+ All Categories
Home > Documents > Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo...

Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo...

Date post: 01-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
124
Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio Lucchetta Klara Metaliu Azzurra Pizzolotto Simona Sota Mattia Toffolon Marina Vitali ISISS M. Casagrande March 28, 2018 - Padova, Italy Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 0 / 29
Transcript
Page 1: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Egyptian Fractions

Mario Antoniazzi Gaia Barella Paolo Barisan Marco CarolloMarco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon

Antonio Lucchetta Klara Metaliu Azzurra PizzolottoSimona Sota Mattia Toffolon Marina Vitali

ISISS M. Casagrande

March 28, 2018 - Padova, Italy

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 0 / 29

Page 2: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Problem

Egyptians used only fractions like1

n, with n a non-zero natural number;

such fraction will be called “unit fraction” (U.F.).

We tried to write irreducible proper fractions likea

b, with a,b ∈ N0, as a

sum of distinct unit fractions. This expansion will be called “Egyptianfraction”.

Example:

3

7=

1

4+

1

7+

1

28

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 1 / 29

Page 3: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Problem

Egyptians used only fractions like1

n, with n a non-zero natural number;

such fraction will be called “unit fraction” (U.F.).

We tried to write irreducible proper fractions likea

b, with a,b ∈ N0, as a

sum of distinct unit fractions. This expansion will be called “Egyptianfraction”.

Example:

3

7=

1

4+

1

7+

1

28

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 1 / 29

Page 4: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 5: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 6: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 7: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 8: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 9: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

First questions:

Can we write every proper fraction as a sum of unit fractions?

Are there different methods of expanding a proper fraction?

Are there different types of expansions?

Are there infinite expansions for each proper fraction?

Is there a best expansion? If so, would it be the shortest one or theone that leads to a sum with the lowest denominators?

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 2 / 29

Page 10: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 11: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 12: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 13: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 14: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 15: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Our ways:

1 Fibonacci’s Method

2 Golomb’s method

3 Method of practical numbers

4 Geometric method (our solution)

5 Comparison

6 The tree of fractions

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 3 / 29

Page 16: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Fibonacci’s algorithm

Subtracting the largest possible unit fraction that keeps a non-negative

difference from a proper irreducible fractiona

b

(a

b− 1

k≥ 0

), the

resulting fraction numerator is strictly less than the one of the initialfraction and the resulting fraction denominator is strictly greater than theone of the initial fraction.

The value of k

Leta

bbe an irreducible proper fraction, we get

a

b=

1

k+

A

Bwith k =

⌈b

a

⌉and A < a.

Example: Let’s consider the fraction3

5, k =

⌈5

3

⌉. So k =

⌈1.6⌉

= 2.

Then3

5− 1

k≥ 0 and we get

3

5=

1

2+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 4 / 29

Page 17: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Fibonacci’s algorithm

Subtracting the largest possible unit fraction that keeps a non-negative

difference from a proper irreducible fractiona

b

(a

b− 1

k≥ 0

), the

resulting fraction numerator is strictly less than the one of the initialfraction and the resulting fraction denominator is strictly greater than theone of the initial fraction.

The value of k

Leta

bbe an irreducible proper fraction, we get

a

b=

1

k+

A

Bwith k =

⌈b

a

⌉and A < a.

Example: Let’s consider the fraction3

5, k =

⌈5

3

⌉. So k =

⌈1.6⌉

= 2.

Then3

5− 1

k≥ 0 and we get

3

5=

1

2+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 4 / 29

Page 18: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Fibonacci’s algorithm

Subtracting the largest possible unit fraction that keeps a non-negative

difference from a proper irreducible fractiona

b

(a

b− 1

k≥ 0

), the

resulting fraction numerator is strictly less than the one of the initialfraction and the resulting fraction denominator is strictly greater than theone of the initial fraction.

The value of k

Leta

bbe an irreducible proper fraction, we get

a

b=

1

k+

A

Bwith k =

⌈b

a

⌉and A < a.

Example: Let’s consider the fraction3

5, k =

⌈5

3

⌉. So k =

⌈1.6⌉

= 2.

Then3

5− 1

k≥ 0 and we get

3

5=

1

2+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 4 / 29

Page 19: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

First Answers:

Every proper fraction can be expanded into distinct unit fractions(Fibonacci’s algorithm).

There are different ways to expand a proper fractionThere are infinite ways to expand a proper fraction

To give these last two answers we used the identity:

1

n=

1

n + 1+

1

n(n + 1)

Example:3

5=

1

2+

1

10but

1

2=

1

3+

1

6and

1

10=

1

11+

1

110so

3

5=

1

3+

1

6+

1

11+

1

110

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 5 / 29

Page 20: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

First Answers:

Every proper fraction can be expanded into distinct unit fractions(Fibonacci’s algorithm).

There are different ways to expand a proper fractionThere are infinite ways to expand a proper fraction

To give these last two answers we used the identity:

1

n=

1

n + 1+

1

n(n + 1)

Example:3

5=

1

2+

1

10but

1

2=

1

3+

1

6and

1

10=

1

11+

1

110so

3

5=

1

3+

1

6+

1

11+

1

110

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 5 / 29

Page 21: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

First Answers:

Every proper fraction can be expanded into distinct unit fractions(Fibonacci’s algorithm).

There are different ways to expand a proper fractionThere are infinite ways to expand a proper fraction

To give these last two answers we used the identity:

1

n=

1

n + 1+

1

n(n + 1)

Example:3

5=

1

2+

1

10but

1

2=

1

3+

1

6and

1

10=

1

11+

1

110so

3

5=

1

3+

1

6+

1

11+

1

110

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 5 / 29

Page 22: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

First Answers:

Every proper fraction can be expanded into distinct unit fractions(Fibonacci’s algorithm).

There are different ways to expand a proper fractionThere are infinite ways to expand a proper fraction

To give these last two answers we used the identity:

1

n=

1

n + 1+

1

n(n + 1)

Example:3

5=

1

2+

1

10but

1

2=

1

3+

1

6and

1

10=

1

11+

1

110so

3

5=

1

3+

1

6+

1

11+

1

110

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 5 / 29

Page 23: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Merits and limits:

The merits of this method are:

It works with all irreducible proper fractions;

It can expand every proper fraction into an Egyptian fraction.

Its limits are:

The denominator of the resulting fractions increases as we keepsubtracting 1

k , it can grow quite huge;

It’s not always the shortest expansion.

Example:

With Fibonacci4

49=

1

13+

1

213+

1

67841+

1

9204734721

while4

49=

1

14+

1

98

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 6 / 29

Page 24: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Merits and limits:The merits of this method are:

It works with all irreducible proper fractions;

It can expand every proper fraction into an Egyptian fraction.

Its limits are:

The denominator of the resulting fractions increases as we keepsubtracting 1

k , it can grow quite huge;

It’s not always the shortest expansion.

Example:

With Fibonacci4

49=

1

13+

1

213+

1

67841+

1

9204734721

while4

49=

1

14+

1

98

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 6 / 29

Page 25: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Merits and limits:The merits of this method are:

It works with all irreducible proper fractions;

It can expand every proper fraction into an Egyptian fraction.

Its limits are:

The denominator of the resulting fractions increases as we keepsubtracting 1

k , it can grow quite huge;

It’s not always the shortest expansion.

Example:

With Fibonacci4

49=

1

13+

1

213+

1

67841+

1

9204734721

while4

49=

1

14+

1

98

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 6 / 29

Page 26: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Fibonacci’s Method

Merits and limits:The merits of this method are:

It works with all irreducible proper fractions;

It can expand every proper fraction into an Egyptian fraction.

Its limits are:

The denominator of the resulting fractions increases as we keepsubtracting 1

k , it can grow quite huge;

It’s not always the shortest expansion.

Example:

With Fibonacci4

49=

1

13+

1

213+

1

67841+

1

9204734721

while4

49=

1

14+

1

98

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 6 / 29

Page 27: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Given a proper fractiona

b, there exist A and B such as aA = bB + 1.

Thena

b=

aA

bA=

bB + 1

bA=

B

A+

1

bA

How can we find A and B?

Bezout’s theorem

For nonzero a and b in Z, there are x and y in Z, such thatgcd(a, b) = ax + by . In particular, when a and b are relatively prime,there are x and y in Z such that ax + by = 1.

Theorem for the Golomb’s Method

Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and

consider the fraction 0 <a

b< 1 then there exist a natural number

0 < A < b and a natural number B such that aA = bB + 1.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 7 / 29

Page 28: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Given a proper fractiona

b, there exist A and B such as aA = bB + 1.

Thena

b=

aA

bA=

bB + 1

bA=

B

A+

1

bA

How can we find A and B?

Bezout’s theorem

For nonzero a and b in Z, there are x and y in Z, such thatgcd(a, b) = ax + by . In particular, when a and b are relatively prime,there are x and y in Z such that ax + by = 1.

Theorem for the Golomb’s Method

Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and

consider the fraction 0 <a

b< 1 then there exist a natural number

0 < A < b and a natural number B such that aA = bB + 1.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 7 / 29

Page 29: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Given a proper fractiona

b, there exist A and B such as aA = bB + 1.

Thena

b=

aA

bA=

bB + 1

bA=

B

A+

1

bA

How can we find A and B?

Bezout’s theorem

For nonzero a and b in Z, there are x and y in Z, such thatgcd(a, b) = ax + by . In particular, when a and b are relatively prime,there are x and y in Z such that ax + by = 1.

Theorem for the Golomb’s Method

Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and

consider the fraction 0 <a

b< 1 then there exist a natural number

0 < A < b and a natural number B such that aA = bB + 1.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 7 / 29

Page 30: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Given a proper fractiona

b, there exist A and B such as aA = bB + 1.

Thena

b=

aA

bA=

bB + 1

bA=

B

A+

1

bA

How can we find A and B?

Bezout’s theorem

For nonzero a and b in Z, there are x and y in Z, such thatgcd(a, b) = ax + by . In particular, when a and b are relatively prime,there are x and y in Z such that ax + by = 1.

Theorem for the Golomb’s Method

Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and

consider the fraction 0 <a

b< 1 then there exist a natural number

0 < A < b and a natural number B such that aA = bB + 1.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 7 / 29

Page 31: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Given a proper fractiona

b, there exist A and B such as aA = bB + 1.

Thena

b=

aA

bA=

bB + 1

bA=

B

A+

1

bA

How can we find A and B?

Bezout’s theorem

For nonzero a and b in Z, there are x and y in Z, such thatgcd(a, b) = ax + by . In particular, when a and b are relatively prime,there are x and y in Z such that ax + by = 1.

Theorem for the Golomb’s Method

Let a < b be positive integers with a 6= 1 and with gcd(a, b) = 1, and

consider the fraction 0 <a

b< 1 then there exist a natural number

0 < A < b and a natural number B such that aA = bB + 1.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 7 / 29

Page 32: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

In order to find A and B we use the Euclidean algorithm.If A and B do not satisfy the condition of Golomb’s method, we have tocalculate A′ and B ′ such that A′ = A− kb, B ′ = B + ka with k ∈ Z.

Theorem

Given a, b ∈ N with a < b and A,B ∈ Z with aA + bB = 1 and A · B < 0,exist k ∈ Z such that, if A′ = A− kb and B ′ = B + ka then A′ > 0,B ′ < 0 and A′ < b.

We have to take k ∈ Z such thatA

b− 1 < k < −B

a.

A number with these properties exists and it is k =

⌊A

b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 8 / 29

Page 33: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

In order to find A and B we use the Euclidean algorithm.If A and B do not satisfy the condition of Golomb’s method, we have tocalculate A′ and B ′ such that A′ = A− kb, B ′ = B + ka with k ∈ Z.

Theorem

Given a, b ∈ N with a < b and A,B ∈ Z with aA + bB = 1 and A · B < 0,exist k ∈ Z such that, if A′ = A− kb and B ′ = B + ka then A′ > 0,B ′ < 0 and A′ < b.

We have to take k ∈ Z such thatA

b− 1 < k < −B

a.

A number with these properties exists and it is k =

⌊A

b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 8 / 29

Page 34: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Leta

bbe an irreducible proper fraction;

Algorithm:

Find A e B of the Bezout’s Identity using the Euclidean algorithm;

If 0 < A < b and B < 0 then we have to go to the next step;

else we calculate A′ = A−⌊A

b

⌋· b and B ′ = B +

⌊A

b

⌋· a and we get

0 < A′ < b and B ′ < 0 and now go to the next step;

Use the Golomb’s method.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 9 / 29

Page 35: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Leta

bbe an irreducible proper fraction;

Algorithm:

Find A e B of the Bezout’s Identity using the Euclidean algorithm;

If 0 < A < b and B < 0 then we have to go to the next step;

else we calculate A′ = A−⌊A

b

⌋· b and B ′ = B +

⌊A

b

⌋· a and we get

0 < A′ < b and B ′ < 0 and now go to the next step;

Use the Golomb’s method.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 9 / 29

Page 36: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Leta

bbe an irreducible proper fraction;

Algorithm:

Find A e B of the Bezout’s Identity using the Euclidean algorithm;

If 0 < A < b and B < 0 then we have to go to the next step;

else we calculate A′ = A−⌊A

b

⌋· b and B ′ = B +

⌊A

b

⌋· a and we get

0 < A′ < b and B ′ < 0 and now go to the next step;

Use the Golomb’s method.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 9 / 29

Page 37: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Leta

bbe an irreducible proper fraction;

Algorithm:

Find A e B of the Bezout’s Identity using the Euclidean algorithm;

If 0 < A < b and B < 0 then we have to go to the next step;

else we calculate A′ = A−⌊A

b

⌋· b and B ′ = B +

⌊A

b

⌋· a and we get

0 < A′ < b and B ′ < 0 and now go to the next step;

Use the Golomb’s method.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 9 / 29

Page 38: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Example:

Let’s consider the proper fraction38

121;

The Euclidean algorithm gives 38 · (−35) + 121 · (11) = 1.Then A = −35,B = 11 that is A < 0 and B > 0;

We calculate k =

⌊A

b

⌋=

⌊−35

121

⌋= b−0.2c = −1 therefore

A′ = A− (−1)b = −35 + 121 = 86

B ′ = B + (−1)a = 11− 38 = −27

so we get 0 < A′ < b and B ′ < 0;

With the Golomb’s method:a

b=

bB

bA+

1

bA⇒ 38

121=

27

86+

1

10406

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 10 / 29

Page 39: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Example:

Let’s consider the proper fraction38

121;

The Euclidean algorithm gives 38 · (−35) + 121 · (11) = 1.Then A = −35,B = 11 that is A < 0 and B > 0;

We calculate k =

⌊A

b

⌋=

⌊−35

121

⌋= b−0.2c = −1 therefore

A′ = A− (−1)b = −35 + 121 = 86

B ′ = B + (−1)a = 11− 38 = −27

so we get 0 < A′ < b and B ′ < 0;

With the Golomb’s method:a

b=

bB

bA+

1

bA⇒ 38

121=

27

86+

1

10406

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 10 / 29

Page 40: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Example:

Let’s consider the proper fraction38

121;

The Euclidean algorithm gives 38 · (−35) + 121 · (11) = 1.Then A = −35,B = 11 that is A < 0 and B > 0;

We calculate k =

⌊A

b

⌋=

⌊−35

121

⌋= b−0.2c = −1 therefore

A′ = A− (−1)b = −35 + 121 = 86

B ′ = B + (−1)a = 11− 38 = −27

so we get 0 < A′ < b and B ′ < 0;

With the Golomb’s method:a

b=

bB

bA+

1

bA⇒ 38

121=

27

86+

1

10406

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 10 / 29

Page 41: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Golomb’s method

Example:

Let’s consider the proper fraction38

121;

The Euclidean algorithm gives 38 · (−35) + 121 · (11) = 1.Then A = −35,B = 11 that is A < 0 and B > 0;

We calculate k =

⌊A

b

⌋=

⌊−35

121

⌋= b−0.2c = −1 therefore

A′ = A− (−1)b = −35 + 121 = 86

B ′ = B + (−1)a = 11− 38 = −27

so we get 0 < A′ < b and B ′ < 0;

With the Golomb’s method:a

b=

bB

bA+

1

bA⇒ 38

121=

27

86+

1

10406

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 10 / 29

Page 42: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 43: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 44: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 45: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 46: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 47: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Definition

A practical number is a natural number N such that for all n < N, n ∈ N0

then n can be written as the sum of distinct divisors of N.

Theorem

The product of two practical numbers is a practical number.

Theorem

The subset of N of practical numbers is a countably infinite set i.e. withthe same cardinality of N (ℵ0).

Example with practical denominator: 12 is a practical number,

D12 = {1, 2, 3, 4, 6, 12} 7 = 4 + 2 + 1 (6 + 1, 4 + 3)

7

12=

4

12+

2

12+

1

12=

1

3+

1

6+

1

12

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 11 / 29

Page 48: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 49: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 50: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 51: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 52: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 53: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

For not practical denominators b exists at least one number k thatmultiplied by b gives a practical denominator.

Theorem

The product of the first prime numbers is a practical number.

Theorem

The product of a practical number by one of his divisor is a practicalnumber.

Theorem

The product of powers of the first prime numbers is a practical number.

Example for not practical denominator: 10 is not a practical number,

10 = 2 · 5;7

10=

7

10· 3

3=

21

30=

15

30+

6

30=

1

2+

1

5

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 12 / 29

Page 54: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Comparison with other methods.

Theorem (A. Galletti - K.P.S. Bhaskara Rao)

The factorial of a natural number n is practical.

With our method

a

b=

7

10b = 2 · 5; ⇒ k = 3

Instead of using this theorem k would be:

9! = 362880

This theorem guarantees that one k always exists but it is far greater thanours.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 13 / 29

Page 55: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Comparison with other methods.

Theorem (A. Galletti - K.P.S. Bhaskara Rao)

The factorial of a natural number n is practical.

With our method

a

b=

7

10b = 2 · 5; ⇒ k = 3

Instead of using this theorem k would be:

9! = 362880

This theorem guarantees that one k always exists but it is far greater thanours.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 13 / 29

Page 56: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Comparison with other methods.

Theorem (A. Galletti - K.P.S. Bhaskara Rao)

The factorial of a natural number n is practical.

With our method

a

b=

7

10b = 2 · 5; ⇒ k = 3

Instead of using this theorem k would be:

9! = 362880

This theorem guarantees that one k always exists but it is far greater thanours.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 13 / 29

Page 57: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Comparison with other methods.

Theorem (A. Galletti - K.P.S. Bhaskara Rao)

The factorial of a natural number n is practical.

With our method

a

b=

7

10b = 2 · 5; ⇒ k = 3

Instead of using this theorem k would be:

9! = 362880

This theorem guarantees that one k always exists but it is far greater thanours.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 13 / 29

Page 58: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Theorem (Stewart)

Let m be a practical number. If n is an integer such that1 ≤ n ≤ σ(m) + 1, then mn is a practical number, where σ(m) denotesthe sum of the positive divisors of m. In particular for 1 ≤ n ≤ 2m, mn ispractical.

So k would be the first practical number greater than b2 , for example:

a

b=

7

10k >

b

2= 5.5 ⇒ k = 6

This result is, in general, the main tool to construct practical numbers.In some cases, as in the proposed example, ours is preferable (k = 3).

Conclusion: All these variants of the method of practical numbers give anexpansion of the fraction, that confirms the existence but they donot find all the possible expansions.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 14 / 29

Page 59: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Theorem (Stewart)

Let m be a practical number. If n is an integer such that1 ≤ n ≤ σ(m) + 1, then mn is a practical number, where σ(m) denotesthe sum of the positive divisors of m. In particular for 1 ≤ n ≤ 2m, mn ispractical.

So k would be the first practical number greater than b2 , for example:

a

b=

7

10k >

b

2= 5.5 ⇒ k = 6

This result is, in general, the main tool to construct practical numbers.In some cases, as in the proposed example, ours is preferable (k = 3).

Conclusion: All these variants of the method of practical numbers give anexpansion of the fraction, that confirms the existence but they donot find all the possible expansions.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 14 / 29

Page 60: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Theorem (Stewart)

Let m be a practical number. If n is an integer such that1 ≤ n ≤ σ(m) + 1, then mn is a practical number, where σ(m) denotesthe sum of the positive divisors of m. In particular for 1 ≤ n ≤ 2m, mn ispractical.

So k would be the first practical number greater than b2 , for example:

a

b=

7

10k >

b

2= 5.5 ⇒ k = 6

This result is, in general, the main tool to construct practical numbers.In some cases, as in the proposed example, ours is preferable (k = 3).

Conclusion: All these variants of the method of practical numbers give anexpansion of the fraction, that confirms the existence but they donot find all the possible expansions.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 14 / 29

Page 61: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

Theorem (Stewart)

Let m be a practical number. If n is an integer such that1 ≤ n ≤ σ(m) + 1, then mn is a practical number, where σ(m) denotesthe sum of the positive divisors of m. In particular for 1 ≤ n ≤ 2m, mn ispractical.

So k would be the first practical number greater than b2 , for example:

a

b=

7

10k >

b

2= 5.5 ⇒ k = 6

This result is, in general, the main tool to construct practical numbers.In some cases, as in the proposed example, ours is preferable (k = 3).

Conclusion: All these variants of the method of practical numbers give anexpansion of the fraction, that confirms the existence but they donot find all the possible expansions.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 14 / 29

Page 62: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

The Algorithm to expand a fraction with practical denominator:

we find all the n proper divisorsof the denominator,

we create a matrix whichdimension n x (2n − 1),

with a loop, we check for eachrow if the sum of only divisorswhose cell is equal to 1, is equalto the numerator,

if it is true the program willprint the expansion.

d1 d2 d3 d4

1 → 0 0 0 12 → 0 0 1 03 → 0 0 1 14 → 0 1 0 05 → 0 1 0 16 → 0 1 1 07 → 0 1 1 18 → 1 0 0 09 → 1 0 0 1

10 → 1 0 1 011 → 1 0 1 112 → 1 1 0 013 → 1 1 0 114 → 1 1 1 015 → 1 1 1 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 15 / 29

Page 63: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Method of practical numbers

The Algorithm to expand a fraction with practical denominator:

we find all the n proper divisorsof the denominator,

we create a matrix whichdimension n x (2n − 1),

with a loop, we check for eachrow if the sum of only divisorswhose cell is equal to 1, is equalto the numerator,

if it is true the program willprint the expansion.

d1 d2 d3 d4

1 → 0 0 0 12 → 0 0 1 03 → 0 0 1 14 → 0 1 0 05 → 0 1 0 16 → 0 1 1 07 → 0 1 1 18 → 1 0 0 09 → 1 0 0 1

10 → 1 0 1 011 → 1 0 1 112 → 1 1 0 013 → 1 1 0 114 → 1 1 1 015 → 1 1 1 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 15 / 29

Page 64: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Two unit fractions.Given a proper fraction a

b with (a, b) = 1 we want to find two natural

numbers, x and y such that kakb = 1

x + 1y for k ∈ Z that is to solve{

x + y = ka

xy = kb

We decide to analyse the problem from ageometric point of view:{x + y = ka −→ sheaf of straight lines

xy = kb −→ sheaf of hyperbola

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 16 / 29

Page 65: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Two unit fractions.Given a proper fraction a

b with (a, b) = 1 we want to find two natural

numbers, x and y such that kakb = 1

x + 1y for k ∈ Z that is to solve{

x + y = ka

xy = kb

We decide to analyse the problem from ageometric point of view:{x + y = ka −→ sheaf of straight lines

xy = kb −→ sheaf of hyperbola

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 16 / 29

Page 66: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Two unit fractions.Given a proper fraction a

b with (a, b) = 1 we want to find two natural

numbers, x and y such that kakb = 1

x + 1y for k ∈ Z that is to solve{

x + y = ka

xy = kb

We decide to analyse the problem from ageometric point of view:{x + y = ka −→ sheaf of straight lines

xy = kb −→ sheaf of hyperbola

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 16 / 29

Page 67: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Two unit fractions.Given a proper fraction a

b with (a, b) = 1 we want to find two natural

numbers, x and y such that kakb = 1

x + 1y for k ∈ Z that is to solve{

x + y = ka

xy = kb

We decide to analyse the problem from ageometric point of view:{x + y = ka −→ sheaf of straight lines

xy = kb −→ sheaf of hyperbola

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 16 / 29

Page 68: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: two unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into two

distinct unit fractions 1x + 1

y , with 0 < x < y , if

b

a< x <

2b

a∧ y =

bx

ax − b

Example: Let’s consider ab = 5

18 that we want to write as 518 = 1

x + 1y . The

natural numbers x such that ba < x < 2b

a that is 185 < x < 36

5 are:

x = 4→ y = bxax−b = 36, acceptable

x = 5→ y 6∈ N0

x = 6→ y = bxax−b = 9, acceptable

x = 7→ y 6∈ N0

So:5

18=

1

4+

1

36=

1

6+

1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 17 / 29

Page 69: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: two unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into two

distinct unit fractions 1x + 1

y , with 0 < x < y , if

b

a< x <

2b

a∧ y =

bx

ax − b

Example: Let’s consider ab = 5

18 that we want to write as 518 = 1

x + 1y .

The

natural numbers x such that ba < x < 2b

a that is 185 < x < 36

5 are:

x = 4→ y = bxax−b = 36, acceptable

x = 5→ y 6∈ N0

x = 6→ y = bxax−b = 9, acceptable

x = 7→ y 6∈ N0

So:5

18=

1

4+

1

36=

1

6+

1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 17 / 29

Page 70: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: two unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into two

distinct unit fractions 1x + 1

y , with 0 < x < y , if

b

a< x <

2b

a∧ y =

bx

ax − b

Example: Let’s consider ab = 5

18 that we want to write as 518 = 1

x + 1y . The

natural numbers x such that ba < x < 2b

a that is 185 < x < 36

5 are:

x = 4→ y = bxax−b = 36, acceptable

x = 5→ y 6∈ N0

x = 6→ y = bxax−b = 9, acceptable

x = 7→ y 6∈ N0

So:5

18=

1

4+

1

36=

1

6+

1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 17 / 29

Page 71: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: two unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into two

distinct unit fractions 1x + 1

y , with 0 < x < y , if

b

a< x <

2b

a∧ y =

bx

ax − b

Example: Let’s consider ab = 5

18 that we want to write as 518 = 1

x + 1y . The

natural numbers x such that ba < x < 2b

a that is 185 < x < 36

5 are:

x = 4→ y = bxax−b = 36, acceptable

x = 5→ y 6∈ N0

x = 6→ y = bxax−b = 9, acceptable

x = 7→ y 6∈ N0

So:5

18=

1

4+

1

36=

1

6+

1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 17 / 29

Page 72: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Three unit fractions.We tried to retrace an analogous procedure for the expansion of a fractionin a sum of three unit fractions.

ka

kb=

1

x+

1

y+

1

zthat is

{xy + xz + yz = ka

xyz = kb

we determine the geometric locus of the solutions:

z =bxy

axy − b(x + y)

We choose to impose 0 < x < y < z and so

x < y ∧ y >bx

ax − b

y <bx

ax − 2b∧ y <

2bx

ax − b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 18 / 29

Page 73: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Three unit fractions.We tried to retrace an analogous procedure for the expansion of a fractionin a sum of three unit fractions.

ka

kb=

1

x+

1

y+

1

zthat is

{xy + xz + yz = ka

xyz = kb

we determine the geometric locus of the solutions:

z =bxy

axy − b(x + y)

We choose to impose 0 < x < y < z and so

x < y ∧ y >bx

ax − b

y <bx

ax − 2b∧ y <

2bx

ax − b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 18 / 29

Page 74: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Three unit fractions.We tried to retrace an analogous procedure for the expansion of a fractionin a sum of three unit fractions.

ka

kb=

1

x+

1

y+

1

zthat is

{xy + xz + yz = ka

xyz = kb

we determine the geometric locus of the solutions:

z =bxy

axy − b(x + y)

We choose to impose 0 < x < y < z and so

x < y ∧ y >bx

ax − b

y <bx

ax − 2b∧ y <

2bx

ax − b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 18 / 29

Page 75: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Three unit fractions.We tried to retrace an analogous procedure for the expansion of a fractionin a sum of three unit fractions.

ka

kb=

1

x+

1

y+

1

zthat is

{xy + xz + yz = ka

xyz = kb

we determine the geometric locus of the solutions:

z =bxy

axy − b(x + y)

We choose to impose 0 < x < y < z and so

x < y ∧ y >bx

ax − b

y <bx

ax − 2b∧ y <

2bx

ax − b

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 18 / 29

Page 76: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 77: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 78: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 79: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 80: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 81: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 82: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: tree unit fractions.

Let ab be an irreducible proper fraction, then it can be expanded into three

distinct unit fractions 1x + 1

y + 1z with 0 < x < y < z , if

b

a< x <

3b

a∧ bx

ax − b< y <

2bx

ax − b∧ z =

bxy

axy − b(x + y)

Example: Let’s consider ab = 4

5 that we want to write as 45 = 1

x + 1y + 1

z .

The natural numbers x such that ba < x < 3b

a that is 54 < x < 15

4 are:

x = 2 −→ 103 < y < 20

3

→ y = 4→ z = bxyaxy−b(x+y) = 20, acceptable

→ y = 5→ z = bxyaxy−b(x+y) = 10, acceptable

→ y = 6→ z 6∈ N0

x = 3 −→ 157 < y < 30

7

→ y = 3→ z 6∈ N0

→ y = 4→ z 6∈ N0

So:4

5=

1

2+

1

4+

1

20=

1

2+

1

5+

1

10

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 19 / 29

Page 83: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: general case.

Leta

bbe an irreducible proper fraction, then it can be expanded as sum of

n distinct unit fractions1

x1+ ...+

1

xn, with x0 < x1 < ... < xn, (x0 = 0), if,

for j = 1, ...n − 1

max

{xj−1,

b

a− b∑j−1

i=11xi

}< xj <

(n + 1− j)b

a− b∑j−1

i=11xi

, xn =b

a− b∑n−1

i=11xi

Observation. This method finds the expansions only given a number offractions of the sum but has the advantage that it finds all possibleexpansions in this case.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 20 / 29

Page 84: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Geometric method, our solution

Theorem: general case.

Leta

bbe an irreducible proper fraction, then it can be expanded as sum of

n distinct unit fractions1

x1+ ...+

1

xn, with x0 < x1 < ... < xn, (x0 = 0), if,

for j = 1, ...n − 1

max

{xj−1,

b

a− b∑j−1

i=11xi

}< xj <

(n + 1− j)b

a− b∑j−1

i=11xi

, xn =b

a− b∑n−1

i=11xi

Observation. This method finds the expansions only given a number offractions of the sum but has the advantage that it finds all possibleexpansions in this case.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 20 / 29

Page 85: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Comparison

MethodNo. ofexpan-sions

DenominatorsNo. of unit

fractionsExample: a

b = 79

Fibonacci 1 Huge growth Less than orequal to a

79 = 1

2 + 14 + 1

36

Golomb 1 Less thanb(b − 1)

Less than orequal to thenumerator a

79 = 1

2 + 16 + 1

12 + 136

Practicalnumbers

At least1

Less than orequal to the

denominator bor kb

Less than orequal to thenumber ofdivisor of b

or kb

79 = 1

2 + 16 + 1

9

GeometricAll theexpan-sions

Unforeseeable Fixed79 = 1

2 + 14 + 1

36

79 = 1

2 + 16 + 1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 21 / 29

Page 86: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Comparison

MethodNo. ofexpan-sions

DenominatorsNo. of unit

fractionsExample: a

b = 79

Fibonacci 1 Huge growth Less than orequal to a

79 = 1

2 + 14 + 1

36

Golomb 1 Less thanb(b − 1)

Less than orequal to thenumerator a

79 = 1

2 + 16 + 1

12 + 136

Practicalnumbers

At least1

Less than orequal to the

denominator bor kb

Less than orequal to thenumber ofdivisor of b

or kb

79 = 1

2 + 16 + 1

9

GeometricAll theexpan-sions

Unforeseeable Fixed79 = 1

2 + 14 + 1

36

79 = 1

2 + 16 + 1

9

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 21 / 29

Page 87: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

From the identity:1

n=

1

n + 1+

1

n(n + 1)we can build this tree:

1

2

1

3

1

6

1

4

1

12

1

42

1

7

1

5

1

20

1

13

1

156

1

1806

1

43

1

56

1

8... ... ... ... ... ... ... ... ... ...

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 22 / 29

Page 88: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

From the identity:1

n=

1

n + 1+

1

n(n + 1)we can build this tree:

1

2

1

3

1

6

1

4

1

12

1

42

1

7

1

5

1

20

1

13

1

156

1

1806

1

43

1

56

1

8... ... ... ... ... ... ... ... ... ...

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 22 / 29

Page 89: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

From the identity:1

n=

1

n + 1+

1

n(n + 1)we can build this tree:

1

2

1

3

1

6

1

4

1

12

1

42

1

7

1

5

1

20

1

13

1

156

1

1806

1

43

1

56

1

8... ... ... ... ... ... ... ... ... ...

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 22 / 29

Page 90: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

Given r the number of the row and c the number of the column we canfind the denominator A(r , c) of the unit fraction which is in the positionr , c :

Formula

For all r , c ∈ N0 with 1 ≤ c ≤ 2r−1

A (r , c) =

{2 if r = c = 1[A(r − 1,

⌈c2

⌉)+ 1]·[A(r − 1,

⌈c2

⌉)]pif r > 1

with

p = 1−{c +

1

2· sgn(r − 2) ·

[sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 23 / 29

Page 91: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

Given r the number of the row and c the number of the column we canfind the denominator A(r , c) of the unit fraction which is in the positionr , c :

Formula

For all r , c ∈ N0 with 1 ≤ c ≤ 2r−1

A (r , c) =

{2 if r = c = 1[A(r − 1,

⌈c2

⌉)+ 1]·[A(r − 1,

⌈c2

⌉)]pif r > 1

with

p = 1−{c +

1

2· sgn(r − 2) ·

[sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 23 / 29

Page 92: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 93: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 94: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 95: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 96: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 97: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

How did we find it?

The problems are:

the recursion of the formula;

the need to operate differently with the unit fractions1

n + 1and

1

n(n + 1);

the symmetry of the tree;

the non-symmetry in the second row of the tree.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 24 / 29

Page 98: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The recursion of the formula:

Each element of the tree is obtained from an element of the previous row⇒ r − 1. The two-by-two elements are obtained from the one in theprevious row in the middle of them ⇒

⌈c2

⌉that is we used the ceiling

function.It is necessary to start this process therefore we fixed at first A(1, 1) = 2and then A(r , s) must be a function of A

(r − 1,

⌈c2

⌉)so

A (r , c) =

{2 if r = c = 1

f[A(r − 1,

⌈c2

⌉)]if r > 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 25 / 29

Page 99: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The recursion of the formula:Each element of the tree is obtained from an element of the previous row⇒ r − 1. The two-by-two elements are obtained from the one in theprevious row in the middle of them ⇒

⌈c2

⌉that is we used the ceiling

function.

It is necessary to start this process therefore we fixed at first A(1, 1) = 2and then A(r , s) must be a function of A

(r − 1,

⌈c2

⌉)so

A (r , c) =

{2 if r = c = 1

f[A(r − 1,

⌈c2

⌉)]if r > 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 25 / 29

Page 100: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The recursion of the formula:Each element of the tree is obtained from an element of the previous row⇒ r − 1. The two-by-two elements are obtained from the one in theprevious row in the middle of them ⇒

⌈c2

⌉that is we used the ceiling

function.It is necessary to start this process therefore we fixed at first A(1, 1) = 2and then A(r , s) must be a function of A

(r − 1,

⌈c2

⌉)so

A (r , c) =

{2 if r = c = 1

f[A(r − 1,

⌈c2

⌉)]if r > 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 25 / 29

Page 101: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The recursion of the formula:Each element of the tree is obtained from an element of the previous row⇒ r − 1. The two-by-two elements are obtained from the one in theprevious row in the middle of them ⇒

⌈c2

⌉that is we used the ceiling

function.It is necessary to start this process therefore we fixed at first A(1, 1) = 2and then A(r , s) must be a function of A

(r − 1,

⌈c2

⌉)so

A (r , c) =

{2 if r = c = 1

f[A(r − 1,

⌈c2

⌉)]if r > 1

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 25 / 29

Page 102: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The need to operate differently with the unit fractions1

n + 1and

1

n(n + 1)

For every pair of elements of the tree the first one is obtained from theelement that is in the row r − 1 and in the column

⌈c2

⌉with the formula

n + 1 while the second with the formula n(n + 1). Thus is the factor n inone case there must be and in the other no. Therefore we put an exponentp in this factor which becomes 0 or 1. In order to do this we build theformula:

A (r , c) =[A(r − 1,

⌈c2

⌉)+ 1]·[A(r − 1,

⌈c2

⌉)]pwith p = 1− c mod 2where ”mod” is the modulo operation.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 26 / 29

Page 103: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The need to operate differently with the unit fractions1

n + 1and

1

n(n + 1)

For every pair of elements of the tree the first one is obtained from theelement that is in the row r − 1 and in the column

⌈c2

⌉with the formula

n + 1 while the second with the formula n(n + 1). Thus is the factor n inone case there must be and in the other no. Therefore we put an exponentp in this factor which becomes 0 or 1. In order to do this we build theformula:

A (r , c) =[A(r − 1,

⌈c2

⌉)+ 1]·[A(r − 1,

⌈c2

⌉)]pwith p = 1− c mod 2where ”mod” is the modulo operation.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 26 / 29

Page 104: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The need to operate differently with the unit fractions1

n + 1and

1

n(n + 1)

For every pair of elements of the tree the first one is obtained from theelement that is in the row r − 1 and in the column

⌈c2

⌉with the formula

n + 1 while the second with the formula n(n + 1). Thus is the factor n inone case there must be and in the other no. Therefore we put an exponentp in this factor which becomes 0 or 1. In order to do this we build theformula:

A (r , c) =[A(r − 1,

⌈c2

⌉)+ 1]·[A(r − 1,

⌈c2

⌉)]pwith p = 1− c mod 2where ”mod” is the modulo operation.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 26 / 29

Page 105: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The symmetry of the tree.

In order to build a symmetrical tree, that is with the greatest fractions onthe left for the first 2r−2 elements and on the right for the element from2r−2 + 1 to 2r−1, we have to change the exponent p before and after theelement 2r−2. We want the following exponents:

...0 1 1 0

0 1 0 1 1 0 1 00 1 0 1 0 1 1 0 1 0 1 0

we used the fuction:

x

|x |=

{−1 if x < 0

+1 if x > 0⇒ 1

2·(

x

|x |+ 1

)=

{0 if x < 0

+1 if x > 0

and we get: p = 1−[c + 1

2 ·(

c−2r−2− 12

|c−2r−2− 12 |

+ 1

)]mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 27 / 29

Page 106: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The symmetry of the tree.In order to build a symmetrical tree, that is with the greatest fractions onthe left for the first 2r−2 elements and on the right for the element from2r−2 + 1 to 2r−1, we have to change the exponent p before and after theelement 2r−2.

We want the following exponents:...

0 1 1 00 1 0 1 1 0 1 0

0 1 0 1 0 1 1 0 1 0 1 0

we used the fuction:

x

|x |=

{−1 if x < 0

+1 if x > 0⇒ 1

2·(

x

|x |+ 1

)=

{0 if x < 0

+1 if x > 0

and we get: p = 1−[c + 1

2 ·(

c−2r−2− 12

|c−2r−2− 12 |

+ 1

)]mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 27 / 29

Page 107: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The symmetry of the tree.In order to build a symmetrical tree, that is with the greatest fractions onthe left for the first 2r−2 elements and on the right for the element from2r−2 + 1 to 2r−1, we have to change the exponent p before and after theelement 2r−2. We want the following exponents:

...0 1 1 0

0 1 0 1 1 0 1 00 1 0 1 0 1 1 0 1 0 1 0

we used the fuction:

x

|x |=

{−1 if x < 0

+1 if x > 0⇒ 1

2·(

x

|x |+ 1

)=

{0 if x < 0

+1 if x > 0

and we get: p = 1−[c + 1

2 ·(

c−2r−2− 12

|c−2r−2− 12 |

+ 1

)]mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 27 / 29

Page 108: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The symmetry of the tree.In order to build a symmetrical tree, that is with the greatest fractions onthe left for the first 2r−2 elements and on the right for the element from2r−2 + 1 to 2r−1, we have to change the exponent p before and after theelement 2r−2. We want the following exponents:

...0 1 1 0

0 1 0 1 1 0 1 00 1 0 1 0 1 1 0 1 0 1 0

we used the fuction:

x

|x |=

{−1 if x < 0

+1 if x > 0⇒ 1

2·(

x

|x |+ 1

)=

{0 if x < 0

+1 if x > 0

and we get: p = 1−[c + 1

2 ·(

c−2r−2− 12

|c−2r−2− 12 |

+ 1

)]mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 27 / 29

Page 109: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:

The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards. We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 110: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards. We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 111: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards.

We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 112: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards. We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 113: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards. We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 114: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The non-symmetry in the second row of the tree:The exponents in the second row are 0 and 1 hence they are notsymmetric.

0 10 1 1 0

0 1 0 1 1 0 1 0

Therefore we need a function that changes the exponents only from thesecond row onwards. We use the sign function:

sgn (x) =

−1 if x < 0

0 if x = 0

+1 if x > 0

⇒ sgn (r − 2) =

−1 if r < 2(it never happens)

0 if r = 2

+1 if r > 2

So the exponent becomes:

p = 1−{c + 1

2 · sgn(r − 2) ·[

sgn

(c − 2r−2 − 1

2

)+ 1

]}mod 2

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 28 / 29

Page 115: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.

1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 116: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 117: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 118: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 119: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 120: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 121: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.

⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 122: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;

⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 123: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

The tree of fractions

The expansion of the natural numbers.1

2

1

3+

1

6

1

4+

1

12+

1

42+

1

7

1

5+

1

20+

1

13+

1

156+

1

1806+

1

43+

1

56+

1

8... ... ... ... ... ... ... ... ...

+1

2= 1

+1

2= 1

+1

2= 1

+1

2= 1

n

the sum of each row yields 12 ;

the sum of different parts of the tree yields 12 ;

the sum of two rows yields 1;

the sum of 2n rows, with n ∈ N0, yields n.⇒ all the natural numbers can be expanded into distinct U.F.;⇒ also the improper fractions can be expanded into distinct U.F.

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29

Page 124: Egyptian Fractions · 2018. 7. 3. · Egyptian Fractions Mario Antoniazzi Gaia Barella Paolo Barisan Marco Carollo Marco Casagrande Alex Dal Cin Giusi Grotto Gioella Lorenzon Antonio

Thank you for your attention!

Archimede Project (ISISS M. Casagrande) Egyptian Fractions March 28, 2018 - Padova 29 / 29


Recommended