3.MetallographicAnalysisandTensileTestingDataforPlateNos.306and307,TypeS 4 PLATE PROCESSING InitialMateria l Forging Rolling Annealing FinishingR M I TitaniumH T854209/11Annealed5.062/5 .125"thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F @ 30 0in/minStart:3.5"thick;End:1.0"thickStraightRolledin8 passes (12% for2passes;15 %for 2passes;2 0% fo r3 passes;1passfo rfinalhickness)Beta +Alpha-Beta 1900Ffor30min,A irCool+1450Ffor30min,A irCool Sand-Blasted30 5B H N Re30 MECHANICAL PROPERTIES Direction UTS(ksi) YS(ksi) Elong(%) RA (%)Transverse 131.8 122.3 8.4 17.8Transverse 131.7 122.5 8. 9 17.9Transverse 130.4 121.8 N oData 16.2TransverseA vg 131.3 122.2 8.7 17.3CHARPY IMPACT Direction TestTempera ture(C)mpactVeloci ty(fps) Energy(ft-lb)TL -40 12 .04 21.62 TL -40 12.03 19 .16TL -40 12.03 20.94TLAvg -40 12.03 20 .57A ' " ^ * ; ^ '

    ?*U

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    34/69

    TableA-4.MetallographicAnalysisandTensileTestingDataforPlateNos.30 8and309,TypeS 5 PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingRM ITitaniumH T854209/11Annealed 5 . 062/5 . 125"thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:.0 "thickStraightRolledin8 passes(12%fo r2passes;15%fo r 2passes; 20% fo r3 passes;1 passfo rfinalhickness)None Sand-Blasted30 1BH N Rc30 MECHANICALPROPERTIESDirection U TS (ksi) YS (ksi) Elong (%) R A (%)Transverse 132 .7 118.8 10.3 21.1 Transverse 132.6 118.8 10.3 22.7 Transverse 133.0 118.9 9. 8 22.8TransverseA vg 132.8 118.8 10.1 22.2CHARPYIMPACT24

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    35/69

    TableA-5.MetallographicAnalysisandTensileTestingDataforPlateNos.310and311 ,TypeS 6PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M I Titanium H T854209/11

    Annealed5.062/5.125" thick

    StepForged@ 1950F 5"-4.25"-3.5"

    1950F@300in/minStart:3 .5"thick;End:.0 "thick StraightRolledin8 passes(12% for2passes;15%for2passes;20% for3 passes;1passforfinalhickness)S TA 1700Ffor30min,WaterQuench+1000Ffor6hrs,A irCool Sand-Blasted 32 7B H N R e33 MECHANICAL PROPERTIESDirection U T S (ksi) YS (ksi) Elong(%) R A (%)Transverse 145.8 135.9 8.1 14.3Transverse 142.0 132.5 8.7 17.1Transverse 145.2 135.0 8. 6 16.0 TransverseAvg 144.3 134.5 8. 5 15.8CHARPYIMPACTDirection TestTern perature(C)m pact Velocity (fps) Energy(ft-lb)TL -40 12.03 21 .96TL -40 12.02 22 .15TL -40 12.01 22.83TL Avg 12.02 22.31

    25

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    36/69

    TableA-6.MetallographicAnalysisandTensileTestingDataforPlate Nos.312and313,TypeSIPLATEPROCESSING

    InitialMaterial Forging Rolling Annealing FinishingRM I TitaniumH T854209/11 Annealed5.062/5.125" thick StepForged@ 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:.0 "thickStraightRolledin8 passes( 12% for2passes;5% fo r2passes;20 % for3 passes;1passforfinalhickness)Alpha-Beta 1450F for30 min,A irCool Sand-Blasted292 B H N Rc29MECHAN ICAL PROPERT IESDirect ion UT S(ksi) YS (ksi) Elong(%) RA (%)Transverse 141.4 134.5 12.3 14.3Transverse 140.6 133.6 12.9 17.1Transverse 140.9 133.9 12.0 16.0 TransverseA vg 141.0 134.0 12.4 15.8CHARPY IMPACT TestTempera t u r e( C) Impac tVeloci ty(fps)

    12.03Energy(ft-lb)26.21 12.02 23 . 15 12.01 22.9012.02 24.09

    26

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    37/69

    TableA-7.MetallographicAnalysisandTensileTestingDataforPlateNos.314and315 ,TypeC 5 PLATE PROCESSING InitialMateria l Forg ing Rolling Annealing FinishingR M ITitanium H T854209/11Annealed5.062/5.125" thick

    StepForged@ 1950F 5 "- 4.25"-3.5"

    1950F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8 passes(12%fo r 2passes;5%for 2passes;20% fo r3 passes; passforfinalhickness)Alpha-Beta1450Ffor30min,A ir Cool Sand-B lasted30 4B H N Re30 MECHAN ICALPROPERTIESDirect ion UT S(ksi) YS(ksi) Elong(%) RA(%)Transverse 128.7 117.4 11.5 20.0Transverse 128.4 117.6 11.9 22.6Transverse 128.7 117.4 11.7 24.3 TransverseAvg 128.6 117.5 11.7 22.3CHARPY IMPACT

    mmmm IRKSWmmie

    .\"0y-"r-* - /f'-

    50X

    '." -5S;? ---:.-

    500X

    27

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    38/69

    TableA-8.MetallographicAnalysisand TensileTesting Data fo rPlateNos.31 6and317,TypeCl

    28

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    39/69

    TableA-9.MetallographicAnalysisand TensileTestingData forPlateNos.318and319,TypeC 2 PLATEPROCESSINGInitialMaterial Forging Rolling Annealing FinishingR M ITitaniumH T854209/11 Annealed 5.062/5.125" thick

    StepForged(2 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:.0 "thickCrossRolledin8 passes (12%for 2passes;15%fo r 2passes;20% for 3 passes; passfo rfinalhickness)Beta 1900F fo r30 min,AirCool Sand-Blasted 296 B H N Rc29MECHANICAL PROPERTIESDirection UTS(ksi) YS (ksi) Elong (%) R A (%)Transverse 133.5 118.8 10.3 18.8Transverse 132 .7 117.6 10.5 23.4Transverse 133.5 118.9 10.4 16.6TransverseA vg 133.2 118.4 10.4 19.6C H A R P Y IMPACTfcm^^h&MwwS?? ''-av^cs

    i* ..- ,__. IP-HHSfH0(29

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    40/69

    TableA-10.MetallographicAnalysisandTensileTestingDataforPlate Nos.320and321,TypeC3PLATEPROCESSING

    InitialMaterial Forging Rolling Annealing FinishingRM ITitanium H T854209/11Annealed5.062/5 .125"thick StepForged@ 1750F 5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8passes (12% fo r2passes;15%fo r2passes;20% fo r3 passes;1passfo rinalthickness)Beta+Alpha-Beta 1900Ffor30min,A irCool+1450Ffor30min,A irCool Sand-Blasted2 97 B H N Rc29MECHANICALPROPERTIESDirection U TS (ksi) YS (ksi) Elong(%) R A (%)Transverse 132.3 122.8 10.4 21 .6 Transverse 131.5 121.7 10.9 20 .9 Transverse 131.9 121.9 10.3 19.2TransverseA vg 131.9 122.1 10.5 20 .6CHARPYIMPACTDirection TestTemperature( C) ImpactVelocity(fps) Energy(ft-lb)

    TL -40 12.03 18.65 TL -40 12.02 19.65TL -40 12.04 18.58TLAvc -40 12.03 18.96J.' * . * & > ^ ;f*ilirJ'5.

    50X

    :/ " " o -'* :. ip^v

    500X

    30

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    41/69

    TableA-l1.MetallographicAnalysisandTensileTestingDataforPlate Nos.322and323,TypeC4PLATE PROCESSINGInitialMateria l Forging Rolling Annealing FinishingR M ITitanium H T854209/11Annealed5.062/5 .125"thick

    StepForged@ 1750F5"-4.25"-3.5"

    1750F@300in/minStart:3.5"thick;End:1.0"thickCrossRolledin8 passes(12% fo r2passes;15% for 2passes;20% fo r3passes;1passfo rfinalhickness)None Sand-Blasted310BHNRe34 MECHAN ICALPROPERTIES Direction UT S(ksi) YS(ksi) Elong(%) RA (%)Transverse 142.9 135.8 13.4 34.4Transverse 144.0 136.6 13.9 28 .9Transverse 143.3 136.1 15.3 29 .3TransverseA vg 143.4 136.2 14.2 30.9CHARPY IMPACT Direction Impact Veloci ty(fps) Energy(ft - lb)12.03 33.0812.03 32.46 12.03 35.7912.03 33.78xJ^Z-10- * m w&

    500X

    31

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    42/69

    INTENTIONALLYLEFTB L A NK.

    32

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    43/69

    APPEN DIX B BALLISTIC DATA

    33

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    44/69

    INTENTIONALLY LEFTB L A NK.

    34

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    45/69

    Listof AbbreviationsUsedin ThisAppendix Notapplicable.C P Completepenetration;penetratoror targetmaterialexitstherearsurfaceof thetarget.Asterisks* C P * )indicateshotsthatwereusedtocalculatetheV50 .AW Th emasslossin aplatecausedbyashot.Massof platepriortoshotminusth emassofplateafterth eshot.LR Residuallength;thelengthof residualpenetratoror thethicknessof a targetmaterialforaC Presult.M R Residualmass;themassof residualpenetrator or targetmaterialfor aC Presult.NM Notmeasured.PIP Penetratorin plate;penetratorlodgedin impactcrater.PP Partialpenetration;thepenetratorisdefeated by thetarget.Asterisks*PP*)indicateshotsthatwereusedtocalculatetheV 5 0 .PR Penetrationintoplate;theimpactcraterdepth. RES Resultofshot;C Por PP.VR Residualvelocity;thevelocitymeasured behind thetargetwhenaC Presultoccurs.he"COMMENTS"columndefineswhether thisvelocityisforpenetratoror targetmaterial. Vs Strikingvelocityof projectile justprior toimpacting thetarget.YAWotalyaw;th evectorsu mof verticalpitchan dhorizontalya w for theprojectile.

    3 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    46/69

    INTENTIONALLY LEFTB L A NK.

    36

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    47/69

    TableB-l.iring Datafor12.7-mmAP M 2VersusPlateNo.302,TypeS 2,at0Obliquity(Str.Roll@1,066 C ;Anneal@788 C ,30 min.,AC ;25.27mmthick;302-BHNhardness)Sho tN o. Vs (m/s) YA W () R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW Comments5468 661 1.50 *pp* 29.5 3. 7 5-mmbulgew/cracks 5469 665 0.71 *pp* 31 4. 5 4-mmbulgew/cracks 5470 67 6 1.60 *cp* 47 3 N M 9.5 Spal l5472 67 7 0 .56 *pp* 32 6. 8 7-mmbulgew/cracks 5467 685 1.25 * C P * 44 3 N M 6. 2 Spal l5471 68 8 0.35 *pp* 56 3. 9 1 . 1 PIP -17.8 Spal l5466 70 1 0 .56 C P 15 485 47.2 4.9 25.4 3. 6 15.9 PenetratorSpal l

    TableB-2.iring Data fo r20-mmF S P VersusPlateNo. 303,TypeS 2,at0Obliquity(Str.Roll@1,066 C ;Anneal@788C,30 min.,AC ;25.27mmthick;302-BHNhardness)Sho tN o. Vs (m/s) YA W ( ) R ES VR (m/s) LR (mm)

    MR(g ) PR (mm) AW

    Comments4095 745 1.12 PP 6 6 6. 9 3-mmbulge4089 74 8 0.71 *pp* 6. 5 6. 5 2 .6 4-mmbulgew/cracks 4094 75 0 0.79 *pp* 8 8 4.0 5-mmbulge/plugformed4093 75 5 0.75 * C P * 79 2 N M 5 .6 4x5-mmChip4096 75 6 1.52 *pp* 8 9 3. 4 5-mmbulge/plugformed 4098 761 2.30 * C P * 48 3 N M -1.6 10x5-mmChip4097 77 0 1.80 *p* 75 2 N M 3. 5 6x5-mmChip 4092 77 4 0 .56 C P 79 2 .6 0. 1 4.1 6x5-mmChip 4091 799 0.75 C P 2755 16.424.1 48.858.8 63.5 PenetratorPlug 4090 84 8 0 .50 C P 55 11 9 15.920.5 46.135.4 61.5 PenetratorPlug 4088 1,153 0 .56 C P 293 36 9 17.423.2 NM N M 95.8 PenetratorPlug

    37

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    48/69

    TableB-3.iringDatafor12.7-mmAPM 2VersusPlateN o.304,TypeS 3,at0Obliquity(Str .Roll@1,066 C ;Anneal@1,038 C ,30 min,AC ;25.35mmthick;302-B H N hardness)Sho tNo. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm)

    M R (g ) P R (mm)AW Comments

    5509 64 0 0.5 PP 27 6. 4 4-mmbulgew/cracks5512 65 3 0 .25 *pp* 29 4. 3 7-mmbulgew/cracks5510 655 2.46 *pp* 27 4. 3 5-mmbulgew/cracks5507 65 7 0.75 *pp* 31 5. 1 2.2 29 7. 4 Spall5511 65 9 2 .55 *pp* 26 4. 9 5-mmbulgew/crack5514 676 0.71 * C P * 14 8 4. 9 1.9 PIP -13.2 Spall5513 677 0 .25 *p* 33 6. 0 4.1 8. 8 Spall5506 698 1.12 C P 70 10 6 47.34 25.3N M 10.6 PenetratorSpall

    TableB-4.iringDatafor20-mmF S P VersusPlateNo.305,TypeS 3,at0Obliquity(Str.Roll@1,066 C ;Anneal@1,038C ,30min.,AC ;25.25mmthick;311-BHN hardness)Sho tN o. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm)

    M R (g ) PR (mm) AW (g) Comments 4352 69 8 0.00 PP 6 4.2 4-mmbulgew/cracks4356 71 3 2.24 PP 7 2 .6 4-mmbulgew/cracks4357 71 5 1.03 PP 6 2 .7 4-mmbulgew/cracks4355 71 5 1.68 PP 6 2 .9 3-mmbulgew/cracks4358 72 2 1.68 PP 6 2.3 3-mmbulgew/cracks4354 722 1.35 * C P * 82 1. 8

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    49/69

    TableB-5 .iringDatafor20-mmF S P Versus PlateNo.306,TypeS 4,at 0Obliquity(Str.Roll@1,066C;Anneal@1,038C ,30min.,AC ,followedbyAnneal@788C,30min,AC ;25.17mmthick;311-BHNhardness)ShotNo. Vs(m/s) YAW( )

    RES VR(m/s) LR(mm)MR(g ) PR(mm)

    AW(B )

    Comments4364 706 1 . 00 PP 5 .5 2.9 2-mmbulgew/cracks4366 721 1 .12 *pp# 6 3.4 4-mmbulgew/cracks4367 725 1.46 *pp* 6 6.5 4-mmbulgew/cracks4370 732 1.25 *pp* 18 1 NM 8 3.0 6x4-mmchip4368 734 1.46 *cp* 47 2 NM 7 3.6 7x4-mmchip4369 742 0.79 *pp* 9 3.5 Plugpushedout4mm4365 749 1.60 *QP* 90 2.7 0 . 13 8 4.0 6x4-mmchip4379 762 1.77 CP 135 1 NM 9 3.7 7x2-mmchip4363 905 2.80 CP 127

    22416.3 21.0

    44.239.9 67.4 PenetratorPlug

    TableB-6.iringData for12.7-mmA PM 2VersusPlateN o. 307,TypeS 4,at0Obliquity(Str.Roll@1,066C ;Anneal@1,038C,30min.,AC ,followedbyAnneal@788C,30min,AC ;25.17mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW( )

    RES VR(m/s) LR(mm)MR(g ) PR(mm)

    AW(g)

    Comments5521 618 0 .25 PP 24 17 . 2 3-mmbulgew/cracks5522 637 1 .03 *pp* 28 5.4 5-mmbulgew/crack5525 640 0 .25 *pp* 29.0 5.2 7-mmbulgew/cracks5523 641 1.03 *pp* 27 3.9 4-mmbulgew/cracks5520 660 2.50 *CP* 42 4.8 1.4 N/A -18.9 Spa l l5524 660 1 .03 *CP* 88 4.5 1 .0 N/A 6.9 Spa l l5519 661 1.77 * C P * 113 5 NM N/A 6.9 Spa l l5517 665 0.35 CP 35 5.1 1.9 N/A 7.4 Spa l l5518 696 4.24 CP 45 15 8 47.3 4 25.4NM N/A 12 . 2 PenetratorSpall5515 699 3.76 C P >163 4. 7 2 .9 N/A -13.8 Spall

    39

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    50/69

    TableB-7.iringDatafor12.7-mmAPM 2VersusPlateNo.308,TypeS 5 ,at0Obliquity(Str.Roll@1,066C ;NoAnneal;25.22mmthick;302-BHNhardness)Sho tNo. Vs (m/s) YA W ( )

    R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW (g )Comments

    5474 66 0 2.14 *pp* 29 5 .0 4-mmbulgew/cracks5478 66 8 0.75 *CP* 50 5 N M 6. 8 Spal l5476 671 1.52 *pp* 27.5 3. 9 6-mmbulgew/cracks5479 67 2 0.56 *pp* 31 4.2 Spal lpushedou t3m m5477 68 0 2.02 *P* 36 5. 0 4. 7 PIP -14.1 Spal l5475 68 5 0.71 *CP* 57 4. 8 3. 8 14.3 Spal l5473 69 9 1.46 C P 21 5. 9 1.8 PIP -17.5 Spal l

    TableB-8.iringDatafor20-mmF S PVersusPlateNo.309,TypeS 5,at0Obliquity (Str.Roll@1,066C ;No Anneal;25.27mmthick;311-BHNhardness)Sho tNo. Vs (m/s) YA W ( )

    R ES VR (m/s) LR (mm) MR(g ) PR (mm) AW ( g ) Comments 4372 70 3 1.46 P P 5 3. 0 3-mmbulgew/cracks4382 73 5 0.56 P P 7 3. 4 3.5-mmbulgew/cracks4373 75 3 0.90 *pp* 7 4. 3 4-mm bulgew/cracks4378 75 7 2.02 *pp* 7 4. 9 5-mmbulgew/cracks4375 76 3 2.15 *pp* 8 3. 8 Plugpushedou t2mm4376 76 7 1.46 *CP* 79 3. 5 0.45 9 4. 3 14x7-mmchip4377 76 8 2.02 * C P * 141 1 N M 7.5 3. 2 3x3-mmchip4374 77 9 2.02 *CP* 12 2 3.1 0.38 9 4. 3 10x8-mmchip4384 78 1 1.77 *pp* 9 1. 9 5-mmbulgew/cracks4383 78 3 0.71 *CP* 60 1 N M 10 7.1 llx5-mmchip4387 79 9 1.00 *cp* 77 2.7 0 .16 1 1 7. 3 8x-7mm chip4381 803 1.12 *pp* 14.5 3. 6 Plugpushedou t10mm4371 94 7 0.71 C P 15 5235 15.516.2 47.2 37.9 86.0 PenetratorPlug

    40

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    51/69

    TableB-9.iringDatafor12.7-mmAP M 2VersusPlateN o. 310,TypeS 6,at0Obliquity(Str.Roll@1,066 C ;S TA @927C ,30min,W Q,followedby Anneal@538 C ,6 hrs,AC ;25.12mm thick;321-BHNhardness)ShotNo. Vs(m/s) YAW( ) RES VR(m/s) LR(mm) MR(g) PR(mm) AW(g) Comments5426 63 2 0.56 PP 24.5 3.6 3-mmbulgew/cracks5425 633 1.00 *pp* 25.5 5.2 3-mmbulgew/cracks5414 64 7 2.85 *pp* 27.0 5.0 4.5-mmbulgew/cracks5429 64 9 3.16 * C P * 89 4.9 2 .3 N/A -3.2 Spall5428 65 0 2.70 *pp* Lost 4.4 1. 7 N/A -1.6 Spall5427 66 1 1.75 CP 15 4.2 1. 7 N/A 5.8 Spall5413 67 1 0.50 CP 88 4.0 2 .6 N/A -14.9 Spall5417 675 1.77 CP 56 4.0 1. 8 N/A 10 .2 Spall5418 67 6 3.76 CP 158 4.6 1. 2 N/A -1.3 Spall5424 69 0 0.75 CP 75 47.1 25 .5 N/A 11 .3 Penetrator5412 71 3 5.35 CP 139 4.9 1. 8 N/A 5.4 Spall5410 718 1.46 CP 145 47.3 25 .3 N/A 12 .8 Penetrator

    TableB-10 .iring Datafor 20-mmF S P VersusPlateN o. 311,TypeS 6,at0Obliquity (Str.Roll@1,066 C ;S TA @927C,3 0 min,W Q,followed by Anneal@538C ,6 hrs,AC ;25.43mmthick;321-BHNhardness)ShotNo. Vs(m/s) YA W () RES VR(m/s) LR(mm)

    MR(g ) PR(mm)

    AW(g)

    Comments4082 746 0.79 PP 6 1 .9 3-mmbulgew/plugformed4083 778 0.71 *pp* 7 -2.6 4-mmbulgew/plugformed4099 78 1 1.27 *CP* 36 1 NM 8.0 4x2-mmspall4087 782 0.35 *cp* 69 3 NM 5.2 20x8-mmspall4085 78 5 0.71 *pp* 9 14.2 5-mmbulgew/plugformed4101 788 1.80 *pp* 8 6.8 4-mmbulgew/cracks4100 791 2.36 *CP* LOST 18 .8 38.5 41.9 Plug4084 79 9 0.56 CP 80 1 NM 16.8 8x3-mmspall4086 80 8 0.90 CP 97 2 NM -5.5 8x9-mmspall4081 85 9 0.71 CP 75 134 16.1 19.8 46.956.8 83.0 PenetratorPlug4080 1,164 1.27 CP 309388 14.9 23 30.9NM 117.8 PenetratorPlug

    4 1

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    52/69

    TableB-l1 .iringDatafo r12.7-mmAPM 2VersusPlate No. 312,TypeSI,at0Obliquity (Str.Roll@954C ;Anneal@788C ,30min,AC ;25.35mmthick;302-BHNhardness)ShotNo. Vs(m/s) YA W O R ES VR(m/s) LR (mm) MR(g ) PR (mm) A W (R ) Comments5453 68 2 2.30 P P 33 3. 7 8-mmbulgew/cracks 5444 689 1.52 *pp* PIP -20.2 Tipprotruding4m m5450 69 3 1.58 *pp* 32 4. 3 6-mmbulgew/cracks5455 696 3.88 * C P * 39 4. 6 1. 7 -18.6 Spal l5452 70 1 1.35 * C P * 82 44 47.03.5 25.42 .0 7. 2 PenetratorSpal l5449 70 8 1.95 * C P * 87 25 47.26.1 25.4 2 .7 8. 6 PenetratorSpal l5446 71 1 2.61 *pp* PIP -20.9 Tipprotruding4m m5448 71 8 2.15 C P 13540 46.94.1 25 .32 .6 11.2 PenetratorSpal l5451 71 8 2.61 C P 65 47 47.44. 0 25 .32. 1 7. 8 PenetratorSpal l5447 72 4 0.75 C P 20610 9 47.2 3. 9 25.31. 8 9.5 PenetratorSpal l

    TableB-l2.iringDatafo r20-mmF S PVersusPlateNo.313,TypeSI,at0Obliquity(Str.Roll@954 C ;Anneal@788C,30min,AC ;25.32mm thick;302-BHNhardness)ShotN o. Vs (m/s) YAW ( ) R ES VR(m/s) LR (mm) M R(g ) PR (mm) A W

    Comments 4304 89 5 1.12 PP 1 1 8. 9 11-mmbulgew/spalldisk 90 % formed 4308 931 0.75 PP 12.5 11.7 6-mmbulgew/cracks4307 93 9 1.03 P P 14 27.1 9-mmbulgew/spalldisk 75% formed4311 94 8 0.75 *pp* 20 18.2 Spal ldisk formed& pushedou t16mm 4306 95 0 0 .56 * C P * 46 21.8 117.6 137.1 Spal l4312 95 2 0 .50 * C P * 43 16.5 76.6 213.7 Spal l4313 96 2 0.35 *pp* 23 23.0 Spal ldiskformed& pushedou t13mm4314 96 2 2.55 *pp* 14 16.8 7-mmbulgew/cracks 4315 96 8 1.41 * C P * 92 15.8 50 .3 89.9 Spal l4305 1,017 0.71 C P 99 16.6 59.1 108.8 Spal l4303 1,145 0.56 C P 278

    30 0 14.017.0

    37.0 26.6

    107.3 PenetratorSpal l

    42

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    53/69

    TableB-13.iringDatafor12.7-mmAPM 2VersusPlate No.314,TypeC 5,at 0Obliquity(CrossRoll@1,066C ;Anneal@788C ,30min,AC ;25.25mmthick;302-BHNhardness)Sho tNo. Vs (m/s) YA W () RES V R (m/s) LR (mm) M R (g ) PR (mm) AW (g ) Comments5406 593 0.56 PP 22 4.1 2-mmbulgew/cracks5404 61 2 1.25 PP 24 4. 6 3-mmbulgew/cracks5407 62 3 1.06 PP 24 3.1 3-mmbulgew/cracks5403 63 7 1.25 PP 26.5 4. 4 4.5-mm bulgew/cracks5432 65 7 1.25 *pp* 22.5 3. 4 4-mmbulgew/cracks5430 66 4 1.25 *pp* 27 2 .8 5-mmbulgew/cracks5431 67 2 1.35 *CP* 78 6. 6 4. 0 -17.6 Spall5433 67 5 3.01 *cp* 70 4. 8 1.3 5 .6 Spall5401 68 7 4.25 C P 121 8 N M 9.1 Spall5409 69 8 3.75 C P 74 5.9 4. 1 9.3 Spall5402 70 2 3.95 C P 49 24.2 9.8 8.9 Penetrator5405 70 5 2.02 C P 14 7 26.4 13.0 -0.3 Penetrator5408 72 9 1 .52 C P 20 1 47 N M 10.8 Penetrator

    TableB-14.iringDatafor20-mmF S PVersusPlate N o. 315,TypeC 5,at 0Obliquity(CrossRoll@1,066C;Anneal@788 C ,30min,AC ;25.35mm thick;321-BHNhardness)ShotN o. Vs(m/s) YA W ( ) RES VR (m/s) LR (mm) M R (g ) PR (mm) AW (g )

    Comments4114 71 1 1.80 *pp* 5.5 -0.8 3-mmbulge/plugformed4113 71 3 2.30 *pp* 6. 5 10.7 4-mmbulge/plugformed4112 71 9 0.90 *cp* 83 2 N M 4. 9 4x4-mmchip4111 72 6 1.80 *CP* 22 3 N M 0.1 9xl0-mmchip4107 73 6 1.25 *pp* 7. 5 -2.6 4-mmbulge/plugformed4106 74 0 2 . 12 *CP* 48 2.7 0. 3 7. 7 12x5-mmchip 4110 743 0.90 *pp* 7. 5 -0.3 4m mbulge/plugformed4108 745 0 .56 *CP* 79 36 3. 32. 3 0. 10 .2 7. 4 7x2-mmchip10x5-mmchip4065 748 0.75 *pp* 8 3. 8 4-mmbulge/plugformed4109 75 6 1.12 *CP* 43 2 .9 0.40 0 .7 14x7-mmchip4070 75 8 1.52 C P 35 22 .4 63.3 64.1 Plug 4105 76 0 1.12 C P 74 2 N M 8. 0 llx3-mmchip4071 76 2 1.25 C P 47 3 N M 11.4 12x7-mmchip4069 78 4 1.75 C P 62 21.1 63.8 66.4 Plug 4068 812 1.58 C P L O S T 18.1 32.8 35.1 Plug 4067 85 6 0.90 C P 46 13 7 16.419.5 46.838.0 66.7 PenetratorPlug4066 96 0 0.90 C P 16 8248 15.318.6 43.620.7 81.0 PenetratorPlug4064 1,140 0 .25 C P 336 42 4 15.429 36.1NM 99.0 PenetratorPlug

    43

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    54/69

    TableB-15.iring Datafor12.7-mmAPM 2VersusPlateNo. 316,TypeCl,at0Obliquity (CrossRoll@954C ;Anneal@788C ,30min,AC ;25.53mmthick;302-BHNhardness)ShotNo. Vs(m/s)

    YAW() RES VR(m/s) LR(mm) MR(g) PR(mm) AW

    Comments

    5458 68 1 1 . 50 PP 29.5 5 .9 8-mmbulgew/crack5460 682 1 . 52 PP 35 5 .8 9-mmbulgew/crack5463 686 1.46 *pp* PIP -21.0 7-mmbulgew/crack5462 689 2.75 *pp* 35 5 .3 9-mmbulgew/crack5464 697 0.56 *pp* PIP -4.8 Tipprotruding28mm5465 699 0.75 *pp* 32 47.1 25 . 1 7.2 Penetrator5461 706 1 . 50 *Qp* 116116 47.2 5 .2 25.32.2 7. 1

    PenetratorSpall

    5459 712 2.76 *Qp* 96 47.2 25.2 7.0 Penetrator5457 717 4.04 CP 4950 47.23.6 25.31 .9

    7.2 PenetratorSpall

    TableB-16.iringDatafo r20-mmF S PVersusPlate No.317,TypeCl,at0Obliquity(CrossRoll@954C ;Anneal@788 C ,3 0 min,AC ;25.55mm thick;286-BHN hardness)ShotNo. Vs(m/s)

    YAW() RES VR(m/s) LR(mm) MR(g) PR(mm)

    A W Comments4317 910 0.71 PP 11 14.4 6-mmbulge4325 944 0.56 PP 13.5 12 .9 6-mtnbulgew/cracks4319 96 1 0.75 *pp* 15 27.4 9-mmbulgew/cracks4320 970 0.35 *pp* 17 11.2 11-mmbulgew/spalldisk80%formed4322 980 0.56 *pp* 14.5 14.7 8-mmbulgew/cracks4323 984 0.50 * C P * 29 15 .4 87.0 108 .7 Spall4324 985 0.79 * C P * 105 2 .7 0 .3 26.8 llx6-mmspall4321 987 0.90 *pp* 41 6.8 39.0 63.6 Spall4318 1,002 0.79 CP 63 12 .3 70.9 100 .3 Spall4316 1,099 1.03 CP 207237 14.5 16.3 41.026.9 91.9

    PenetratorPlug

    44

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    55/69

    TableB-17 .iring Datafo r20-mmF S PVersusPlate No. 318,TypeC 2,at0Obliquity (CrossRoll@954C;Anneal@1,038C ,30 min,AC ;25.55mm thick;302-BHN hardness)ShotN o. Vs(m/s) YAW() RES VR (m/s) LR (mm) MR(g ) PR (mm) A W (8 )

    Comments

    4328 685 0.71 PP 5 2.0 2-mmbulgew/cracks4332 74 1 1.00 PP 7 3. 3 4-mmbulgew/cracks4330 749 0.90 PP 7 6. 1 4-mmbulgew/cracks4338 754 1.25 *pp* 7 2.7 Plugpushedout2mm4337 75 8 2.14 *pp* 154 2 NM 7 6.0 10x6-mmchip4333 765 2.46 *pp* 7.5 4.0 4-mmbulgew/cracks4331 768 1.46 *pp* 129 2 NM 7 5 .4 8x4-mmchip4334 780 0.79 *CP* 132 2 .1 0.07 7 5.4 7x5-mmchip4335 787 0.75 *pp* 10 5.0 Plugpushedout5mm4336 793 1.25 CP 132 6.0 0.4 7. 5 8.9 12x4-mmspall4329 797 1.25 CP 49 8 .7 5 .3 8 11 .5 Spall4327 910 0.50 CP 138

    23415.916.5

    44.620.0

    69.1 PenetratorPlug4326 1 ,050 0.56 CP 251 349 15.8 22 . 1 43.515 . 0 73.9 PenetratorPlug

    TableB-18.iring Datafo r12.7-mmAP M 2VersusPlate No.319,Type02,at 0Obliquity (CrossRoll@ 954 C ;Anneal@1,038C ,30min,AC ;25.63mmthick;302-BHNhardness)ShotNo. Vs (m/s) YAW() R ES VR(m/s) LR(mm) MR(g ) PR (mm) A W Comments 5482 635 1.41 PP 28 5.6 5-mmbulgew/cracks5491 646 1.25 *Qp* 128 4.7 2 .3 PIP -13.7 Spall5488 648 0.75 PP 31 5.6 Spallpushedout4mm5483 650 1.27 PP 2 7 3. 3 3-mmbulgew/cracks5485 650 2.26 *pp* 2 7 6. 3 3-mmbulgew/cracks5489 653 0.75 *pp* 27.5 1 .6 4-mmbulgew/cracks5484 655 0.00 *pp* 2 6 1 .4 4-mmbulgew/cracks5487 667 2.02 *CP* 128 8 NM 11 .7 Spall5486 673 1.82 *QJ>* 37 9. 2 2.4 3.8 Spall5481 682 0.79 CP 125 6 NM PIP -11.3 Spall5490 688 0.35 CP 144 4.6 1 .2 PIP -12.8 Spall5480 70 7 0.79 CP 121 181 47.2NM 25.2NM 11 .3 PenetratorSpall

    45

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    56/69

    TableB-19.iringDatafor12.7-mmAPM 2VersusPlate No.320,TypeC3,at0Obliquity(CrossRoll@ 954C;Anneal@ 1,038C,30 min.,AC ,followedby Anneal@ 7 8 8 C ,30 min,A C ;25 . 53mm thick;302-B H N hardness)ShotNo. Vs(m/s)

    YAW()

    RES VR(m/s) LR(mm) M R(g )PR(mm) A W g)

    Comments5497 596 0.56 PP 22 2 .7 2-mmbulgew/cracks5498 61 3 2.47 PP 22 .5 15.1 3-mmbulgew/cracks5496 61 3 0.90 PP 24.0 3. 5 3-mmbulgew/cracks5 5 0 3 61 8 1 . 25 PP 25 14.8 3-mmbulgew/cracks5504 63 2 0.90 PP 26 5.0 5-mmbulgew/cracks5499 63 9 0.79 *pp* PIP -7.0 3-mmbulgew/cracks5495 639 1.03 *CP* 30 1 NM 29 3. 9 Chip5 5 0 5 643 0.71 *pp* 26 8. 2 3-mmbulgew/cracks5502 653 0.56 *CP* 110 5. 1 2. 5 PIP -16.0 Spall5500 67 0 3.34 C P 152 4 NM 8. 2 Spall5493 68 2 0.56 C P 58 4. 8 1.2 PIP -19.0 Spall5492 70 1 2.70 C P 96 4. 8 3.3 PIP -15.2 Spall

    TableB-20.iringDatafor20-mmFSPVersusPlate No.321,TypeC3,at0Obliquity(CrossRoll@ 954C ;Anneal@1,038 C ,30 min.,AC ,followedby Anneal@ 7 8 8 C ,30 min,A C ;25 . 58mm thick;302-BHNhardness)ShotNo. Vs(m/s) YAW()

    RES VR(m/s) LR(mm) M R(g ) PR(mm)AW Comments

    4341 694 1.35 PP 5 0 .9 3-mmbulgew/cracks4344 72 7 0.56 PP 6 3.5 3-mmbulgew/cracks4348 731 2.06 PP 6. 5 3. 8 3.5-mmbulgew/cracks4345 73 4 1.82 *pp* 7 3.1 Plugpushedout2mm4346 73 4 1 . 50 *CP* 145 3 NM 8 3. 8 llx5-mmchip4347 74 0 1.82 *pp* 7. 5 2.6 Plugpushedout2mm4343 74 8 2.06 *CP* 37 2 NM 7. 5 4. 8 6x4-mmchip4349 76 0 1.60 C P 94 3.7 0. 5 5.8 Chip4342 810 1.35 C P 116 21.0 34.4 54.4 Plug4340 892 0.25 C P 194 21.6 20 .7 53.6 Plug4339 1,063 0.35 C P 2 71 363 13.5 21.4 41.731.1 83.4 PenetratorPlug

    46

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    57/69

    TableB-21 .iringData fo r20-mm F S P VersusPlate N o. 322,TypeC 4,at0Obliquity(CrossRoll@954C ;NoAnneal;25.60mmthick;302-BHNhardness)Sho tNo. Vs(m/s) YA W ( ) RES VR(m/s) LR (mm) MR(g) PR (mm) AW Comments4073 74 8 1.27 PP 6 2.3 3-mmbulge4074 855 0.35 PP 9 15.5 4-mmbulge4075 95 1 1.25 PP 17.5 15.4 7-mmbulgew/cracks4115 96 4 2 .50 PP 15 15.4 11-mmbulgew/cracks4116 96 8 0.90 PP 16 22 .0 9-mmbulgew/spalldisk75% formed4102 97 2 1.75 *QP* 42 12.0 88.7 103.1 Spall4117 97 9 0.35 *pp* 15.5 10.0 9-mmbulgew/spalldisk75% formed4118 98 4 1.00 *p* 34 15.7 86.5 118.0 Spall4077 98 7 1.27 *pp* 16 14.2 10-mmbulgew/spalldisk50% formed4119 99 0 1.12 *P* 48 16.1 74.6 88.7 Spall4078 991 1.12 *pp* 21 17.2 9-mmbulgew/spalldisk90 % formed4104 99 6 0.75 C P 87 6.6 46.6 54.5 Spall4076 1,009 1.27 C P 87 15.9 51.0 91.9 Spall4079 1,060 0.79 C P 12 1166 14.910.6 42.966.6 129.9 Penetrator Spall4072 1,159 0.71 C P 30 5 33 3 12.714.6 36.625.2 101.8 Penetrator Spall

    TableB-22 .iringDatafor12.7-mmA PM 2VersusPlate No.323,TypeC 4,at0 Obliquity (CrossRoll@954 C ;NoAnneal;25.60mm thick;302-BHN hardness)Sho tN o. Vs(m/s) YA W () RES vR (m/s) LR (mm) MR(g ) PR (mm) AW (8 ) Comments 5438 63 1 1.52 PP 27 5.2 5-mmbulgew/cracks5439 684 2.14 PP PIP -20 .4 10-mmbulgew/cracks5440 69 3 1.25 *pp* PIP -2.2 10-mmbulgew/cracks5443 696 0 *pp* -22.3 Tipprotruding3m m5441 70 1 0.71 *CP* 22 1 NM -20 .4 Chip5442 709 3.35 *CP* 48 48 21.64. 4 6. 70.9 -8.0 Penetrator Spall5437 722 2.75 C P 11846 47.33. 6 25.31. 4 7. 6 Penetrator Spall

    47

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    58/69

    TableB-23.iringDatafor 20-mmF S P VersusPlateNo.37 7at0Obliquity(PlateNo.30 3withChem-mill;24.89mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW() RES VR(m/s) LR(mm) MR(g) PR(mm)

    A W Comments

    6718 772 0.56 *pp* 9 NM Plugpushedout4mm6719 777 0 *pp* 9 NM Plugpushedout5mm6721 780 0.25 *pp* 13 NM Plugpushedout3mm6720 780 0.56 * C P * 3672 15 . 2 21.8 47.1 56.7 NM

    PenetratorPlug

    6722 792 0.56 * C P * 115 98 1 2 NMNM 10 NM5x4-mmchip10x6-mmchip

    6717 798 1 . 25 * C P * 63 127 15 .420.9 47.765.9 NMPenetratorPlug

    TableB-24.iringDatafor 20-mmFSPVersusPlateNo.37 8at0Obliquity(PlateNo.311withChem-mill;24.94mmthick;302-BHNhardness)ShotNo. Vs(m/s) YAW() RES VR(m/s) LR(mm)

    MR(g)

    PR(mm) A W Comments5310 714 1 . 25 PP 5 .5 2.8 3-mmbulgew/cracks5306 735 0.90 * C P * 83 2 NM 6 3.4 7x9-mmchip5307 740 0.56 *pp* 6 3.4 3-mmbulgew/cracks5308 743 1 . 12 *pp* 6 3.9 3.5-mmbulgew .cracks5311 746 0.79 *pp* 7 2.0 3-mmbulgew/cracks5305 747 1 . 12 * C P * 87 2 NM 7 6.3 10x3-mmchip5302 748 0.50 * C P * 72 2 NM 7 13.2 10x4-mmchip5309 753 0.71 *pp* 6 3.7 3-mmbulgew/cracks5304 77 1 1 . 52 * C P * LOST 2 NM 16 1. 1 10x8-mmchip5312 782 0.50 * C P * 130 1 NM 8.5 4.2 4x2-mmchip5303 79 1 0.25 *pp* 12 5 .2 Plugpushedout7mm

    48

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    59/69

    TableB-25.iringDatafor20-mmF S PVersusPlate N o. 37 9at0 Obliquity (PlateNo.315 withChem-mill;24.77mm thick;302-BHNhardness)Sho tNo. Vs(m/s) YA W () RES VR(m/s) LR (mm) M R (g ) P R (mm) AW (8 )

    Comments 5326 70 9 1.00 PP 6 2 .8 3-mmbulgew/cracks5324 70 9 0 .56 *Qp* 67 2 NM 5. 5 2 .4 5x4-mmchip5327 71 0 0.71 PP 7 2 .7 Plug pushedou t2mm 5325 713 0.56 *pp* 5 2 .3 2-mmbulgew/cracks5322 723 0.71 *pp* 7. 5 5.0 Plug pushedou t4mm 5329 742 0 .9 *pp* 6. 5 2 .7 3.5-mmbulgew/cracks 5323 74 6 0 .56 *CP* 13 2 3 N M 10 6. 0 12x12-mmchip5321 74 8 0.25 *Qp* 46 46 16.721.5 46.2 51.7 56.9 PenetratorPlug 5328 754 0.35 *pp* 1 1 3.3 Plug pushedou t5 mm5330 756 0.25 *pp* 10 4. 1 Plug pushedou t5mm 5331 76 3 1.80 *QJ>* 141 2.3 0. 5 9 5.8 10x9-mmchip5332 770 0 *QJ>* 124 1 NM 9 3. 4 5x2-mmchip

    TableB-26.iringDatafo r20-mmF S PVersusPlate No.38 0at0Obliquity(PlateNo.322withChem-mill;25.25mmthick;302-BHNhardness)ShotNo. Vs(m/s) YA W O RES VR (m/s) LR (mm) M R (g ) PR (mm) AW Comments5314 97 2 1.03 PP 17 17.8 Spallpushedou t10mm5316 98 5 0.25 *pp* 16 23.0 Spallpushedou t4mm5317 98 7 1.06 *pp* 16 66.9 10-mmbulgew/cracks5320 98 8 0.25 *pp* 17 18.4 8-mmbulgew/cracks5318 99 2 0 .56 *P* 66 10 N M 68.5 Spall5319 1,005 0 *QP* 90 16.4 62.9 86.3 Spall5315 1,012 0 .50 *Qp* 97 14.9 62.1 48.6 Spall5313 1,013 1.52 C P 93 134 15.715.2 41.6 71.7 108.7 PenetratorSpall

    49

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    60/69

    INTENTIONALLYLEFTB L A NK.

    50

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    61/69

    NO .O F C O P I E S O R GA N IZ A T IO N NO .O F C O P I E S O R G A N I Z A T I O N 1 A D M IN IS T R A T O R D E F E N S ET E C H N I C A L IN F O C TR

    ATTNDTICOCA8725J O H NJK I N G M A N R D S TE 0944 FTBELVOIRVA2060-62181 D IR E C T O R U S A R M Y R S C H L A B O R A T O R YATTNA M S R LC IAIR EC M G M T2800P O W D E R MILLRDADELPHIMD0783-1197 1 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y

    ATTNA M S R LC ILL T E C H LI B 2800P O W D E R MILLR DADELPHIMD07830-1197 1I R E C T O RU S A R M Y R S C H L A B O R A T O R YATTNM S R LD DS M I T H 2800P O W D E R MILLRDADELPHIMD0783-1197 8 C DR U S A R M YT A C O M ATTNAMSTATRSFURMANIAKS G O O D M A N DH A N S E N LP R O K U R A TF R A N K S DT H O M A S JT H O M P S O N AMSTATREMATLBR O O P C H A N DA M S T A TR S TI JC A R I EW A R R E N M I8397-5000 2R O J E C TM A N A G E RG R O U N DSYSTEM IN T E GR A T IO N ATTNS F A EG C S S W G S I T DEAN JR O W E W A R R E N M I8397-5000 3DR U S A R M YR E S E A R C H O F F I C E

    ATTN JBAILEY KIYER KLOGANPO B O X12211R E S E A R C HTRIANGLEP A R KNC 27709-22112 CDRNGICATTN JCRIDERW GS T A T T E N B A U E R 220SEVENTH AVE C H A R L O T T E S V IL L EVA2901-5391

    1 C IA ATTNO S W R DS DW W A L T M A N ROOM5P0110NHBW A S H I N G T O NDC 20505 DIRARPA3701N O R T H F A I R F A XDR A R L IN GT O NVA 22203-1714 PM BFVS ATTNS F A EG C S S W B V S DAVIS W A R R E N M I48397-5000 C DR C A R D E R O C K DI VNSWCC O D E28(R PETERSO N)9500M A C A R T H U R BLVDW BETHESDA M D20817-5700 DEPTO F TH ENAVYO F C DIR REPORTING P R O G M G R A D V A N C E DA M P H I B I O U S A S S A U L TATTN DEREKERDLEY W A S H I N G T O N DC 20380-0001L A W R E N C EL IV E R M O R EN A T LAB ATTNR G O G O L E W S K I M S L290 R LANDINGHAM L369JR E A U G H L32 PO B O X80 8L IV E R M O R EC A4550LO S A L A M O S NATLL A B O R A T O R Y ATTN FADDESS IO M B UR K E T T LO S A L A M O S NM 87545S A N D I A NATLLA B ATTN JA S A YM S 0548 R B R A N N O NM S 08 20 LCHHABILDAS M S 0821 DC R A W F O R DO R G 0821 M F O R R E S T A LDIV1551PO B O X5800 A L B U Q U E R Q U EN M 87185-0307 N A V A LR S C H L A B O R A T O R YC O D E66844555O V E R L O O KAVES W W A S H I N G T O N DC0375 A IR F O R C EA R M A M E N TLA B ATTNA F A T LDLJW W COOKEGLIN AF BFL32542

    51

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    62/69

    N O .O F C O P I E S O R GA N IZ A T IO N NO .O F C O P I E S O R G A N I Z A T I O N I N S TF O R A D V N C DT E C H ATTNSBLESS HFAIRTKIEHNE DLITTLEFIELD

    RS U B R A M A N I A N PO B O X202797 A U S T I N TX8720-2797 U N I VO F D A Y T O NR S C H I N S T KLA14ATTNNBRAR A P I E K U T O W S K I 30 0C O L L E G EP A R K DAYTON O H5469-0182 S O U T H W E S TR S C H IN S T ATTN C A N D E R S O N JRIEGEL JW A L K E R 6220C U L E B R A R DS ANA N T O N I O TX 78238U S DEPT O F ENERGY ALBANY R S C H CENTER ATTN JH A N S E N (2C Y S )PTURNER (2C Y S )1450QUEENA V E N U ES W ALBANY O R7321-2198 B R O W N U N I VDIVO FENGINEERINGATTN R C L I F T O N P R O V I D E N C ER I 02912 U N I VO F C AS AN DIEGO DEPT O F APPLM E C H & E N G R S V C S R 0 1 1 ATTNS N E M A T N A S S E R M MEYERS LAJOLLACA2093-0411A R M O R W O R K S ATTN W PERCIBALLI 91 0EM O U N T A I NS KYA VEP H O E N IXA Z85048A E R O N A U T I C A LR S C H A S S O C ATTN RC O N T IL IA N O JWALKER PO B O X222950W A S H I N G T O NRDP R I N C E T O N N J8540ALLIANTT E C H S Y S T E M SINC ATTN TH O L M Q U I S TG J O H N S O N60 0S E C O N DSTREET N EH O P K I N S M N5343

    1 ALMEAN DA S S O C ATTNM A L M E PO B O X1388LO S A L A M O S N M7544-1388

    1 APPLIEDR S R C HA S S O C I A T E S INC ATTN JYATTEAU 5941 MIDDLEFIELDRDTE 10 0LITTLETONC O01231 APPLIEDR S C H A S S O C INC ATTNDG R A D Y4300S ANM A T E O BLVDN ES TEA 220 A L B U Q U E R Q U ENM7110 1 B R I G G S C O M P A N Y

    ATTN JB A C K O F E N2668P E T E R S B O R O U G HS THERNDON VA 222071-24431 CENTURYD Y N A M I C SINC ATTN NB IR N B A U M 2333S ANR A M O NVALLEYBLVD S ANR A M O N C A 94583-16133 C E R C O M INC ATTNRP A L IC K AGN E L S O N BCHEN1960W A T S O NW AYVISTA C A 920831 CYPRESS IN T E R N A T IO N A LATTNAC A P O N E C C H I1201EABINGDONDRALEXANDRIA VA22314 1 R JEICHELBERGER 40 9W C A T H E R IN ES TB EL AIR M D2101436131PSTEINA NDA S S O C ATTNKEPSTEIN 2716WEMBERLY DRIVE

    B E L M O N T C A4002 2ALT ALLOYS INC ATTNS F E L L O W S S GIA N GIO R D A N O 12 2C E N T R A LPLAZA N C A N T O NO H4702

    52

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    63/69

    N O .O F C O P I E S O R GA N IZ A T IO N NO .O F COPIES O R GA N IZ A T IO N GDLS ATTN W B U R K EMZ4362124G C A M P B E L LMZ43630 44

    DD E B U S S C H E RMZ43620 29JERIDONMZ4362124W H E R M A NMZ4350124SP E N T E S C UMZ436212438500M O U N DRDS T E R L IN GH TS M I8310-3200GE N E R A LR S C H C O R P PO B O X6770 S A N T AB A R B A R A C A3160-6770IN T E R N A T LR S C H A S S O C ATTN DO R P H A L 4450B L A C KAVEP L E A S A N T O N C A4566JETP R O P U L S I O NL A B O R A T O R Y I M P A C TP H Y S I C SG R O U P ATTN M A D A M S 4800OAK G R O V EDRIVEP A S A D E N A C A1109-8099 K A M A NS C I E N C E S C O R P 1500GA R D E N O F TH EGODS R DC O L O R A D O S P R I N G S C O 80907O ' GA R A H E S S A NDEISENHARDT ATTNG ALLEN DMALONE T R U S S E L L 9113LES A I N TDR .FAIRFIELDOH5014O R E M E T W A H C H A N G ATTN YK O S A K A PO B O X580 A L B A N YO R7321 P O U L T E R L A B O R A T O R Y S R IIN T E R N A T IO N A LATTNDCURRAN R K L O O P

    LS E A M A N D S H O C K E Y33 3R A V E N S W O O D AVEM E N L O P A R K C A94025R M I T IT A N IU M C O M P A N YATTNW L O V E2950B I R C HS TBREACA92621

    6 R M IT IT A N IU M C O M P A N YATTN JBENNETT EC H R I S T FJANOWSKI WPALLANTES R O B E R T S O N O YU 1000W A R R E N A V E N U ENILES O H4446

    2 T IM E T ATTNPB A N I A JF A N N IN G PO B O X2128 H E N D E R S O N N V890092 T IM E T ATTN JB A R B E R1999B R O A D W A YS TE 4300 DENVERC O02021 S A I C ATTN JF U R L O N G M S 2641710GO O D R ID GE DR M C L E A NVA 22102 1O BS K A G G S RT11BOX81ES A N T A F ENM7501 2I M U L A INC ATTNR W O L F F E 10016S O U T H 51 S TS T R E E T P H O E N IX A Z50448 UNITED DEFENSELP ATTN JD O R S C H VH O R V A T I C H BKARIYA MMIDDIONEJM O R R O W RMUSANTERR A J A G O P A LDS C H A D E PO B O X36 7 S A N T A C L A R A C A951033NITEDDEFENSE LP ATTN EBRADY RJENKINS JJ O H N S O N PO B O X15512

    Y O R K PA7405-1512 1 Z E R N O W T E C H S V C S INC ATTN LZERNOW 42 5W B O N I T A AVES U I T E208 S A NDIM A S C A91773

    53

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    64/69

    NO .O F C O P I E S 1

    O R GA N IZ A T IO N E M B A S S Y O F A U S T R A L I A C O U N S E L L O R DEFENCE S C I E N C E 1601M A S S A C H U S E T T S A VENWW A S H I N G T O NDC0036-2273ABERDEEN PROVING G R O U N D D I R E C T O R U S A R M Y R S C HL A B O R A T O R Y ATTNA M S R LC IPT E C H LIB)BLDG305P G A A DIR U S A E B C C ATTNC B R D R T 5183BLACKHAWKRDAPG-EAM D1010-5424 C DR U S A S B C C O M ATTNAMSCBCII5183BLACKHAWKRDAPG-EAM D1010-5424 DIR U S A M S A A ATTN AMXSYDA M X S YM PH C O H E NBLDG 39 2 C D R ' U S A T E C ATTNAMSTETCR Y A N BLDG C DR U S A A T C ATTNTEACLILVES A N D E R S O N M S I M O N(2C Y S )BLDG 400 D I R E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNM S R LS LI BLDG 32 8 D I R E C T O R U S A R M YR S C H L A B O R A T O R Y A T T NM S R LW M M DV IE C H N IC K I BLDG 4600 DIRECTORU S A R M YR S C H L A B O R A T O R Y A T T NM S R LW M M EBEATTY BLDG 4600

    N O .O F C O P I E S O R GA N IZ A T IO N 1 D IR E C T O R U S A R M YR S C HL A B O R A T O R Y ATTNA M S R LW M T B U R N S

    BLDG 4600 29 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TAW B R U C H E Y MBURKINS(15CYS) GFILBY WGILLICHWGOOCH(2CYS) THAVELDH A C K B A R T H EH O R W A T H YH U A N G DKLEPONISHMEYER M N O R M A N D I A JRUNYEON MZOLTOSKIBLDG 39 37 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TCK K I M S E Y M L A M P S O N M A G N E S S DS C H E F F L E RGS IL S B Y RS U M M E R S W W A L T E R S BLDG 30 914 D IR E C T O R U S A R M YR S C H L A B O R A T O R Y ATTNA M S R LW M TDAD IE T R IC H TF A R R A N DDDANDEKAR KF R A N K AG U P T A MRAFTENBERGR A JE N D R A N ERAPACKI NR U P E R T MS C H E ID L E R SS C H O E N F E L D SSEGLETES W E E R A S O O R I Y ATW R I G H T BLDG 30 912 DIRUSARLATTNA M S R LW M TEANIILERBLDG20

    A B S T R A C TO N L Y1 D IR E C T O RU S A R M YR S C HL A B O R A T O R Y ATTNA M S R LC IA PEC H PU BB R 2800P O W D E R M IL LRD ADELPHIMD0783-1197

    54

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    65/69

    N O .O F N O .O F C O P I E S O R G A N I Z A T I O N C O P I E S O R G A N I Z A T I O N 3 A E R O N A U T IC A L& M A R I T I M E 1 C O N D A T R S C H L A B O R A T O R Y ATTN N B U R M A N

    S C I M P O E R U DPAULATTN JKIERMEIR M A X IL L A N S T R 28 8069S C H E Y E R N F E R N H A G PO B O X4331M E L B O U R N E VIC 3001 GERMANY A U S T R A L I A 2 DEFENCEP R O C U R E M E N T A G C YATTNGLAUBE W OD E R M A T T

    1 A R M S C O RATTNLDU PLESS IS PRIVATEB A G X337P R E T O R I A0001S O U T H A F R I C A 1

    BALLISTICSW P N S & C O M B A TVEHICLET E S T C TR C H 3602T H U N SWITZERLAND TD W

    BATTELLEINGENIEURTECHNIK GMBHATTNW F U C K ED U E S S E L D O R F F E RS TR 9D65760 E S C H B O R N G E R M A N Y D E F E N C ER S C H A G E N C YF O R THALSTEAD SEVENO A K S K E N T T N 1 47B P UNITED K I N G D O M C A R L O S II IU N IV O F M A D R I D ATTN C N A V A R R O E S C U E L A POLITEENICA S U P E R I O R C/.BUTARQUE1528911LEGANES M A D R IDS P A I NC E L S I U S MATERIALTEKNIK K A R L S K O G A AB ATTN LHELLNER S6 910K A R L S K O G A S W E D E NC E N T R ED'ETUDES G R A M A T ATTN JC A G N O U XC GALLIC JTRANCHETG R A M A T 46500 F R A N C EM I N I S T R YO F DEFENCE DGA/DSP/STTC ATTN G B R A U L T4RU EDE LA P O R T ED'ISSY00460ARMEES F75015PARIS F R A N C E

    ATTN M HELD P O S T F A C H1340 D86523S C H R O B E N H A U S E N GERMANY DEFENCER S C H A G E N C Y ATTNWCARSON IC R O U C H CFREW T H A W K IN S BJ A M E S BSHRUBSALLC H O B H A M LANE CHERTEYU R R E YKT160EEUNITEDK IN GD O M DEFENCER S C H E S T A BS U F F I E L DATTNC W E IC K E R TB O X4000 MEDICINEH A T ALBERTA TIA 8K 6CANADA DEFENCERS HESTABVALCARTIER ARMAMENTS DIVISION ATTNRDELAGRAVE2459PI EXIBLVDNPO BO X8800CORCELETTE QUEBEC GOA 1ROCANADAD E U T S C HF R A N Z S I S C H E SF O R S C H U N G S I N S T I T U TS TL O U I S ATTN HE R N S T KHOOG HLERRCEDEX5UEDU GENERALC AS S AGNOUF68301AINTL O U I S F R A N C EDIEHLG M B H A N DC O ATTN M S C H IL D K N E C H T F I S C H B A C H S T R A S S E16 D90552R T B E N B A C H A D PEGNITZ GERMANY

    5 5

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    66/69

    N O .O F C O P I E S 1

    O R G A N I Z A T I O N D Y N A M E C R S C H AB ATTN AP E R S S O N PO B O X201 S5123SDERTLJE S W E D E N ETBS D S T I ATTNPBARNIER M SALLES BGAILLY R O U T EDEGU E R A Y B O I T EP O S T A L E71 2 18015BOURGESCEDEXF R A N C EF E D E R A LM I N I S T R YO F D E F E N C EDI R O F EQPT& T E C H LAND RV2ATTNDHAUG LREPPERP O S T F A C H 132853003B O N N G E R M A N Y F R A N H O F E R IN S T IT U T F R K U R Z Z E IT D Y N A M IK E R N S TM A C H IN S T IT U TATTN VH OH L E R ES T R A S S B U R G E RRTHAM KTHOMAE C K E R S T R A S S E4D79104 F R E IB U R G G E R M A N Y M I N I S T R Y O F DEFENCED G A /SP A R T ATTN C C A N N A V O 10 P L A C EGE O R GE S C L E M E N C E A U BP19F92211A I N T C L O U DCEDEX F R A N C EH I G H E N E R G YDENSITYR S C H C TR ATTNVFORTOV G KANELI Z H O R S K A Y AS TR13/19M O S C O W27412 R U S S I A N R E P U B L IC IN GE N IE U R B R O D E I S E N R O T HATTN FD E IS E N R O T H AU F DEHARDT3335 D5204L O H M A R1 G E R M A N Y

    N O .O F C O P I E S 1

    O R G A N I Z A T I O NI N S TO F C H E M I C A LP H Y S I C S ATTN S R A Z O R E N O V142432C H E R N O G O L O V K A M O S C O W R E GIO N R U S S I A N R E P U B L IC I N S TF O R P R O B L E M S IN M A T E R IA L SS C I E N C EATTNSF I R S T O V BG A L A N O V O G R I G O R I E VVK A R T U Z O VVK O V T U N YM I L M A N VT R E F IL O V3R H Y Z H A N O V S K Y S TR 252142 IEV 14 2KRAINE I N S TF O R P R O B L E M S O FS T R E S S ATTN GS T E P A N O VT IM IR Y A Z E V S K A Y AS TR 2252014KIEV U K R A IN EI N S TO F M E C H ENGINEERING P R O B L E M S ATTNVBULATOV I N D E I T SE VYM E S C H E R Y A K O V B O L S H O Y1O S TP E T E R S B U R G99178R U S S I A N R E P U B L IC I O F F EP H Y S I C O T E C H I N S TATTNED R O B Y S H E V S K I A K O Z H U S H K O S TP E T E R S B U R G 194021R U S S I A N R E P U B L IC K&WTHUNATTN W LANZ A L L M E N D S S T R A S S E86 C H 3602T H U N S W IT Z E R L A N DRO G O R K I E W I C Z18TEMPLES H E E N L O N D O N S W 147R P UNITEDK IN GD O M M AXP L A N C KIN S T IT U TF U R E I S E N F O R S C H U N G G M B H ATTNC DERDER M AXP L A N C KS T R A S S E40237D S S E L D O R F GE R M A N Y

    56

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    67/69

    N O .O F C O P I E S NO .O F O R GA N IZ A T IO N C O P I E S O R G A N I Z A T I O N N A T LD E F E N C EHEADQUARTERS 3 S W E D I S H DEFENCER S C H ESTAB ATTN PM O M R C VM AJM P A C E Y ATTN LH O L M B E R G BJ A N Z O N PM O LA V A H O D A K I M E L L G A R DO T T O W A O N T A R I O KIA O K2 B O X55 1C A N A D A S147 25T U M B A S W E D E N O TO BREDA ATTN M G U A L C O 1 T E C H N I O N I N S TO F T E C H VIAVALDIOCCHI15 F A C U L T YO F M E C H ENGINEERING I19136LA SPEZIA ATTN S B O D N E R ITALY T E C H N IO N CITYH A IF A 32000R A P H A E LBALLISTICS C E N T E R I S R A E LATTNM MAYSELESS YPARTOM G R O S E N B E R G 3 T E C H N I S C H EU N IV E R S IT TZR O S E N B E R G Y Y E S H U R U N C H E M N IT ZZ W IC K A U B O X2250 ATTN A S C H R O E D T E R H A IF A 31021 1 LKRUEGER LM E Y E R I S R A E LR S C H I N S TO F M E C H A N I C S N IZ H N IYN O V G O R O DS T A T EUN IV ATTN ASADYRIN P R G A Y A R I N A23K O R P 6N IZ H N IYN O V G O R O D603600 R U S S I A NREPUBLIC R O Y A LMILITARYA C A D E M YATTNECELENS R E N A I S S A N C EAVE30 B040 B R U S S E L S B E L GIU M R O Y A LNETHERLANDSA R M Y ATTNJHOENEVELDVDBURCHLAAN31PO B O X908222509LS TH EH A G U ENETHERLANDS D E F E N C EMATERIELA D M IN IS T R N W E A P O N S D I R E C T O R A T EATTNA BERG S11588S T O C K H O L M S W E D E N

    P O S T F A C H D09107C H E M N I T ZG E R M A N Y TN O PRINS M A U R I T S LA B ATTN.H PESKES RIJSSELSTEINLANGEKLEIWEG13 7PO B O X45 2280A A R I J S W I J K TH ENETHERLANDS C E N T R EDE R E C H E R C H E S ETD'ETUDES D ' A R C U E ILATTN D B O U V A R T C C O T T E N N O T

    S J O N N E A U X H O R S I N I SS E R R O R FTARDIVAL 16BIS AVENUEPRIEUR DE LA C O T ED'OR F94114ARCUEILCEDEXF R A N C EC DREUROPEAN R S C H O F F I C EU S A R D S G (UK)ATTNSSAMPATH JILLINGERPSC802BOX15FPOAE9499-1500

    S W E D I S H DEFENCER S C H ESTAB D IV IS IO N O F MATERIALS ATTNS JS A V A G E JE R IK S O N S720T O C K H O L M S W E D E N

    57

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    68/69

    INTENTIONALLY LEFTBLANK.

    58

  • 7/29/2019 Effect of Thermo Mechanical Processing on Titanium Alloy

    69/69

    REPORT DOCUMENTAT IONPAGE Form ApprovedOMB No.704-0188Publicreporting burdenfo rthis collectionof informationisestimatedtoaverage1 hourpe rresponse,including the time for reviewinginstructions, searchingexisting datasources,gathering an dmaintainingthedataneeded,an d completing an dreviewingthe collectionof information.end commentsregardingthisburdenestimateor an y otheraspectof thiscollectionof information,including suggestionsfor reducingthisburden,toWashingtonHeadquartersServices,Directoratefor InformationOperationsan dReports,1215JeffersonDavisHighway,Suite1204,Arlington, VA2202-4302,an dtothe Office of ManagementandBudget,Paperwork ReductionProject(0704-0188), Washington, DC0503.

    1.AGENCYUSEONLY(Leaveblank) 2.EPORTDA TEJuly2000

    3 .EPORTTYPEANDDATESCOVEREDFinal4.ITLEANDSUBTITLETheEffectofThermo-mechanicalProcessingon th eBallisticLimitVelocityof ExtraLow

    InterstitialTitaniumAlloyTi-6AL-4V 6.UTHOR(S)Burkins,M . S .ARL);Hansen,J .S . ;Paige,J . I . ;Turner,P. C . ( D O E )

    5.UNDINGNUMBERSPR:22601D C 05

    7.ERFORMNGORGANIZATIONNAME(S)ANDADDRESS(ES)U . S .ArmyResearch LaboratoryWeapons& MaterialsResearch Directorate Aberdeen ProvingGround,M D1005-5066

    8.ERFORMNGORGANIZATIONREPORTNUMBER

    9.P O N S O R I N G / M O N I T O R I N GAGENCYN A M E ( S )AN DADDRESS(ES)U . S .ArmyResearch LaboratoryWeapons& Materials Research Directorate AberdeenProving Ground,M D1005-5066

    10.PONSORING/MONITORINGAGENCYREPORTNUMBERARL-MR-486

    11.SUPPLEMENTARYOTES12a.DISTRIBUTION/AVAILABILITYSTATEMENT

    Approvedfo rpublicrelease;distributionisunlimited.12b.ISTRIBUTIONCODE

    13 .ABSTRACTMaximum200words)Althoughtitanium alloyshavebeenwidelyusedfo raerospaceapplications,theyhaveseldom beenusedinarmorsystems.nan efforttoprovideincreasedinformationtoarmoredvehicledesigners,th eU . S .ArmyResearchLaboratory(ARL)an dth eU . S .DepartmentofEnergy'sAlbanyResearchCenter( A R C )performeda jointresearchprogramtoevaluateth eeffectofthermo-mechanicalprocessingon th eballisticlimitvelocityfo ranextra-lowinterstitialgradeof th etitaniumalloyTi-6A1-4V.AR C obtainedMIL-T-9046J,AB-2 platesfromRMI1TitaniumCompany,rolledtheseplatestofinalthickness,performed th eannealing,andcollectedmechanicalandmicro-structuralinformation.R Lthenevaluatedtheplateswith20-mmfragment-simulatingprojectilesand2.7-mmarmor-piercingM 2bulletsinorder todetermineth eballisticlimitvelocityofeach plate. Titaniumprocessingandannealingdidhaveaneffectonth eballisticlimitvelocity,bu tth emagnitudeof th eeffectdependedon whichpenetrator w asused.


Recommended