+ All Categories
Home > Documents > EFFICIENCY CURVES OF EMMI IN THE SPECTROSCOPIC AND … · 18. 10.90 project division optical...

EFFICIENCY CURVES OF EMMI IN THE SPECTROSCOPIC AND … · 18. 10.90 project division optical...

Date post: 13-Sep-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
56
,;/ ( ," 18. 10.90 PROJECT DIVISION OPTICAL INSTRUMENTATION TECHNICAL MEMORANDUM 09-10-1990 EFFICIENCY CURVES OF EMMI IN THE SPECTROSCOPIC AND DIRECT IMAGING MODES Computed with the EMMI/EFOSC2 Numerical Simulator J .-L. Prieur and G. Rupprecht
Transcript

,;/ ( ,"

18. 10.90

PROJECT DIVISION OPTICAL INSTRUMENTATION

TECHNICAL MEMORANDUM 09-10-1990

EFFICIENCY CURVES OF EMMI IN THE SPECTROSCOPIC

AND DIRECT IMAGING MODES

Computed with

the EMMI/EFOSC2 Numerical Simulator

J .-L. Prieur and G. Rupprecht

A new MIDAS context allows the simulation of observations with EMMI on the NTT (for details see The Messenger, 58, 60). We have used this numerical simulator to compute the overall transfer efficiency (OTE) of EMMI in the spectroscopic and direct imaging modes with the 6 grisms, 8 gratings, and 3 cameras available (f/2.5 and f/5.3 for the channel R, and f/4.0 for B).

In the calculations the following parameters have been taken into account: • atmospheric transmission for La Silla (we assumed an air mass of one, cf. Fig. 42) • reflection by the 3 NTT mirrors, all coated with aluminum (the reflectivity of a

sample mirror with a 4 month-old aluminization is shown in Fig. 43) • the central obscuration of the main mirror due to the secondary (which is 11 %

for the NTT) • the measured transmission of the EMMI optics in the corresponding configuration

. (channel Rand B, and cameras f/2.5, f/4.0, f/5.3), measured in the ESO optical laboratory, Garching (Fig. 23 to Fig. 27).

• in spectroscopy mode: the transmission of the grisms and gratings as determined in the ESO optical laboratory, Garching (Fig. 28 to Fig. 39); no filters.

• in direct imaging mode: standard Cousins filters U, B, V, R, I, z and a slightly blue shifted B filter (Bb).

• the quantum efficiency of the ESO CCD #18 for the R channel and CCD #19 for B, as measured in the ESO detector laboratory, Garching (Fig. 40 and 41). Both CCD's are front illuminated Thomson THX31156, uv-coated, with 1024xl024 squared pixels of 19J1m in width.

The unit for this OTE is e- /photon i.e. it allows to compute the output in photo-electrons from the input in photons. It can be directly compared to observational data and should prove useful for initial considerations in the planning phase of observations.

Should your own measurements show major discrepancies with the model conlPu-tation, please signal them to one of the authors at ESO Garching.

1

List of figures:

Figures 1 to 6: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit loc;c;ps and air mass = 1) with grisms 1 to 6, channel R, camera f/2.5, and CCD #18. The wavelength range provided by this CCD is indicated by a thick line on the x aXlS.

Figures 7 to 12: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with grisms 1 to 6, channel R, camera f/5.3, and CeD #18. The wavelength range provided by this CCD is indicated by a thick line on the x axis.

Figures 13 to 14: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with gratings 6 and 7, channel R, camera f/2.5, and CCD #18. The wavelength range provided by this CCD is indicated by a thick line on the x axis.

Figures 15 to 16: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with gratings 6 and 7, channel R, camera f/5.3, and CCD #18. The wavelength range provided by this CCD is indicated by a thick line on the x axis.

Figures 17 to 20: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with gratings 3, 4, 5 and 8, channel B, camera f/4.0, and CCD #19. The wavelength range provided by this CCD is indicated by a thick line on the x axis.

Figure 21a: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with echelle grating 9, cross-disperser grism 3, channel R, camera f/2.5, and CCD #18. The echelle efficiency was taken at the blaze peak; for order averaged efficiency multiply with 0.75.

Figure 21b: Same as Fig 21a, but camera f/5.3 and cross-disperser grism 3.

Figure 21e: Sanle as Fig 21a, but camera f/2.5 and cross-disperser grism 4.

Figure 21d: Same as Fig 21a, but camera f/5.3 and cross-disperser grism 4.

Figure 21e: Overall transfer efficiency of the spectroscopic mode of EMMI (no slit losses and air mass = 1) with echelle grating 10, cross-disperser grism 3, channel R, camera f/2.5, and CCD #18. The echelle efficiency was taken at the blaze peak; for order averaged efficiency multiply with 0.75.

Figure 21f: Same as Fig 21e, but camera f/5.3 and cross-disperser grism 3.

Figure 21g: Same as Fig 21e, but camera f/2.5 and cross-disperser grism 4.

Figure 21b: Same as Fig 21e, but camera f/5.3 and cross-disperser grism 4.

2

Figure 22a: Overall transfer efficiency of the direct imaging mode of EMMI ill channels Band R at airmass 1, comparing ESO filters U and B (blue arm) with Bb, V, R, I, z (red arm with camera f/2.5)

Figure 22b: Same as Fig 22a, but red camera f/5.3.

Figure 22c: Overall transfer efficiency of the EMMI blue arm in direct imaging mode at airmass 1, comparing ESO filters U and B.

Figure 23: Transmission of the optics of EMMI for channel R, camera f/2.5, grism spectroscopy mode.

Figure 24: Transmission of the optics of EMMI for channel R, camera f/2.5, grating spectroscopy mode.

Figure 25: Transmission of the optics of EMMI for channel R, camera f/5.3, grism spectroscopy mode.

Figure 26: Transmission of the optics of EMMI for channel R, camera f/5.3, grating spectroscopy mode.

Figure 27: Transmission of the optics of EMMI for channel B, camera f/4.0, grating spectroscopy mode.

Figures 28 to 33: Transmission of grisms 1 to 6.

Figures 34 to 39: Efficiency of gratings 3 to 8.

Figure 40: Quantum efficiency of CCD #18 (channel R)

Figure 41: Quantum efficiency of CCD #19 (channel B)

Figure 42: Atmospheric transmission on La Silla (air mass = 1).

Figure 43: Aluminum reflectivity (4-month old aluminization).

3

~

~ Q)

..D 6 ;J z Q) ~

• ...-j

-:l

6 Q)

.. Q)

ro

0 0 0 ~

0 0 m

0 0 OJ

~ o

• ...-j

-+oJ o . ...-j o (/) CO 0

o o lD

o o ~

o

~

S -~----~----~----~----~----~------~----~----- 0

C\2 . ~ . lD o (loqd/ -a) anreA Iax1d

Figure 1

DC"')

~

.. ~ Q)

..Q

S ;:l Z

Q.)

c:: .1"""( ~

.. Q.) an ~

S

0 0 0 ~

0 0 m

0 0 OJ

~ o '1""'1 ...;-)

0'1"""( o C/l CO 0 ~

o o L.()

o o ~

o ~~----~----~----~----~----~----~----~--~ 0

Figure 2

L() o OCVJ

~

.. ~

Q) .0 8 ~ z Q)

~ ...... ~

.. Q) OD ct1 8

0 0 0 ~

0 0 0)

0 0 en

o o L()

o o ~

o -~----~----~----~----~----~----~----~--~ 0

N . (loqdj -a) anreA Iaxld

Figure 3

L() o

oC")

.. <l) 0.0 (1j

o o LD

o o ~

a 0 ~~----~----~----~----~----~----~----~--~ 0

LD ~ .

Figure 4

LD o

oC')

~

~ Q)

,.Q

6 ~ z Q)

~ .r-!

~

ro 8

0 0 0 ~

0 0 m

0 0 co

~ o ...... -+oJ o .r-! o {J)

CO 0

o o L()

o o ~

o

~

-~----~----~----~----~----~----~----~----~ 0 C\2 ~ . .

(toqdj -a) anreA lax~d

Figure 5

lD o

oC":)

~

.. ~ Q)

..a a ~ Z Q) c:

.,...;

~

.. OJ Q() (1j a

0 0 0 ~

0 0 m

0 0 co

~ o

.,-j

+J o '...-i o fI} co 0 ~

o o l1J

o o ~

o ~~----~----~----~----~----~----~----~--~ 0

Figure 6

l1J o OC")

~

.. ~ Q) ~ a ~ Z Q) ~

'1""'4

~

.. Q) OD ro a

0 0 0 ~

0 0 m

0 0 en

o o LD

o o ~

o ~ L...-.. __ .L--__ .L--__ .1.....-__ .1.....-__ .1.....-__ ..L-__ ..L-_-----I 0

~ .

Figure 7

LD o OC'J

· . <l..l Ql) ttl a

c: o

'r-! ooj...J o 'r-! o lfJ co 0 ~

o o LD

o o

.~

o ~~----~----~----~----~----~----~----~----~ 0

Figure 8

LD o

OM

,....., .. ~ Q)

..0 S ;j z Q) ~

• ...-1

~

.. Q) Ql) CO

0 0 0 ,.....,

0 0 0)

0 0 en

~ o

• ...-1 ~ o .~ o Cf}

CO 0

o o L()

o o ~

~

S 0 ~~----~----~----~----~----~----~----~----~ 0

Figure 9

L(") o OC'J

~

, . ~ Q.)

,.0 s ~

Z Q.)

C '1"""1

~

, . Q.) 0.0 ~

0 0 0 ~

0 0 m

0 0 CO

~ o .~ ......, o .~ o r.J)

CO 0 ~

o o LD

o o ~

S 0 ~~----~----~----~----~----~----~----~--~ 0

Figure 10

LD o

OC")

or-!

.. ~ Q)

..0 S ~ z Q)

C • .-4

~

0 0 0 or-!

0 0 m

0 0 CO

c o

• .-4 ~

0·...-1 o C/l CO 0

o o 1J.)

C) o ~

o

~

~~----~----~----~----~----~----~----~----~ C) C\2 . ~ . l!)

o (loqd/ -a) anreA lax!d

Figure 11

OC'J

.. Q) Q.() Cd

o o L()

o o ~

S 0 ~~----~----~----~----~----~----~----~--~ 0

Figure 12

LD o

OM

....-l

~

OJ .D 8 ~ z OJ ~

.1"""'4

~

8 OJ .. OJ

ro 8

0 0 0 ....-l

0 0 m

" 0 co

" " UJ

o o ~

o ~~----~----~----~----~----~----~----~----~ "

UJ ....-l If) oC"") ....-l • 0

(toqd/-a) anl~A lax1d

Figure 13

,.-j

.. ~ Q)

,.0 s ;j z Q)

c: .~

~

co 8

0 0 0 ....--i

0 0 0)

0 0 OJ

o o lJ)

o o ~

o ~L--__ .l...-__ ...l...-__ ~ __ ...L-__ ......L-__ --'--__ ---1-__ --IO

N . ....--i . lJ) o

(10qd/ -a) anreA lax!d

Figure 14

oC")

....... .. ~ Q)

,.D s :=;j z Q)

~ .~

~

0 0 0 .......

0 0 Q)

0 0 CO

~ o • .-4 +' o .~ o C/l

CO 0

o o LD

o o ~

o

~

~~~----~----~----~----~----~----~----~----~ 0 C\1 ..--4 .

Figure 15

lD o OC'J

,...-.i

.. h <l.)

...0 S ;::l Z <l.)

~ '1'""4

.--l

0 0 0 ,...-.i

0 0 0)

0 0 CD

o o L()

a a ~

o ~~----~----~----~----~----~------~----~--~ 0

..-1 .

Figure 16

L() o OC"')

,.......

~ Q)

..0 S ~ z Q)

~ ..... ......:l

ro S

0 0 0 ,.......

0 0 m

a 0 co

~ o .~

o+.J o .~ o (/) CO 0

o o L{j

o o ~

o

~

-~----~----~----~----~----~----~----~--~ 0 C\l . ,....... . L{j

o ('loqd / -a) an reA Iax~d

Figure 17

oC'J

~

.. ~ Q)

..0 S ;:j z Q)

J:: .0-4

....:I

s Q)

.. Q)

(1j

0 0 0 ~

0 0 m

0 0 CO

J:: o .0-4 -+oJ o .0-4 o (/l

CO 0

o o \.(')

o o ~

0...

S 0 ~~----~----~----~----~----~------~----~----- 0

Figure 18

\.(') o

OC"':>

~

~ Q)

.£)

8 ;:J z Q)

~ • ....-4

~

8 Q)

.. Q)

ro 8

0 0 0 ~

0 0 m

0 0 co

o o lD

o o ~

o -~----~----~----~----~----~----~----~----~ 0

C\2 lD . ~ .

Figure 19

lD o OC")

T-I

. . ~ Q)

..c S ::1 Z Q)

I:: ...... ~

s Q)

.. Q)

ro

0 0 0 ........

0 0 m

0 0 CO

I:: o ...... -+oJ

0· ..... o (/) CO 0 ~

o o t{)

o o ~

S 0 ~'-----_..&......-. __ ...J..-_-"""-------'------'------'-------'------'O

C\2 . ........ . t{) o

(1oqd/-a) anreA lax!d

Figure 20

oC")

~

.. ~ Q)

,.0 s ::J Z Q)

~ .~

~

0 0 0 ~

0 0 m

0 0 OJ

~ o .,..-1 ~ 0·,..-1 o f/)

CO 0

o o If)

o o ~

o

~

~~----~----~----~----~----~~----~----~----~ 0

Figure 21a

L(,) o

0(7)

,-...j

.. ~ Q)

..0 S ;:J z Q)

~ ..... .....:I

(tj

0 0 0 ....-t

0 0 m

0 0 CO

o o Lr.>

o o ~

S 0 ~~----~----~----~----~----~----~----~----~ 0

....-t .

Figure 21b

Lr.> o OC'J

,..--I

~ Q)

.D S ~ z Q)

~ .-..-::l

~ o Q':) o ..c::

C,) Q)

8 Q)

.. Q)

Cd

0 0 0 ,..--I

0 0 m

0 0 CO

o o l{)

o o ~

S 0 ~~----~----~----~----~----~----~----~--~ 0

,..--I .

Figure 21c

l{) o

OcYJ

~

.. ~ (l)

..c S :::J Z (l)

~ • ..-.c .....:l

(t3

S "'"'-1

C\1 LC') ~ .

~ . LC') o

(1oqd/ -a) anreA lax1d

Figure 21d

0 0 0 ~

0 0 0)

0 0 CO

~ o ..... ~ o .....

o CIl CO 0

o o LC')

o o ~

o o oC"":)

~

~

~ Q)

...0 S ~ z Q)

~ .~

-::l

.. Q)

ro 8

0 0 0 ~

0 0 OJ

0 0 CO

~ o .~

-+-' o .~ o (f)

CO 0

o o L{)

o o oo:::tt

o

(l;

~~----~----~----~----~----~----~~----~--~ 0 L{) ~ .

(1oqdj-a) anreA Iax~d

Figure 21e

L{) o

oC")

.-t

.. ~ Cl) .n 6 ~ z Cl)

~ . ..-.(

H

.. Cl)

Cd

0 0 0 .....-l

0 0 en

0 0 OJ

~ o

0'..-.( o (f) CO 0

o o L()

o o ~

0...

S 0 ~~----~----~----~----~----~----~------~--~ 0

Figure 21f

L() o OM

~

.. ~ Q)

..0 S ~ z Q) r:: .-~

~ o o ~

~ C,) Q)

S Q)

.. Q)

ro S

0 0 0 ,.--t

0 0 m

0 0 CO

o o LD

o o ~

o -~----~----~----~----~----~----~----~--~ 0

C\2 ,.--t . . (1oqd/-a) anreA Iax!d

Figure 21g

LD o

OC"fJ

~

.. ~ Q)

..c S ::$ z Q)

~ '.-4

~

~ o o

<0

0 0 0 ......-I

0 0 m

0 0 CO

~ o '.-4 -+-l o '.-4 o {/)

CO 0

o o L[,)

o o ~

~

S 0 ~'--__ .L.--__ ..L...-__ .....L-__ -'--__ ....L-__ --'--__ ........L.-__ -...JO

~ . l,{.) o

(1oqd/ -a) anreA Iax!d

Figure 21h

oC"')

~

.. ~ <1)

.D S ;1 z Q) c .~

~

.. Q) 0.0 ro S

Figure 22a

>

L() o o

0 0 0 ~

0 0 CO

~ o .~

-+o-J o .~

o if} CO 0

o o ~

0..

Figure 22b

L() o

o

o o ~

0 ~

0 CO ..

~ Q)

.!)

6 ~ z Q)

~ '1"""'1

......:l

0 0 L()

0 0 ~

.. Q) Q() ttl S 0 -~~--~--~--~--~--~--~--~~--~--~--~ 0

co o

Figure 22c

N o .

0(7)

,,-.....

S ~ ---~ 0

.1"""'1 ~ .1"""'1 if} 0 ~

.. Q)

I"-t

..0 (tj ~~~-L~ __ L-~~~~ __ ~~~~--~~~~~L-~~

co co ~ C\2 o . . . (U01SS1WSU-e.11) 92HWIG

Figure 23

o o o '!-t

o o m

o o CO

o o If)

o o ~

o o C'J

.. Q) ~

,.0 <0 ~~~~--~~~~~~--~~~--~~--~~~--~~

co co ~ C\2 o . . . . (UO!SS!U1SUB.11) 92ClDGW

Figure 24

o o m

o o CO

o o t.{)

o o ~

o o C"')

.. Q)

o--j

,.Q <0

o o o ~

o o m

o o CO

o o LD

o o ~

~~~~L-J--L~~ __ ~~~~~--~~~~~--L-~ o o

co co ~ C\l o C'J . . . (U01ss1WSUB.ll) 89HWIG

Figure 25

.. Q)

,....-j

~ ro ~~~~~~~~~--~~~--~~~--~~~~--~~

co co ~ C\l o . . . (uo1ss1WSUB.ll) 89H!JGW

Figure 26

o o o ..-I

o o m

o o CO

o o LD

o o ~

o o C'J

.. Q) .......

..0 CO

o o o ~

o o m

o o CO

o o LD

o o ~

~~~~~~--~~~~~--~~~~~--~~~~~~ o o

co co ~ C\l o (7) . . . . (uo1SS1WSUB.ll) 8~aW

Figure 27

Q)

.. Q)

....-4

~ (Ij

~~--~~~--~~~--~~~--~~~--~~~--~~~ OJ co ~ C\1 o . . . .

(IIUO~SS~WSUB.lll1) t SICI~

Figure 28

o o o .......t

o o m

o o OJ

o o Lf.)

o o ~

o o C'J

-o

r--j ..c (0 ~~ __ ~~ __ L-~~ __ ~~ __ ~~ __ ~~ __ ~~~~~~~

co co ~ C\1 o . . . . (IIU01SS1WSUBJ:ll1) 2SIH~

Figure 29

o o 0)

o o CO

..--..... o :: o S l.'- ~

o o t.n

o o ~

o o C'J

--

~ oo+-J en

• r-4

~

Q)

.. Q)

......... rD ro E-c

co . co ~ C\1 . . . (" u01SS1WSUB.ll,,) 8SIH!)

Figure 30

o

o o o ~

o o m

o o CO

o o LD

o o .~

o o C"J

.. Q) .......

.0 ctj h~ __ ~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~ __ ~~~

CD ~ o . .

Figure 31

o o 0)

o o CO

.-... o :: o 8 l:'- ~

o o t.n

o o ~

o o CY')

--

.. Q) ...... ~ ro ~~--~~--~--~~--~~--~--~~--~~--~--~~

o (" UO!SS!U1SUB.I1 1I ) 9SIH!J

Figure 32

o o o .......-t

o o en

o o CO

o o L()

o o ~

o o C'J

-~

.. Q)

""""'i ..Q

CO

o ~ __ ~ __ ~ __ ~ __ ~~~ __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ 0

o ~

o o 0)

o o CO

o -o S l'- ~

o o L()

o o ~

hw-__ -L __ -L __ ~ __ ~ __ ~ __ ~ __ ~ ____ ~ __ ~ __ ~ __ ~ o o

~ N o ~

(IIU01SS1UlSUBll,J 9SIH~

Figure 33

.. Q)

P-"I ..0 ro ~~~~~~--~~--~~--~--~~--~~--~~~~

co ~ N o . . . (UO!SS!WSUgJl) 8lV1I~

Figure 34

o o m

o o CO

o o L()

o o ~

o o C'J

.. Q)

.....-t

..0 <0

a a m

a a co

a a Lf.)

a a ~

~W-~~~~~~~~~~~~~~~~~~~~~~ a o

l'- co Lf.) ~ C'J C\2 C"J . . . . . . (uo1SS1WSUB.ll) tlvtI~

Figure 35

.. Q) ~

..D Cd ~~--~~~--~~--~~--~~~--~~--~~--~~

~ C\2 o . . (U01SS1WSU-g~1) 91\711~

Figure 36

o o o .......-l

o o m

o o CO

o o l,{,)

o o ~

o o C'J

.. Q)

r--1 ..0 Cd ~~~~--~--~~--~--~~--~--~~--~--~~~

co ~ C\2 . . . (U01SS1WSU-g~J,) 9J,\fH!)

Figure 37

o o o ~

o o m

o o OJ

o o L!)

o o ~

o o C'J

.. Q)

1"""""4

~ oj ~~~~--~~--~~--~~--~~--~~--~~~~~

co ~ C\2 o . . . (uO!SS!WSUB.ll) ~lVH~

Figure 38

o o o ~

o o m

o o CO

o o L()

o o ~

o o C'J

.. Q) ~

~ Cd

o o o ~

o o m

o o CO

o o t.n

o o ~

~~~~~~~~~~~~~~~~~~~~~~~~~ o o

t.n C'j C\l ~ o C'j . . . . (uo1sS1wSUB~1) 91vtI!)

Figure 39

· . Q) ~

..0 ro

o o o M

o o 0)

o o OJ

o o Lf.)

o o

.~

~~~~~~~~~~~~~--~~~~~~~~--~~~ o o

OC"')

Figure 40

m ,-j

"0 () ()

.. Q) ~

..0 CO ~

o ~~-,~~-.-.-.-. __ '-.-.-r-'-.-'-.-,-.-~~~~-. 0 o

~

~

Figure 41

o o m

o o CO

o o L()

o o ~

o o 0(7;

.. Q)

......-c

..0

o o o .......-i

o o m

o o CO

o o L.(J

o o ~

~LL~~LJ-L~~~-L~J:~~~~hd-1J o o co co ~ C\2 o C'J . . . .

SNVHl

Figure 42

.. Q)

......-4

..0 ro ~~~--~~--~~~--~~--~~~~~~--~~~

m cx::> CO cx::> CO

(sqluOWt~OS~) J~1j~H

Figure 43

o o o ~

o o m

o o CO

o o LD

o o ~

o o C"J


Recommended