+ All Categories
Home > Documents > Effects of Manganese in Weld Metal

Effects of Manganese in Weld Metal

Date post: 03-Jun-2018
Category:
Upload: andrespastor1987
View: 215 times
Download: 0 times
Share this document with a friend
9
WELDING RESEARCH SUPPLEMENT TO THE WELDING JOURNAL, MARCH, 1980 Sponsored by the American Welding Society and the Welding Research Council  ll  D r Effect of Manganese on the Microstructure and Properties of All-Weld-Metal Deposits Going from 0.6 to  1.8 Mn increasingly refines weld microstructures and promotes acicular ferrite formation, and optimal impact is attained with approximately 1.5% Mn although strain aging affects notch toughness and displaces optimum Mn to a higher concentration BY G. M. EVANS SYNOPSIS. The effect of manganese, in the range 0.6 to  1.8 ,  on the m icro- structure and mechanical properties of manual metal arc deposits (ISO  2560) has been investigated. It was found that manganese increasingly refined the microstructure and promoted the formation of acicular ferrite. Both  ten sile strength and yield strength in creased by approximately 10 N/mm 2 per  0.1%  Mn addition to the deposit. Charpy V, Schnadt and C OD tests graded as-deposited weld metals in the same relative order, the optimal impact properties being attained at a manganese level of approximately 1.5%. Stress relieving was found to have only a marginal effect on impact hand,  markedly affected notch tough ness and displaced the optimum  man ganese level to a higher concentra tion. Introduction The working program of Subcom- mission ll-A  of the International  Insti tute of Welding calls for a joint effort to study the microstructure of weld metal.  As a first step, four all-weld metal deposits have been distributed to various laboratories with recom mendations' for the characterization of the  microstructural  components. The present paper details the  find ings of the Swiss delegation in collabo ration with the Welding Institute (United Kingdom). In addition to the metallographic studies, a test program fluence of manganese on the tensile and impact properties of the  weld ments. Experimental Procedure Electrodes Four experimental iron pow der type basic electrodes, coded A, B, C and D, Paper to be presented at the AWS 61st Annual Meeting in  Los  Angeles, California, during April  14-18, 1980. G. M.  EVANS  is Chief Metallurgist, Welding Industries Oerlikon Bueh rle Ltd., Zurich, Switzerland. were prepared using 4 mm (0.16  in.) diameter core wire. The ferro-manga- nese contents of the coatings were 3, 5,  7 and 9%, respectively, and the ferro- silicon content was balanced. The coating factor was 1.70 and the elec trodes were baked for 1 h at 400°C (752°F) to yield a diffusible hydrogen content of 2.3 ml/100 g deposit, according to the ISO procedure.- Weld Preparation The weld preparation employed was that specified in the International Standard for the code of symbols for manual metal arc electrodes, namely ISO 2560-1973. Welding was done in the flat  posi tion using the stringer bead technique. Direct current (electrode positive) was employed, the amperage being 170 A, the voltage 21 V and the heat-input nominally 1  kj/mm.  The interlayer temperature was 150° C (302°F). Heat Treatment The weldments were tested in both the as-welded and the stress-relieved WELDING RESEARCH SUPPLEMENT I  67-s
Transcript
Page 1: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 1/9

WELDING RESEARCH

S U P P L E M E N T T O T H E W E L D I N G J O U R N A L , M A R C H , 1 98 0

S p o n s o r e d b y t h e A m e r i c a n W e l d i n g S o c i e t y a n d th e W e l d i n g R e s e ar c h C o u n c i l

  l l

  D r

Effect of Manganese on the

Microstructure and Proper t ies of

A l l -We ld -Me ta l Depos i t s

Going from 0.6 to  1.8 Mn increasingly refines weld

microstructures and promo tes acicular ferrite formation,

and optimal impact is attained with approxima tely 1.5%

Mn although strain aging affects notch toughness and

displaces optimum Mn to a higher concentration

BY G. M. EVANS

The ef fect of manga nese,

  1.8 , on t he m ic ro -

  2560)

  ten

2

er  0.1%  Mn add i t ion t o t he depos i t .

Charpy V, Schnadt and C O D tests

s -d epo s i t ed we ld meta ls in

ct prope r t ies bein g at ta ined at a

only a margin al e f fect on impa ct

  marked ly a f f ec ted no tch t ough

ess and d isp laced the op t imum   m a n

T h e wo r k i n g p r o g r a m o f S u b c o m -

  o f t he I n te rna t iona l  Inst i

W el di ng cal ls for a jo in t e f for t

t o s tudy t he m ic ros t ruc tu re o f we ld

meta l .

  As a f i rs t s tep, four a l l - we ld

meta l depos i t s have been d is t r ibu ted

to va r ious labora to r ies w i t h recom

mendat ions ' f o r t he charac te r iza t ion

of the  microstructural  c o m p o n e n t s .

The present paper deta i ls the   f i n d

ings of the Swiss delegat ion in co l labo

ra t ion w i t h t he W e ld ing I ns t i t u te

(Un i t ed K ingdom) . I n add i t ion t o t he

me tal log raph ic s tudies , a test program

was conduc ted t o eva lua te t he in

f luence of manganese on the tens i le

and impact proper t ies of the

  w e l d

ments.

E x p e r i m e n t a l P r o c e d u r e

Electrodes

Four expe r imenta l i r on pow der t ype

basic e lect rod es, cod ed A , B, C and D,

Paper to be presented at the AW S 61st

Annual Meeting in   Los  Angeles, California,

during April  14-18, 1980.

G. M. EVANS   is Chief Metallurgist, Weld ing

Industries Oerlikon Bueh rle Ltd., Zurich,

Switzerland.

were prepared us ing 4 mm (0.16

  in.)

d iame te r co re w i re . The fe r ro -man ga-

nese contents of the coat ings were 3,

5, 7 and 9%, respect ive ly , and th e fe r ro-

s i l i con con ten t was ba lanced . The

coat ing factor was 1.70 and the e lec

trodes were baked for 1 h at 400°C

(752°F) to y ie ld a d i f fus ib le hyd roge n

content of 2 .3 ml/100 g deposi t ,

accord ing t o t he ISO procedure . -

Weld Preparation

The we ld p repara t ion emp loye d was

that spec i f ied in the Intern at ion al

Standard for the code of symbols for

manual meta l arc e lect rodes, namely

ISO 2560-1973.

Weld ing was done in t he f la t

  pos i

t ion us ing the s t r inger bead technique.

Direct cur rent (e lect rode posi t ive) was

employed , t he amperage be ing 170 A,

the vo l t age 21 V and the hea t - inpu t

n o m in a l l y 1

  k j / m m .

  The in ter layer

tem pe ratu re w as 150° C (302°F).

Heat Treatment

The we ldments were t es ted in bo th

the as-welded and the s t ress- re l ieved

W E L D I N G R E SE A RC H S U P P L E M E N T I 67-s

Page 2: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 2/9

Table 1-VVeld  Metal Composit ion (As-Welded), Wt-%

Electrode C Mn Si S O

A

B

C

D

0.035

0.038

0.049

0.051

0.66

1.00

1.42

1.82

0.30

0.30

0.34

0.34

0.006

0.005

0.005

0.006

0.013

0.014

0.013

0.017

0.007

0.010

0.009

0.009

0.049

0.046

0.041

0.039

(2 h/580°C or 2 h at 1076°F) co nd i t io n.

Impact tests (Charpy V notch) were

a lso conduc ted on s t ra in aged spec i

mens , compressed 10% and aged fo r

 Vz

h at 250°C (482°F).

Mechanical Testing

Two sub-s ize a l l -we ld -meta l t ens i le

spec imens (M in i t r ac ) were mach ined

and tested for each type of e lect rode

and cond i t ion . A lso approx imate ly 35

Charpy V no tch spec imens were

st ruck, so as to obta in the complete

t rans i t ion curve.

Schnadt impact specimens

3

  we r e

prepared f rom as -we lded depos i t s and

were t es ted under b radycoheracy  (B„)

and tachycoheracy  (K„)  cond i t ions . I n

a d d i t i o n ,

  as -we lded p la tes were C O D

tested in ful l thickness (20 mm or 0.79

in . ) a t t he We ld ing I ns t i t u te . The we ld

metal was saw notched (0.15 mm or

0.006 in . ) t ransversely to prov ide sub

s id iary- type specimens, as proposed in

D D  19 bu t w i t ho u t a f a t igue c rack .

Resul ts

Chemical Composition

Typical chemical analyses of the

deposi ts are g iven in Table 1. The

systemat ic increase in the amount of

fer ro-manganese in the coat ing re

sul ted in four d is t inct weld meta ls

conta in ing, nominal ly , 0 .65, 1.0, 1.4

and 1.8% Mn.

The we ld s i l i con con ten t was re la

t ive ly constant , but the carbon and

phosphorus con ten ts inc reased p ro

gress ive ly over the range. Weld meta l

oxygen leve l , on t he o ther h and ,

decreased, thus substant ia t ing the

deox ida t ion po ten t ia l o f manganese .

Essen t ial ly the same resu lts as give n in

Tab le 1 were ob ta ined on repea ted

analysis for the stress-relieved sam

ples.

Metallographic Examination

General. A  t ransverse sect ion of one

o f the m u l t i - r u n depos i t s is show n in

Fig.  1, a to ta l o f n ine layers b eing

required to f i l l the gap. Three beads

were deposi ted per layer , and the

mac roscop ic ef fect was of repeated

sequences of as-deposi ted and super-

c r i t i ca l l y hea t -a f f ec ted we ld meta l

zones.

The w id ths o f t he co lumnar , coarse

gra ined and f ine gra ined regions were

measured in the ver t ica l mid-p lane

pos i t ion and the dup l ica te resu l t s ,

ob ta ined by examin ing as -we lded and

st ress- re l ieved specimens, are de

p ic te d in F ig. 2 . The pe rcentages o f the

Fig. 7—Cross section of multi-run depos it

5 -

LU

U_

O

LLI

o

<

LL

CC

ID

CO

Q .

O

s

o

LL

10

15

LLI

o

< 2 0

l -

cn

a

co lumnar

coarse

 , I fine

g ra ined Jg ra ined

Plate

sur face

E

E

o

.c

u

>

o.

O

.c

O

• - S T R E S S - R E L I E V E D

Fig.  2 —Zone   distribution along the vertical centerline position

Table

 2—Zone

  Percentages in the Equivalent

  ISO-V

  Notch Position (AW = As-Welded,

SR = Stress-Relieved)

Z o n e

C o l u m n a r

Coarse g ra ined

F ine g ra ined

A W

18

35

47

SR

32

24

42

A W

23

34

43

SR

19

35

46

A W

22

34

44

SR

12

37

51

A W

11

34

55

SR

20

37

45

Average

20

34

46

68-s l

  M A R C H 1 9 80

Page 3: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 3/9

>:  :;K>  m

J H

 of top heads (co

 35 on reproduc

US

HP

V '

im.^MmM^iMmiM

Fig. 4—Photomicrographs  of coarse grained

regions.  X200  (reduced 35 on reproduc

tion)

..

•w  t ' J S V ' * '  ••

 V

••'••'  i

F/g.  5—Photomicrographs of fine graine d

regions. X.315 (reduced 35 on reproduc

tion)

The w id th o f t he co lumnar reg ions

  the va lues f o r dup l ica te spec i

ens scat ter ing to an equivalent

of the coarse and f ine gra ined regions

a t t he no t ch loca t ion was f ound to be

80%.

  A s ligh t ve r ti ca l d isp lace men t

wou ld a f f ec t t he re la t i ve p ropor t ions

of the zones, s ince the low er runs

t e n d e d t o c o n t a i n w id e r c o l u m n a r

bands.

The co lumnar g ra ins b roadened as

the we ld p rogressed dur ing depos i

t i o n ,  due to t he ep i t ax ia l g rowth

e f f ec t . As an approx imat ion , however ,

i t can be presumed that the sequence

is repe t i t i ve t h ro ug hou t and tha t t he

cent ra l top bead and the adjacent

heat -af fected weld meta l serve to

character ize the bulk of the deposi t .

Typica l microst ructures of the four

manganese-con ta in ing we ld meta ls

are shown in Figs. 3, 4, and 5, for the

columnar , coarse gra ined and f ine

gra ined regions, respect ive ly .

Columnar Region.  The top ce nt ra l

bead of each specimen was examined

a t X200 and quan t i t a t i ve me ta l log ra ph

ic meas ureme nts were m ade as de

scr ibed in Doc. I I -A-389-76

1

, using a

W E L D I N G R E SE A RC H S U P P L E M E N T I 69-s

Page 4: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 4/9

Fine grained

100

9 0

Fig. 6—Diagram  of top bead and adjacent areas

Swif t po int counter . The area t raversed

measured 2.5 X 2.0 mm- (Fig. 6), and

500 poin ts were re corde d by each of

two invest igators.

T h re e m a jo r m i c r o s tr u c t u r a l c o m p o

nen ts (F ig . 3B) were iden t i f ied , nam e-

ly:

1.  Pro -eu tec to id f e r r i t e ( l igh t  e t ch

ing).

2.  I n te rmed ia te lame l la r p rodu c ts ,

main ly fer r i te s ide p lates resembl ing

upper ba in i t e ( l igh t e t ch ing) .

3. Ac icu la r fer r i te , con sis t ing of a

f ine s t ruc tu re o f in te r lock ing f e r r i t e

p la tes (dark .e t ch ing) .

The resu l t s ob ta ined on po in t coun t

ing are plot ted in Fig. 7. I t can be seen

that the amount of ac icu lar fer r i te

increased markedly , a t the expense of

p ro -e u tec to id f e r r i t e , as t he m anga

nese content increased. Also, a c lear

t rend ex is ted for the in termediate

lame l la r component t o dec rease w i t h

increasing manganese.

Carbon repl icas of the top beads

we r e e x a m in e d a t t h e W e ld i n g   Inst i

t u t e ,

  in a t r ansm iss ion e lec t ron m ic ro

scope (TEM), and a l inear in tercept

method was app l ied a t a magn i f i ca t ion

of X2500. The results are given in Table

3, the values for the h igh manga nese

we lds be ing ind ica t ive o f t he ac icu la r

Table 3—Average  Linear  Intercept  in Top

Beads of As-Welded and Stress-Relieved

Specimens

Average linear intercept,

 jtm

Electrode

A

B

C

D

As

-depos

3.30

2.87

1.72

1.05

ted St

r

ess-relieved

3.96

2.60

1.70

1.59

ferr ite lath size.

Examina t ion o f t he rep l i cas showed

that there was a gradual t rans i t ion

be tween ac icu la r f e r r i t e and p ro -

eu tec to id f e r r i t e . A lso , t he d is t inc t ion

norma l ly made be tween the two

mic ros t ruc tu res in t he op t ica l m ic ro

scope was pure ly arb i t rary at h igh

m a g n i f i c a t i o n .

Smal l and widely d ispersed areas of

re ta ined aus ten i t e were observed on

the repl icas. The amount of austeni te

inc reased w i t h inc reas ing manganese

but only in the case of weld D was

suf f ic ient austeni te present (1%) to be

de tec ted by X- ray d i f f r ac t ion .

  Al l

  the

repl icas f rom st ress- re l ieved welds

cou ld be read i ly d is t ingu ished by t he

presence of gra in boundary carb ides

•  ~AS  WELDED

O-STRESS-flELIEVED

ACICULAR

FERRITE (3)

PRO-EUTECTOID

FERRITE (1)

0 5

K)  1-5

MANGANESE   IN  W E L D ,  .

Fig. 7—Effect  of manganese on microstruc

ture of top bead

wh ic h we r e f o r m e d b y t h e t e m p e r i n g

out of the reta ined austeni te.

Any mar tens i t e wh ich m igh t have

fo rmed w i t h in t he re ta ined aus ten i t e

was d i f f ic u l t to detec t because of the

f ine scale of the s t ructure. Such ind ica

t ions o f mar tens i t e , as were f ou nd ,

were of considerably smal ler areas

than those repor ted by Gar land and

K i r k w o o d

5

  as occu r r ing in submerge d

arc welds. Fur thermore, i t was not

poss ib le to ident i fy the areas as e i ther

la th or twinned mar tens i te or to assess

them quan t i t a t i ve ly .

Coarse Grained Region.  P h o t o m i

crographs of the reheated weld meta l

t aken d i rec t ly be low the cen t ra l t op

bead are sho wn in Fig. 4 . W ith increas

ing manganese the s t ructure became

inc reas ing ly more dark e t ch ing , and

the p ro -eu tec to id f e r r i t e de l inea t ing

the pr ior austeni te gra in boundar ies

wh ich became f ine r and hence tended

to accentuate the coarse gra ined

na tu re o f t he zone . The fus ion bound

ary in the case of the lowest manga

nese w el d (A) was d i f f ic u l t to locate

microstructurally

  but the segregat ion

bands ( r ipp les) could readi ly be seen

by vary ing the focus.

7

E

Q  5

O

O  1

As

1

 

deposited region.

Reheated  region.

-

/

y y

X

  ^ ^-'

  ,

y-

W.I.

A .

J

 -

/

C ,

..-

A

y- -

--'

0 200 400 600   800  1000

NUMBER OF GRAIN BOUNDARIES INTERCEPTED .

Fig.

 8—Grain

 boundaries intercepted on

traversing as-deposited and reheated re

gions

Table 4—Linear  Intercept Results From Fine Grained Region

  (H

  = hor izontal,

V  =  vertical)

I n te rcep t

per mm

155

146

Rat io

1.06

I n t e r c e p t / m m

150

a

s

c

Interval /  (fi)

6.7

P'

/2

, m m  '-'

12.22

B

C

D

H

V

H

V

H

V

173

171

199

208

237

253

1.01

0.96

0.94

172

203

245

5.8

4.9

4.1

13.13

14.28

15.62

70-s  I M A R C H 1 9 8 0

Page 5: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 5/9

T h e m i c r o s t r u c t u r e w i t h i n t h e p r o -

c t o i d f e r r i te e n v e l o p e s a p p e a r e d

o p t i c a l l y i d e n t i c a l t o t h e a c i c u l a r

o c c u r r i n g in t h e a s - d e p o s i t e d

e l d m e t a l . T h e a r ea s s u r r o u n d e d b y

p r o - e u t e c t o i d f e r r i te d i f f e r e d i n

i ze a n d t h e b o u n d a r y o f t h e c o a r s e

e d z o n e w a s d i f f i c u l t t o l o c a t e ,

i n c e t h e m i c r o s t r u c t u r e t e n d e d t o b e

e p e n d e n t o n t h e u n d e r l y i n g s o l i d i f i

t r a n s f o r m a t i o n p a t t e r n .

l a tt e r p h e n o m e n o n w a s p a r t i c u

l a r ly n o t i c e a b l e a t t h e p e r i p h e r y o f t h e

o p b e a d w h e r e t h e h e a t - a f f e c t e d

o n e w e l d m e t a l ha d t r a n s f o r m e d

a c k i n t o c o l u m n a r t y p e g r a i n s . A l s o ,

i n t e r a c t i o n o c c u r r e d b e t w e e n  super

i m p o s e d h e a t - a f f e c t e d z o n e s , a t y p i c a l

o c c u r r e n c e b e i n g t h e c o n t i n u a t i o n o f

a f i n e g r a i n e d r e g i o n i n t o a c o a r s e

g r a i n e d r e g i o n at t h e p o i n t o f i n t e r c e p

t i o n w i t h a n e w f u s i o n b o u n d a r y . T h e

d e p o s i t i o n s e q u e n c e , h o w e v e r , w a s

s u c h t h a t o v e r l a p p i n g o f h e a t - a f f e c t e d

z o n e s d i d n o t o c c u r at t h e C h V - n o t c h

l o c a t i o n .

T h e s c a n n i n g e l e c t r o n m i c r o s c o p e

( S E M ) w a s u s e d at t h e W e l d i n g

  I n s t i

t u t e t o s t u d y t h e a s - d e p o s i t e d a n d

r e h e a t e d r e g i o n s o f t h e w e l d m e n t s . A

l i n e a r i n t e r c e p t m e t h o d w a s a p p l i e d

a n d t h e r e s u l ts o b t a i n e d f o r a s - w e l d e d

s p e c i m e n s a r e g i v e n i n F i g . 8 , t h e

c h a n g e in i n t e r c e p t b e i n g m o n o t o n i c

w i t h i n c r e a s i n g m a n g a n e s e . T h e f u s i o n

b o u n d a r i e s w e r e c l e a r l y v i s i b l e , a n d

t h e r e w a s a l s o a s u d d e n c h a n g e i n

l i n e a r i n t e r c e p t w h e n t h e b o u n d a r i e s

w e r e c r o s s e d . T h e b o u n d a r i e s b e

t w e e n t h e i n t e r c r i t i c a l l y a n d f u l l y

r e h e a t e d r e g i o n s , h o w e v e r , c o u l d n o t

b e l o c a t e d b y d i r e c t o b s e r v a t i o n , n o r

w e r e t h e y d e t e c t e d b y t h e i n t e r c e p t

m e a s u r e m e n t s ( F i g . 8 ) , s i n c e l i t t l e o r

n o d i s c o n t i n u i t y o f s l o p e o c c u r r e d

w i t h i n th e r e h e a t e d r e g i o n s .

Fine Grained Region.  T h e f i n e

g r a i n e d r e g i o n s ( F ig . 6 ) w e r e p h o t o

g r a p h e d a t X 6 3 0 , a n d l i n e a r i n t e r c e p t s

o f g r a i n b o u n d a r i e s w e r e m a d e a s

d e s c r i b e d i n D o c . I I - A - 3 8 9 - 7 6 . T h e

r e s u l ts o b t a i n e d f o r t h e v e r t i c a l

( t h r o u g h - t h i c k n e s s ) a n d t h e h o r i z o n

t a l d i r e c t i o n s a r e g i v e n i n T a b l e 4 a n d

s h o w a f a ir d e g r e e o f e q u i a x i a l i t y .

T h e r e c i p r o c a l o f t h e s q u a r e r o o t o f

t h e m e a n g r a i n i n t e r v a l is p l o t t e d ,

a g a i n s t w e l d m e t a l m a n g a n e s e   c o n

t e n t , i n F ig . 9 . A s t r a i g h t - l i n e r e l a t i o n

s h i p w a s o b t a i n e d , m a n g a n e s e a g a i n

b e i n g f o u n d t o h a v e a m o n o t o n i c

i n f l u e n c e . O f p a r t i c u l a r i n t e r e s t is t h a t

t h e p r e s e n t g r a i n s i ze m e a s u r e m e n t s

c a n v i r t u a l l y b e s u p e r i m p o s e d o n

t h o s e r e p o r t e d b y T u l i a n i

6

  f o r r e h e a t e d

r u n s o f s u b m e r g e d a rc w e l d m e t a l .

M e ch a n i ca l P r o p e r t i e s

Tensile Results.  T h e t e n s i l e t e s t d a t a

o b t a i n e d a r e g i v e n i n T a b l e 5 f o r b o t h

t h e a s - w e l d e d a n d s t r e s s - r e l i e v e d c o n -

5  0 5

1 0  1-5

M A N GA N E S E   IN  W E L D ,

 

2 0

Fig.  9—Effect  of mang anese on the mean linear grain intercept (fine grained

region)

T a b l e 5-Tensile  Test Resul ts

1

 

1

C o n d i t i o n

A s - w e l d e d

Stress-re l ieved

Electrode

A

B

C

D

A

B

C

D

YS

392

413

468

514

370

402

436

479

N/mm

1

UTS

466

498

551

588

456

490

529

576

°c

El

31.9

31.2

29.4

28.0

35.2

31.0

31.6

27.4

RA

80.6

80.6

78.7

76.8

80.6

80.6

78.8

76.9

11

 YS—yield  s t r e n g t h ;  UTS—ultimate  t e n s i l e s t r e n g t h ; E l — e l o n g a t i o n ;  RA—reduction  in area.

E

z

c/)

6 0 0

5 5 0

SOO

4 5 0

4 0 0

3 5 0

1

A

^W

  y

-  &

• /

y

P-

y

y

y

y

1 1 1

B C J ^ U X S .  -

y &

y^  s

^y s

y^s'

  y '

  Y.S.

y

*'

y^  y

s y

.—  y  —

y

y^  y

/ •  y '

s * *  • A S W E L D E D

O S T R E S S - R E L I E V E D

1 1 1

0 - 5  1 0

  1-5

  2 0

M A N G A N E S E   I N  W E L D ,  % .

Fig. 10— Effect of man ganese on the tensile properties of multi-run deposits

W E L D I N G R E S E A R C H S U P P L E M E N T I 71-s

Page 6: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 6/9

2 5 0

2 0 0

^150

aa

UJ

5

1 0 0

a

UJ

DO

a

o

S2 5 °

CO

<

A

B

C

D-

I I I I

C h a r p y

- ' ' / /

/ / /

1

i:

If \

/ / /

  /

/ •', /

• / • ' • /

  /

-yy

i i i i

i

- V

fy

i

i

.-——

i

- 8 0 - 6 0 - 4 0  - 2 0 0  2 0

T E S T T E M P E R A T U R E   , °C  .

Fig.  11—Charpy

  V-notch

  impact results (as-welded)

3 0

2 0

E

a

10

4 0

^

3 0

> •

a

tr

UJ

UJ

  2 0

Q

UJ

m

cr

8

  10

CO

<

0

I

A

B

C

D

i

I I I I I

S c h n a d t ,

 K

0

y_

,yy

.• j

/ • '  n

/•'

  /

/  1

i i

i

  1

y

/in

1 i

*

•/My

-y

i i i i

-

_

-  1 5

10

E

a

- 5

-80 -60 -40 -20 0 20

T E S T T E M P E R A T U R E   , ° C .

Fig.  13—Schnadt   impac t test results  K„   (as-welded)

1 2

1 0

E

E

^ S

a

o

o

<

o

on

o

0-8

0 -6 -

0-2

I I

A

_  B

c

D

| COD

-

-

..-  y

.I I

I

clip

f

>' /

  /

'/  y

gauge

I

l im i t .

I

-

-

-

- 2 0 0

-150 -100

T E S T T E M P E R A T U R E ,

Fig.  12-COD   test results (as-welded)

d i t i o n s . Y i e l d s t r e n g t h a n d u l t i m a t e

t e n s i l e s t r e n g t h a r e p l o t t e d i n F i g . 1 0

a n d a r e s e e n t o i n c r e a s e l i n e a r l y w i t h

i n c r e a s i n g m a n g a n e s e .

F or t h e a s - w e l d e d c o n d i t i o n , t h e

r e su l t s ( i n

  N / m m

2

)

  a r e d e s c r i b e d as

f o l l o w s w h e r e Y S is y i e l d s t r e n g t h a n d

U T S is u l t i m a t e t e n s i l e s t r e n g t h :

YS =3 1 4 + 1 0 8 M n ( 1 )

U T S = 3 9 4 + 1 08 M n ( 2 ) .

F or t h e s t re s s - r e l i e v e d c o n d i t i o n , t h e

e q u i v a l e n t e q u a t i o n s w e r e c a l c u l a t e d

t o b e :

3

C .

• 5 0

- 8 0 - 6 0 - 4 0 - 2 0 0

T E S T T E M P E R A T U R E

2 0

Fig.  14—Schnadt   impact test results

C

(as-welded)

Y S = 3 1 1 + 8 9 M n ( 3 )

U T S = 3 9 0 + 9 8 M n ( 4 ) .

F or t h e s p e c i f i c w e l d i n g c o n d i t i o n s

e m p l o y e d , it w a s f o u n d t h a t a n

i n c r e a s e o f 0 . 1 % m a n g a n e s e i n t h e

d e p o s i t in c r e a s e d t h e t e n s i l e p a r a m e

t er s b y a p p r o x i m a t e l y 1 0 N / m m - .

S t re s s r e l i e v i n g o f t h e s y s t e m ( C - M n )

i n d u c e d t h e t e n s i l e p a r a m e t e r s t o

d e c r e a s e , t h e d r o p b e i n g d e p e n d e n t

o n t h e m a n g a n e s e l e v e l .

Toughness Results.  T h e C h a r p y V

t r a n s i t i o n c u r v e s f o r a s - w e l d e d d e p o s

i t s a r e g i ve n i n F i g . 1 1 . T h e C O D t e s t

r e s u l ts o b t a i n e d f o r s a w n o t c h e d s p e c

i m e n s a r e p l o t t e d i n F ig . 1 2 a n d t h e

Sc h n a d t te s t r e su l t s a r e g i v e n i n F i g s .

1 3 a n d 1 4 f o r t h e   K„  a n d  B„  c o n d i t i o n s ,

r e s p e c t i v e l y .

T h e d a t a a r e r e p l o t t e d c o n s e c u t i v e l y

i n F i g s. 1 5 t o 1 8 , a s a f u n c t i o n o f w e l d

m e t a l m a n g a n e s e a n d i t is s e e n t h a t

t h e f o u r d i f f e r e n t t es t p r o c e d u r e s

e x h i b i t e d t h e s a m e g e n e r a l t r e n d s .

I n c r e a s in g m a n g a n e s e l o w e r e d t h e

u p p e r s h e l f a n d d i s p l a c e d t h e t r a n s i

t i o n c u r v e s t o l o w e r t e m p e r a t u r e s u n t i l

a n o p t i m u m c o n d i t i o n h a d b e e n

a t t a i n e d at a m a n g a n e s e c o n t e n t o f

a p p r o x i m a t e l y 1 . 5 % . T h e r e a f t e r , i n

c r e a s in g m a n g a n e s e b e c a m e d e l e t e r i -

7 2 - s l  M A R C H 1 9 8 0

Page 7: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 7/9

2 5 0

2 0 0

^ 1 5 0 -

O

c

U J

5

1 0 0

a

U J

DQ

C C

o

W  5 0

<

Cha r py -V

0-5  1 0  1-5  2 0

M A N G A N E S E   IN   W E L D , % .

Fig.

 15—Effect

  of manganese (Charpy V-notch)

0-5

1 0  1-5

M A N G A N E S E I N W E L D

%

Fig. 17—Effect   of manganese (Schnadt K„)

ous,  except at very low temperatures

where the lower shel f was ra ised.

The Charpy V-no tch impac t cu rves

for s t ress- re l ieved deposi ts are p lot ted

in Fig. 19 and th e data are recons idered

in Fig. 20, as a fun ct i on of manga nese.

Co m p a r i s o n w i t h t h e a s - we ld e d  c o n

di t io n (F ig. 11) ind ica tes on ly a s l ight

d isp lacement , t he hea t t r ea tment hav

ing had a ben ef ic ia l e f fect at low

  m a n

ganese and a de t r im en ta l e f fect at h igh

manganese contents . The extent of the

tempera tu re d isp lacement , a t t he 100

  J

leve l ,

  is given in Table 6.

The Charpy V curves obta ined on

test ing s t ra in aged impact specimens

are sho wn in Fig. 21 and the equ ivale nt

resul ts are p lot ted against manganese

3 0

2 0

E

a

1 0

0-5

1 0 T 5

MANGANE S E

  IN

  W E L D  %

2 0

Fig.  16—Effect  oi manganese (COD  test,  20 x 26  mm, i.e.,

0.79

  x

  1.02

  in.)

4 0 -

-

  3 0 ( -

 

C D

or

LU

UJ   2 0

a

U J

CD

ce

O

CD

<

1

A

-

1

B

1

1

C

Schnadt

i

B o

1

D

•^-40°C

~~-50°

^^ -6 0°

~ ^- 70 °

.- 80 °

i

- 15

1 0

E

a

1 0 -

0 5 1 0  1-5  2 0

M A N G A N E S E   IN  W E L D , % .

Fig. 18—Effect   of manganese (Schnadt B„)

con ten t in F ig. 22. Ag ing d isp la ced the

curves to h igher temperatures, the

shif t at the 100

 J

  level being repor ted in

Table 7.

The la tera l sh i f t to h igher tempera

tures d i f fered accord ing to manganese

con ten t , a t t a in ing a ma x im um (C) and

then dec reas ing at the h ighes t co nce n

t rat ion inve st igate d. The overa l l e f fect

was f o r e lec t rode D to become the

best of the ser ies and for the opt imum

to be d isp laced re lat ive to that exhib

i ted for as-welded and st ress- re l ieved

deposi ts .

Di s c u s s i o n

The meta l lographic s tudies of the

four d i f f e ren t m angan ese-con ta in ing

deposi ts revealed marked d i f ferences

in microst ructure. In as-deposi ted

we ld m eta l , as exem pl i f ied by t he t op

cent ra l bead, increasing amounts of

manganese progress ive ly increased the

amount of ac icu lar fer r i te , a t the

expense o f p ro -e u tec to id f e r r i t e and o f

in te rmed ia te lame l la r component . Fur

t he rmore , t he ac icu la r f e r r i t e ,  per se,

became progress ive ly more ref ined

(Table 3) . The rehe ated region s w ere

W E L D I N G R E S E AR C H S U P P L E M E N T I 7 3- s

Page 8: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 8/9

2 5 0

2 0 0

^1501-

O

LU

5

1 C

Q

UJ

CD

CC

O

en

  5 0

CO

<

A -

B  -

c -

D

-

I i i

C h a r p y - V

1

1 /

/

  •/•-

/ /

f t

/ /  /

/ , • ' /

/  / / /

/ , •  /

/  /  /

/

/ /

/

  y

i

S T R E S S -

1 1 1

1

•RELIEVED

,

2 5 0

- 3 0

2 0

E

Q.

10

- 8 0 - 6 0 - 4 0 - 2 0 0 2 0

T E S T

  T E M P E R A T U R E ,

  °C.

Fig. 19—Charpy

 V-notch

  impact results  (stress  relieved)

C h a r p y - V

D

RELIEVED

3 0

2 0

E

1-

a

1 0

1 0 1 5 2 0

M A N G A N E S E   IN  W E L D , % .

Fig.

  20—Effect   of manganese (Ch V, stress  relieved)

s imi lar ly af fected, the coarse gra ined

and the f ine gra ined zones a lso

becoming increasingly f iner . The over

a l l in f luence o f manganese on m ic ro -

st ructure thus appeared to be benef i

c ia l t h roughou t , t he measured param

e te rs chang ing m ono ton ic a l l y .

The spec i f i c we ld ing cond i t ions em

plo yed w ere such as to indu ce th e

larger por t ion of the cent ra l par t o f the

ISO 2560 de pos its to recry stall ize . For

example , a t t he Charpy V-no tch loca

t i o n ,  i t was fo un d, on the average, that

only 20% of the s t ructure rema ined in

the co lumnar f o rm . The amount o f

recrysta l l iza t ion is cons idere d to be an

im p o r t a n t f a c t o r i n f l u e n c in g m e c h a n

ical propert ies

7 51

 and must there fore be

borne in m ind when a t t empt ing t o

eva lua te t he in f luence o f a l loy ing e le

ments.

Tensi le tests resul ts conf i rm that

manganese increases the y ie ld

st rength and tens i le s t rength of  i r o n -

manganese alloys.

11

  For the range of

manganese con ten ts inves t iga ted ,

  so l

i d so lu t ion harden ing and g ra in re f ine

ment led to a l inear in f luence, an

increase of 0.1% M n increasing the

tensi le parameters by 10  N/mm

2

  The

lat ter va lue compares favorably , but

perhaps inadver ten t ly , t o t ha t quo ted

by Bra in and Smith

1

  for mi ld s teel  CO;,

weld meta l and by Tu l ian i

6

  for sub

merged arc weld meta l .

The tens i le proper t ies decreased

af ter s tress re l iev ing , the d rop bein g

greater in the case of yield strength

and h igh manganese levels . Carb ide

prec ip i t a t ion occur red a t g ra in bound

ar ies dur ing the heat t reatment , but

ev iden t ly no secondary harden ing oc

cur red in t he p la in C-Mn we ld meta l

svstem  over t he t ime invo lved .

Table  6 -

Electroc

A

B

C

D

Effect of St

Temp.

e A W

- 2 7

- 4 4

- 5 3

- 4 3

ress

Relief

°C  at 100 |

SR

- 3 2

- 4 4

- 5 0

- 3 6

(at 100 J)

D i sp l a ce

ment ,

°C

- 5

0

+ 3

+ 7

' AW— as-weld ed; SR—stress-relieved.

°F  = (9/5)°C + 32

The toughness da ta ob ta ined us ing

the Charpy V-no tch , Schnad t (K

(

, and

B„)

  and COD test revealed the same

general t rend in all cases. Thus, it can

be conc luded tha t t he un ive rsa l Char

py V test can be conf ident ly appl ied

for rout ine c lass i f icat ion of e lect rodes

according to ISO 2560. In pract ical

app l ica t ions , however , when cons ider

ing proper t ies in the fu l l th ickness of

the jo int , the COD test is a requis i te

for evaluat ing f i tness for purpose and

de term in in g cr i t ica l defect s izes. A

poss ib le co r re la t ion ex is t ing be tween

Charpy V-no tch and COD perhaps

only appl ies when the extent of s t ra in

ag ing is low. Fur thermore , a re la t ion

sh ip cou ld poss ib ly be on ly expec ted

wh en the e lec t rodes com pared a re , as

in the present instance, of the same

slag-base type.

In

  accord w i t h Nakayama  et al. it

was found that increasing manganese

decreased the upper shel f o f the   t r a n

s i t ion curves. The increasing y ie ld

st reng th resul ted in a greater ten den cy

to m ic rovo id coa lescence dur ing t he

duct i le mode of f racture. In cont rast ,

manganese had a bene f ic ia l in f luence

on the lower shel f due to the ef fect on

cleavage resistance.

9

In the t rans i t ion region of the

impact curves for as-welded deposi ts ,

manganese had an op t im um in f luenc e

at 1.5% manganese, despi te the pro

g ress ive improvement in m ic ros t ruc

t u re t h roughou t . The pa t t e rn o f behav

ior is t hus depe nden t on t he c om pet

ing act ions of the e lement to :

1.  Increase the y ie ld s t rength.

2.  Increase the ac icu lar fer r i te  v o l

ume f ract ion and to ref ine the gra in

s ize in the reheated region.

St ress re l iev ing of the deposi ts had

v i r t ua l l y no in f luence on t he Charpy

V-n otc h test resul ts , and peak p roper

t ies we re a lso exh ib i te d at the 1.5% M n

leve l .  Fur thermore, i t appears that the

decrease in toughness expe cted as a

resul t o f carb ide prec ip i ta t ion was

compensa ted f o r by an oppos ing

me cha nism , e.g., a sof te ning o f th e

ferr ite.

St ra in aging of the four exper imenta l

we ld meta ls induced a cons iderab le

degree o f embr i t t lement .

  In

  C - M n

depos i ts i t is general ly ac cepte d tha t

the major so lute causing the decrease

in resistance to cleavage fracture is

n i t r o g e n .  W ith in th e range of scat ter ,

no t rend in n i t rogen content ex is ted

over the range of manganese contents

s t u d i e d ,

  t he va lues be ing be tween 69

and 96 ppm. Manganese is repor ted

1

'

2

t o d im in ish t he ag ing t endency o f

steel,

  and op in io n var ies as to w he the r

the e leme nt shou ld be jud ge d on i ts

o wn m e r i t s o r wh e t h e r t h e c o m b in e d

ef fect of manganese and carbon is of

greater s igni f icance. The re lat ive d is

p lacement on s t ra in aging (Table 7)

was inconsis tent and the reason

rema ins en igmat ic , o ther t han t ha t

g ra in re f inement a lone becomes the

con t ro l l ing f ac to r . The observed t rend

74-sl  MA RC H 1980

Page 9: Effects of Manganese in Weld Metal

8/11/2019 Effects of Manganese in Weld Metal

http://slidepdf.com/reader/full/effects-of-manganese-in-weld-metal 9/9

i OU

2 0 0

1

^150

a

UJ

z

m

100

Q

UJ

CD

QC

O

v>  5 0

CO

<

0

I

A

B —

c — -

_ D

-

STRAIN

I

I

~

AGED

I

I  I I I

Charpy -V

/

yS7

/  / / /

•  / /  /

i'

f

/

nil -

/ ii/

'  y

i i i i

- 3 0

- 8 0 - 6 0 - 4 0  - 2 0  0  2 0

TEST TEMPE RATURE ,°C  .

Fig.  21—Charpy

  V-notch

  impact results (strain aged)

- 2 0

E

f

j

- 1 0

2 5 0

2 0 0

C h a r p y - V

3 0

2 0

E

Q.

10

10 T5

MANGANESE IN WELD   ,5

Fig. 22—Effect   of manganese (Ch V, strain aged).

w a s s u c h t h a t d e p o s i t D e x h i b i t e d t h e

b e s t i m p a c t p r o p e r t i e s , t h e o p t i m u m

b e i n g d i s p l a c e d a w a y f r o m t h e p r e

v i o u s l e v e l o f 1.5 % M n .

T h e p r e s e n t w o r k is c o n s i d e r e d a s a n

i n i t i a l s t e p f o r t h e u l t i m a t e u n d e r

s t a n d i n g o f t h e r o l e o f m i c r o s t r u c t u r e

i n m u l t i - r u n m a n u a l m e t a l a r c d e p o s

i ts .

  E v e n t u a l l y , it is i n t e n d e d t o a d d

a l l o y i n g e l e m e n t s , e . g ., M o , N i a n d C r ,

t o t h e f o u r d i f f e r e n t m a n g a n e s e l e v e ls

a n d e v a l u a t e t h e c h a n g e s i n s t r u c t u r e

a n d p r o p e r t i e s . F i r s tl y , h o w e v e r , it is

f e l t t h a t f u r t h e r w o r k s h o u l d b e  c o n

d u c t e d o n t h e C - M n s y s t e m s o a s t o

a p p r e c i a t e t h e p a r t p l a y e d b y c a r b i d e

d i s t r i b u t i o n a n d m o r p h o l o g y . T o f a c i l i

t a t e t h i s , i t is i n t e n d e d t o s t u d y t h e

f o u r w e l d m e n t s in t h e n o r m a l i z e d a n d

n o r m a l i z e d - a n d - t e m p e r e d  c o n d i t i o n s .

C o n c l u s i o n s

F o r I S O 2 5 6 0 w e l d m e n t s d e p o s i t e d

a t 1  k j / m m  w i t h b a s i c e l e c t r o d e s o f a

s p e c i f ic s l a g -b a s e t y p e , t h e f o l l o w i n g

c o n c l u s i o n s a p p l i e d :

1.

  I n c r e a s i n g m a n g a n e s e , i n t h e

r a n g e 0 . 6 t o 1 .8 % , i n c r e a se d t h e

a m o u n t o f a c i c u l a r f e r r i t e i n a s - d e p o s

i t e d w e l d m e t a l a n d d e c r e a s e d t h e

a m o u n t o f p r o - e u t e c t o i d f e r r i t e a n d

i n t e r m e d i a t e c o m p o n e n t .

2.   I n c r e a s i n g m a n g a n e s e r e f i n e d t h e

a c i c u l a r f e r r i t e in t h e a s - d e p o s i t e d

w e l d m e t a l .

3 . I n c r e a s i n g m a n g a n e s e r e f i n e d t h e

c o a r s e g r a i n e d r e g i o n o f t h e h e a t -

a f f e c t e d w e l d m e t a l .

4.

  I n c r e a s i n g m a n g a n e s e r e d u c e d

t h e g r a i n s iz e o f t h e e q u i a x e d f i n e

g r a i n e d z o n e o f t h e h e a t - a f f e c t e d

w e l d m e t a l .

T a b l e 7 - E f f e c t  of Strain

Electrode

A

B

C

D

T e m p .

A W

- 2 7

- 4 4

- 5 3

- 4 3

Ag i n g

°C at 100 J

SR

+ 5

- 5

- 1 2

- 1 9

(a t  10 0  ))<*'

D i sp l a ce

ment

°C><

+ 32

+ 39

+ 41

+ 24

181

 AW—as -welded; SR—stress-relieved.

°F  =  (9/5)°C  + 32

5 . T h e y i e l d a n d t e n s i l e s t r e n g t h s o f

t h e d e p o s i t s i n c r e a s e d b y a p p r o x i

m a t e l y 1 0 N / m m

2

  p e r 0 . 1 % i n c r e a s e o f

m a n g a n e s e .

6 . C h a r p y V - n o t c h , S c h n a d t

  (K, ,

  a n d

B

0

)

  a n d C O D t e s t s g r a d e d t h e t e s t

w e l d s i n t h e s a m e r e l a t i v e o r d e r .

7 . T h e o p t i m u m i m p a c t p r o p e r t i e s

o f a s - w e l d e d a n d s t r e s s - r e l ie v e d d e

p o s i t s w e r e a t t a i n e d a t 1 .5 % M n , d u e

t o t h e c o m p e t i t i v e i n f l u e n c e o f y i e l d

s t r e n g t h a n d m i c r o s t r u c t u r e .

8 . S t r a in a g i n g e m b r i t t l e d t h e d e

p o s i t s a n d c h a n g e d t h e r e l a t iv e o r d e r

s u c h t h a t o p t i m u m i m p a c t p r o p e r t i e s

w e r e a c h i e v e d at a h i g h e r m a n g a n e s e

c o n t e n t .

Ac/cnow/ec/gments

T h e a u t h o r w i s h e s t o e x p r e s s h i s

t h a n k s t o t h e st a ff o f t h e W e l d i n g

I n s t i t u t e fo r c o n d u c t i n g p a r t o f t h e

m e t a l l o g r a p h i c w o r k u n d e r c o n t r a c t .

I n p a r t i c u l a r , t h a n k s a r e e x t e n d e d t o

D r . R. E . D o l b y f o r s u p e r v i s i n g t h e

s t u d i e s .

References

1.

  Davey, T. G. , and

  W i d g e r y ,

  D. )., A

Techn ique fo r t he Charac te r i sa t i on o f We ld

M e t a l M i c r o s t r u c t u r e s ,

II W

  Doc. I I -A-389-

76.

2.

  D e t e r m i n a t i o n o f H yd r o g e n in W e l d

M e t a l , ISO 3690.

3. Sch nadt , H. M. , and L ienh ard , E. W „

Exper imenta l I nvest iga t ion o f t he Sharp

No tch Behav iour o f 60 Stee ls a t D i f f e ren t

Temperatures and St ra in Rates, IIW  Doc.

IX-348-63.

4.

  Br i t i sh Standard Dra f t f o r De ve lo p

m e n t o n M e t h o d s f o r C O D T e s t i n g , D D

19:1972.

5. Ga rlan d, | . G. , and Ki rk wo od , P. R.,

T h e N o t ch T o u g h n e ss o f Su b m e r g e d A r c

W e l d M e t a l i n M i c r o - A l l o y e d S t r u c tu r a l

Steels, IIW  Doc. IX-892-74.

6. Tul ia ni , S. S., Th e Role of Man gane se

in M i ld Stee l Submerged Arc Weld Meta l ,

I n te rna t . Conf . on Weld ing Research ,

CEGB,  M a r c h w o o d , En g l a n d , Se p t. 19 7 2.

7 . Ba a ch , H . , D e p e n d e n ce o f M e ch a n

ical Propert ies on the Number of Layers

d u r i n g Su b m e r g e d A r c W e l d i n g ,

  O E RL I

KO N Schwe issm i t t e i l un gen No. 54 (1965) ,

pp.   16-24.

8. Stou t , R. D. , Mc La ug hin , P.  F„  and

Strun k, S. S., He at Trea tme nt Ef fects of

Multi-Pass  W e l d s , Welding Journal,  48(4),

Apr i l 1969, Research

  SuppE,

  p p .  155-s  to

160-s.

9. Rees, W . P., Hop kin s, B.  E„  and T ip le r ,

H. R., Ten si le and Impa ct Prope rt ies of I ron

and Some  Iron  A l l oys o f H igh Pur i t y ,

J.I.S.L,

169 (1951), pp. 157-168.

10 .  Bra in, A. G. , and Sm ith, A. A. ,

Mec han ica l Proper t i es o f CO., W e ld M eta l ,

Brit.

  Weld.  / . , 9 (1962), pp . 669 -677 .

11 .  N a ka ya m a ,

 O.,

 Na kana, H. , and  Tash i -

k o ,

  H., Th e Ef fec t s o f A l l o y ing   E  lements on

Stress Cor ro s ion and Me cha n ica l Proper t i es

o f W e l d M e t a l s in A rc W e l d i n g w i t h C o v

e red E lec t rodes, The Welding World,  20

(1968), p.  509.

12 .

  Szcze p a n sk i, M „  The Brittleness of

Steel, L  Wi ley and Sons, New York, 1963,

p.

  104.


Recommended