+ All Categories
Home > Documents > Eigenvectors, Eigenvalues, and Finite Strain · 2017. 8. 17. · 8/17/17 2 9. EIGENVECTORS,...

Eigenvectors, Eigenvalues, and Finite Strain · 2017. 8. 17. · 8/17/17 2 9. EIGENVECTORS,...

Date post: 02-Feb-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
26
8/17/17 1 Eigenvectors, Eigenvalues, and Finite Strain GG303, 2016 1 GG303 8/17/17 Strained Conglomerate Sierra Nevada, California 2 GG303 8/17/17
Transcript
  • 8/17/17

    1

    Eigenvectors,Eigenvalues,andFiniteStrain

    GG303,2016

    1GG3038/17/17

    StrainedConglomerateSierraNevada,California

    2GG3038/17/17

  • 8/17/17

    2

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    3GG3038/17/17

    HomogenousdeformaMondeformsaunitcircletoa“strainellipse”

    ObjecMve:Toquan%fythesize,shape,andorientaMonofstrainellipseusingitsaxes

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    I MainTopicsAEquaMonsforellipses

    BRotaMonsinhomogeneousdeformaMon

    CEigenvectorsandeigenvalues

    DSoluMonsforgeneralhomogeneousdeformaMonmatrices

    E Keyresults

    F Appendices(1,2,3,4)

    4GG3038/17/17

  • 8/17/17

    3

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    II EquaMonsofellipsesA EquaMonofaunitcircle

    centeredattheorigin1

    2

    3

    4

    x2 + y2 = 1

    x  y[ ] 1 00 1⎡

    ⎣⎢

    ⎦⎥

    xy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    X[ ]T F[ ] X[ ] = 1

    x  y[ ] xy⎡

    ⎣⎢⎢

    ⎦⎥⎥= x  y[ ] 1x + 0y0x +1y

    ⎣⎢⎢

    ⎦⎥⎥= 1

    Symmetric

    Here,[F]istheidenMtymatrix[I].SoposiMonvectorsthatdefineaunitcircletransformtothosesameposiMonvectorsbecause[X’]=[F][X].

    5GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    II EquaMonsofellipsesB EquaMonofanellipse

    centeredattheoriginwithitsaxesalongthex-andy-axes

    1

    2

    3

    4

    ax2 + 0xy + dy2 = 1

    x  y[ ] a 00 d⎡

    ⎣⎢

    ⎦⎥

    xy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    X[ ]T F[ ] X[ ] = 1

    x  y[ ] ax + 0y0x + dy⎡

    ⎣⎢⎢

    ⎦⎥⎥= 1

    SymmetricPosiMonvectorsthatdefineaunitcircletransformtoposiMonvectorsthatdefineanellipsebecause[X’]=[F][X].

    6GG3038/17/17

  • 8/17/17

    4

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    II EquaMonsofellipsesC “Symmetric”equaMon

    ofanellipsecenteredattheorigin

    1

    2

    3

    4

    ax2 + 2bxy + dy2 = 1

    x  y[ ] a bb d

    ⎣⎢

    ⎦⎥

    xy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    X[ ]T F[ ] X[ ] = 1

    x  y[ ] ax + bybx + dy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    Symmetric

    Displacementvectorsareinblack.Bluenumbersarefinalaxiallengths.RednumbersareiniMalradii.Displacementvectorsaresymmetricaboutaxesofellipse.

    Example : F = 2 11 2

    ⎣⎢

    ⎦⎥

    7GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    II EquaMonsofellipsesD GeneralequaMonofan

    ellipsecenteredattheorigin

    1

    2

    3

    4

    ax2 + b + c( )xy + dy2 = 1

    x  y[ ] a bc d

    ⎣⎢

    ⎦⎥

    xy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    X[ ]T F[ ] X[ ] = 1

    x  y[ ] ax + bycx + dy

    ⎣⎢⎢

    ⎦⎥⎥= 1

    Notsymmetricifb≠c

    Example : F = 2 10 2

    ⎣⎢

    ⎦⎥

    8GG3038/17/17

    Vectorsalongaxesofellipsetransformbacktoperpendicularvectorsalongaxesofunitcircle

  • 8/17/17

    5

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    A Let[X]bethesetofallposiMonvectorsthatdefineaunitcircle

    B Let[X’]bethesetofallposiMonvectorsthatdefineanellipsedescribedbyahomogenousdeformaMonatapoint

    C [X’]=[F][X] (Forwarddef.)D [X]=[F-1][X’](Reversedef.)E Thematrices[F]and[F-1]

    containconstants

    8/17/17 GG303 9

    IIIRotaMonsinhomogenousdeformaMon

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    F ThedifferenMaltangentvectors[dX’]and[dX]comefromdifferenMaMng[X’]=[F][X]and[X]=[F-1][X’],respecMvely.

    G [dX’]=[F][dX](Forwarddef.)H [dX]=[F-1][dX’](Reversedef.)I [F]transforms[X]to[X’],and

    [dX]to[dX’]J [F-1]transforms[X’]to[X],and

    [dX’]to[dX]K PosiMonvectorsarepairedto

    correspondingtangents

    8/17/17 GG303 10

    IIIRotaMonsinhomogenousdeformaMon(cont.)

  • 8/17/17

    6

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    L Whereanon-zeroposiMonvectoranditstangentareperpendicular,theposiMonvectorachievesitsgreatestandsmallest(squared)lengths,asshownbelow

    MN Maximaandminimaof

    (squared)lengthsoccurwheredQ’=0

    OP

    8/17/17 GG303 11

    IIIRotaMonsinhomogenousdeformaMon(cont.)

    ′Q = ′!X • ′!X = ′X[ ]T ′X[ ]

    d ′Q = d ′

    !X • ′!X( ) = ′!X • d ′!X + d ′!X • ′!X = 0

    2 ′!X • d ′

    !X( ) = 0⇒ ′!X • d ′!X( ) = 0

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    Q ThetangentvectorperpendiculartothelongestposiMonvectorparallelstheshortestposiMonvector(whichliesalongthesemi-minoraxis),andvice-versa.

    R Similarreasoningappliestothecorrespondingunitcircle.

    8/17/17 GG303 12

    IIIRotaMonsinhomogenousdeformaMon(cont.)

  • 8/17/17

    7

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    S Fortheunitcircle,alliniMalposiMonvectorsareradialvectors,andeachiniMaltangentvectorisperpendiculartotheassociatedradialposiMonvector.TherediniMalvectorpair[X*,dX*]andtheblueiniMalvectorpair[X*,dX*]bothshowthis.

    8/17/17 GG303 13

    IIIRotaMonsinhomogenousdeformaMon(cont.)

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    T AllthefinalposiMon-tangentvectorpairsfortheellipsehavecorrespondinginiMalposiMon-tangentvectorpairsfortheunitcircle(andvice-versa).

    U EveryposiMon-tangentvectorpairfortheunitcirclecontainsperpendicularvectors.

    V OnlytheposiMon-tangentvectorpairfortheellipsethatparallelthemajorandminoraxes(i.e.,theredpair[X*’,dX*’])areperpendicular.

    W “Retro-transforming”[X*’,dX*’]by[F-1]yieldstheiniMalredpairofperpendicularvectors[X*,dX*].

    X Conversely,theforwardtransformaMonoftheredpairofiniMalperpendicularvectors[X*,dX*]using[F]yieldsthefinalperpendicularvectorspair[X*’,dX*’].

    Y ThetransformaMonfrom[X*,dX*]to[X*’,dX*’]involvesarotaMon,andthatishowtherotaMonisdefined.

    8/17/17 GG303 14

    IIIRotaMonsinhomogenousdeformaMon(cont.)

  • 8/17/17

    8

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    • Thelongest(X1’)andshortest(X2’)posiMonvectorsoftheellipseareperpendicular,alongtheredaxesoftheellipse,andparallelthetangents.

    • Thecorrespondingretro-transformedvectors([X1]=[F]-1[X1’],and[X2]=[F]-1[X2’])(alongtheblackaxes)areperpendicularunitvectorsthatmaintainthe90°anglebetweentheprincipaldirecMons.

    • TheangleofrotaMonisdefinedastheanglebetweentheperpendicularpair{X1andX2}alongtheblackaxesoftheunitcircleandtheperpendicularprincipalpair{X1’,X2’}alongtheredaxesoftheellipse.

    • TheseresultsextendtothreedimensionsifallthreesecMonsalongtheprincipalaxesofthe“strain”(stretch)ellipsoidareconsidered.

    • SeeAppendix4formoreexamples.

    15GG3038/17/17

    IIIRotaMonsinhomogenousdeformaMon(cont.)

    !′X

    !X1

    !X2

    !X1′

    !X2′

    !X

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvalues(usedtoobtainstretchesandrotaMons)

    ATheeigenvaluematrixequaMon[A][X]=λ[X]

    1  [A]isa(known)squarematrix(nxn)2  [X]isanon-zerodirecMonaleigenvector(nx1)3  λisanumber,aneigenvalue4  λ[X]isavector(nx1)parallelto[X]5  [A][X]isavector(nx1)parallelto[X]

    16GG3038/17/17

  • 8/17/17

    9

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    ATheeigenvaluematrixequaMon[A][X]=λ[X](cont.)6 Thevectors[[A][X]],λ[X],and[X]sharethesamedirecMonif[X]isaneigenvector

    7  If[X]isaunitvector,λisthelengthof[A][X]8Eigenvectors[Xi]havecorrespondingeigenvalues[λi],andvice-versa

    9 InMatlab,[vec,val]=eig(A),findseigenvectors(vec)andeigenvalues(val)

    17GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvaluesBExample:MathemaMcalmeaningof[A][X]=λ[X]

    A = 2 11 2

    ⎣⎢

    ⎦⎥

    A − 22

    ⎣⎢⎢

    ⎦⎥⎥= 2 1

    1 2⎡

    ⎣⎢

    ⎦⎥

    − 22

    ⎣⎢⎢

    ⎦⎥⎥= − 2

    2

    ⎣⎢⎢

    ⎦⎥⎥= 1 − 2

    2

    ⎣⎢⎢

    ⎦⎥⎥

    Twoeigenvectors

    Twoeigenvalues

    A 22

    ⎣⎢⎢

    ⎦⎥⎥= 2 1

    1 2⎡

    ⎣⎢

    ⎦⎥

    22

    ⎣⎢⎢

    ⎦⎥⎥= 3 2

    3 2

    ⎣⎢⎢

    ⎦⎥⎥= 3 2

    2

    ⎣⎢⎢

    ⎦⎥⎥

    18GG3038/17/17

  • 8/17/17

    10

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    X ' = FX

    F = 2 11 2

    ⎣⎢

    ⎦⎥

    • EigenvectorsofsymmetricFgivedirecMonsoftheprincipalstretches

    • EigenvaluesofsymmetricF(i.e.,λ1,λ2)aremagnitudesoftheprincipalstretchesS1andS2

    AfA0

    = πλ1λ2πr2

    = λ1rλ2r= S1S2

    Δ =Af − A0A0

    =AfA0

    − A0A0

    = S1S2 −1

    r = 1λ1 = 3λ2 = 1

    IVEigenvectorsandeigenvaluesC Example:Geometricmeaning

    of[A][X]=λ[X]

    19GG3038/17/17

    Unitcircle

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINIVEigenvectorsandeigenvalues

    D Example:MatlabsoluMonof[A][X]=λ[X]

    A = 2 11 2

    ⎣⎢

    ⎦⎥

    Eigenvalues(λ)

    20GG3038/17/17

    Anglebetweenx-axisandlargesteigenvector

    Anglebetweenx-axisAndsmallesteigenvector

    *Matlabin2016doesnotordereigenvaluesfromlargesttosmallest

    >>A=[21;12]A=2112>>[vec,val]=eig(A)vec=-0.70710.70710.70710.7071val=1003>>theta1=atan2(vec(2,2),vec(2,1))*180/pitheta1=45>>theta2=atan2(vec(1,2),vec(1,1))*180/pitheta2=135

    Δ = det A[ ]−1Here,Δ = 3−1= 2

    λ1 = 3λ2 = 1

    Eigenvectors[X]givenbytheirdirecMoncosines

    Eigenvector/eigenvaluepairs

  • 8/17/17

    11

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINIVEigenvectorsandeigenvalues(cont.)

    E GeometricmeaningsoftherealmatrixequaMon[A][X]=[B]=01 |A|≠0;

    a [A]-1existsb Describestwolines(or3

    planes)thatintersectattheorigin

    c XhasauniquesoluMon2 |A|=0;

    a [A]-1doesnotexistb Describestwoco-linearlines

    thatthatpassthroughtheorigin(orthreeplanesthatintersectinalineorinaplanethroughtheorigin)

    c [X]hasnouniquesoluMon;canhavemulMplesoluMons

    Parallel lines have parallel normals

    nx(1) ny

    (1) x d1=0nx

    (2) ny(2) y d2=0

    AX = B = 0

    =

    |A| = nx(1) * ny

    (2) - ny(1) * nx

    (2) = 0 n1 x n2 = 0

    Intersecting lines have non-parallel normals

    nx(1) ny

    (1) x d1=0nx

    (2) ny(2) y d2=0

    AX = B = 0

    =

    |A| = nx(1) * ny

    (2) - ny(1) * nx

    (2) ≠ 0 n1 x n2 ≠ 0n1 n2

    n1

    n2Det[A]=area(volume)definedbyparallelogram(parallelepiped)basedonunitnormals

    21GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvalues(cont.)DAlternaMveformofaneigenvalueequaMon

    1[A][X]=λ[X]SubtracMngIλ[X]=λ[IX]=λ[X]frombothsidesyields:

    2[A-Iλ][X]=0(sameformas[A][X]=0)E SoluMoncondiMonsandconnecMonswithdeterminants

    1UniquetrivialsoluMonof[X]=0ifandonlyif|A-Iλ|≠02MulMpleeigenvectorsoluMons([X]≠0)

    ifandonlyif|A-Iλ|=0* Seepreviousslide

    22GG3038/17/17

  • 8/17/17

    12

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvalues(cont.)

    FCharacterisMcequaMon:|A-Iλ|=01TherootsofthecharacterisMcequaMonaretheeigenvalues(λ)

    23GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvalues(cont.)

    FCharacterisMcequaMon:|A-Iλ|=0(cont.)2Eigenvaluesofageneral2x2matrix

    a

    b

    c

    d

    A − Iλ = a − I bc d − λ

    = 0

    a − λ( ) d − λ( ) − bc = 0

    λ2 − a + d( )λ + ad − bc( ) = 0

    λ1,λ2 =a + d( ) ± a + d( )2 − 4 ad − bc( )

    2

    (a+d)=tr(A)(ad-bc)=|A|

    A = a bc d

    ⎣⎢

    ⎦⎥

    λ1 + λ2 = tr A( )λ1λ2 = A

    24GG3038/17/17

  • 8/17/17

    13

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVEigenvectorsandeigenvalues(cont.)

    GTosolveforeigenvectors,subsMtuteeigenvaluesbackintoAX=lXandsolveforX(seeAppendix1)

    HEigenvectorsofrealsymmetricmatricesareperpendicular(fordisMncteigenvalues);seeAppendix3

    *Allthesepointsareimportant

    25GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IVSoluMonsforgeneralhomogeneousdeformaMonmatricesA Eigenvalues

    1  StartwiththedefiniMonofquadra%celongaMonQ,whichisascalar

    2  Expressusingdotproducts

    3  Clearthedenominator.DotproductsandQarescalars.

    !′X •!′X!

    X •!X

    =Q

    !′X •!′X =!X •!X( )Q

    Lf2

    L02 =Q

    26GG3038/17/17

  • 8/17/17

    14

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINIV SoluMonsforgeneralhomogeneous

    deformaMonmatricesA Eigenvalues

    4  ReplaceX’with[FX]5  Re-arrangebothsides6  BothsidesofthisequaMonlead

    offwith[X]T,whichcannotbeazerovector,soitcanbedroppedfrombothsidestoyieldaneigenvectorequaMon

    7 [FTF]issymmetric:[FTF]T=[FTF]8  Theeigenvaluesof[FTF]arethe

    principalquadraMcelongaMonsQ=(Lf/L0)2

    9  Theeigenvaluesof[FTF]1/2aretheprincipalstretchesS=(Lf/L0)

    F[ ]nxn

    X[ ]nx1

    ⎡⎣⎢

    ⎤⎦⎥

    T

    F[ ]nxn

    X[ ]nx1

    ⎡⎣⎢

    ⎤⎦⎥= X

    nx1⎡⎣

    ⎤⎦TX[ ]nx1Q1x1

    Xnx1⎡⎣

    ⎤⎦TFnxn⎡⎣

    ⎤⎦TFnxnXnx1

    ⎡⎣

    ⎤⎦ = Xnx1

    ⎡⎣

    ⎤⎦TQ1x1

    Xnx1⎡⎣

    ⎤⎦

    Fnxn

    T Fnxn

    ⎡⎣

    ⎤⎦ Xnx1⎡⎣

    ⎤⎦ =Q Xnx1

    ⎡⎣

    ⎤⎦

    !′X •!′X =!X •!X( )Q

    " A[ ] X[ ] = λ X[ ]"

    27GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    IV SoluMonsforgeneralhomogeneousdeformaMonmatricesB SpecialCase:[F]issymmetric

    1  [FTF]=[F2]becauseF=FT2  Theprincipalstretches(S)againare

    thesquarerootsoftheprincipalquadraMcelongaMons(Q)(i.e.,thesquarerootsoftheeigenvaluesof[F2])

    3  Theprincipalstretches(S)alsoaretheeigenvaluesof[F],directly

    4  ThedirecMonsoftheprincipalstretches(S)aretheeigenvectorsof[F],andof[FTF]=[F2]!

    5  Theaxesoftheprincipal(greatestandleast)straindonotrotate

    FTF⎡⎣ ⎤⎦ X[ ] =Q X[ ]

    Q =Lf2

    L02 ; S =

    LfL0

    ⇒ Q = S

    F2⎡⎣ ⎤⎦ X[ ] =Q X[ ]

    F[ ] X[ ] = S X[ ]

    28GG3038/17/17

  • 8/17/17

    15

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    F = 2 20.5 1

    ⎣⎢

    ⎦⎥

    R = 0.89 0.45−0.45 0.89

    ⎣⎢

    ⎦⎥

    ′X[ ] = F[ ] X[ ]; F[ ] = R[ ] U[ ]

    F[ ] = 2 20.5 1⎡

    ⎣⎢

    ⎦⎥; F[ ]T = 2 0.52 1

    ⎣⎢

    ⎦⎥

    U[ ] = F[ ]T F[ ]⎡⎣ ⎤⎦1/2

    = 4.25 4.54.5 5

    ⎣⎢

    ⎦⎥

    1/2

    = 1.56 1.341.34 1.79

    ⎣⎢

    ⎦⎥

    R[ ] = F[ ] U[ ]−1 = 2 20.5 1⎡

    ⎣⎢

    ⎦⎥

    1.79 −1.34−1.34 1.56

    ⎣⎢

    ⎦⎥ =

    0.89 0.45−0.45 0.89

    ⎣⎢

    ⎦⎥

    U[ ] = 1.56 1.341.34 1.79⎡

    ⎣⎢

    ⎦⎥

    First,symmetricallystretchtheunitcircleusing[U]

    Second,rotatetheellipse(notthereferenceframe)using[R]

    [F]=[R][U]

    F[ ] X[ ]

    U[ ] X[ ]

    X[ ]

    X[ ]U[ ] X[ ]

    R[ ] U[ ] X[ ]

    Example1 Eigenvaluesof[U]giveprincipalstretchmagnitudes

    Eigenvectorsof[U]arealongaxesofblueellipses.Rotatedeigenvectorsof[U]giveprincipalstretchdirecMons

    29GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    F = 2 20.5 1

    ⎣⎢

    ⎦⎥

    R = 0.89 0.45−0.45 0.89

    ⎣⎢

    ⎦⎥

    ′X[ ] = F[ ] X[ ]; F[ ] = V[ ] R[ ]

    F[ ] = 2 20.5 1⎡

    ⎣⎢

    ⎦⎥; F[ ]T = 2 0.52 1

    ⎣⎢

    ⎦⎥

    V[ ] = F[ ] F[ ]T⎡⎣ ⎤⎦1/2

    = 8 33 1.5

    ⎣⎢

    ⎦⎥

    1/2

    = 2.68 0.890.89 0.67

    ⎣⎢

    ⎦⎥

    R[ ] = V[ ]−1 F[ ] = 0.67 −0.89−0.89 2.68

    ⎣⎢

    ⎦⎥

    2 20.5 1

    ⎣⎢

    ⎦⎥ =

    0.89 0.45−0.45 0.89

    ⎣⎢

    ⎦⎥

    First,rotatetheunitcircleusing[R]

    Second,stretchtherotatedunitcirclesymmetricallyusing[V]

    [F]=[V][R]

    R = 0.89 0.45−0.45 0.89

    ⎣⎢

    ⎦⎥

    F = 2 20.5 1

    ⎣⎢

    ⎦⎥

    V[ ] = 2.68 0.890.89 0.67⎡

    ⎣⎢

    ⎦⎥

    F[ ] X[ ] X[ ]

    X[ ]R[ ] X[ ] R[ ] X[ ]V[ ] R[ ] X[ ]

    Example2 Eigenvaluesof[V]alsogiveprincipalstretchmagnitudes

    Unrotatedeigenvectorsof[V]giveprincipalstretchdirecMonsdirectly

    30GG3038/17/17

  • 8/17/17

    16

    Example

    8/17/17 GG303 31

    Example

    8/17/17 GG303 32

  • 8/17/17

    17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    VI KeyresultsA ForsymmetricFmatrices(F=FT)

    1  EigenvectorsofFgivedirecMonsofprincipalstretches2  EigenvectorsofFareperpendicular3 EigenvaluesofFgivemagnitudesofprincipalstretches4 Eigenvectorsdonotrotate

    B Fornon-symmetricFmatrices(F≠FT)1  ThedirecMonsoftheprincipalstretchesaregivenbyrotatedeigenvectorsof[FTF]2  Eigenvectorsof[FTF]areperpendicular;eigenvectorsofFarenot3  Eigenvaluesof[FTF]givemagnitudesofprincipalquadraMcelongaMons4  FcanbedecomposedintoasymmetricstretchandrotaMon(orvice-versa)

    a ThestretchmatrixU=[FTF]1/2b ThestretchmatrixV=[FFT]1/2

    5 TherotaMonmatrixR=F[FTF]1/2=[FFT]1/2F

    C NeedtoknowiniMallocaMonsandfinallocaMons,orF,tocalculatestrainsD TheF-matrixdoesnotuniquelydeterminethedisplacementhistory:e.g.,F=RU=VR

    33GG3038/17/17

    Appendix1

    Examplesoflong-handsoluMonsforeigenvaluesandeigenvectors

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    34GG3038/17/17

  • 8/17/17

    18

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    CharacterisMcequaMon:|A-Iλ|=0

    Eigenvaluesforsymmetric[A]

    a

    bc

    d

    e

    A − Iλ = a − λ bc d − λ

    = 2 − λ 11 2 − λ

    = 0

    a − λ( ) d − λ( )− bc = 2 − λ( ) 2 − λ( )− 1( ) 1( ) = 0λ2 − a + d( )λ + ad − bc( ) = 0

    λ1,λ2 =a + d( ) ± a + d( )2 − 4 ad − bc( )

    2

    =2 + 2( ) ± 2 + 2( )2 − 4 2 × 2 −1×1( )

    2= 2 ±1

    tr(A)=(a+d)=4|A|=(ad-bc)=3

    A = a bc d

    ⎣⎢

    ⎦⎥ =

    2 11 2

    ⎣⎢

    ⎦⎥

    tr A( ) = λ1 + λ2 = 4A = λ1λ2 = 3

    35GG3038/17/17

    λ1 = 3, λ2 = 1

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    EigenvalueequaMon:AX=λX

    Eigenvectorsforsymmetric[A]

    a bc d

    ⎣⎢

    ⎦⎥

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥= λ1

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥⇒ 2 1

    1 2⎡

    ⎣⎢

    ⎦⎥

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥=

    2α1 + β1α1 + 2β1

    ⎣⎢⎢

    ⎦⎥⎥= 3

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥⇒ β1 =α1

    a bc d

    ⎣⎢

    ⎦⎥

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥= λ2

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥⇒ 2 1

    1 2⎡

    ⎣⎢

    ⎦⎥

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥=

    2α 2 + β2α 2 + 2β2

    ⎣⎢⎢

    ⎦⎥⎥= 1

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥⇒ β2 = −α 2

    A = a bc d

    ⎣⎢

    ⎦⎥ =

    2 11 2

    ⎣⎢

    ⎦⎥

    36GG3038/17/17

    θ1 = tan−1 β1α1

    = tan−1α1α1

    = tan−1 11= 45!

    θ2 = tan−1 β2α 2

    = tan−1 −α 2α 2

    = tan−1 −11

    = −45!

    Angleforeigenvector1

    Angleforeigenvector2

    λ1

    λ2

  • 8/17/17

    19

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    CharacterisMcequaMon:|A-Iλ|=0

    Eigenvaluesfornon-symmetric[A]

    a

    bc

    d

    e

    A − Iλ = a − λ bc d − λ

    = 2 − λ 01 2 − λ

    = 0

    a − λ( ) d − λ( )− bc = 2 − λ( ) 2 − λ( )− 0( ) 1( ) = 0λ2 − a + d( )λ + ad − bc( ) = 0

    λ1,λ2 =a + d( ) ± a + d( )2 − 4 ad − bc( )

    2

    =2 + 2( ) ± 2 + 2( )2 − 4 2 × 2 − 0 ×1( )

    2= 2 ± 0

    tr(A)=(a+d)=4|A|=(ad-bc)=4

    A = a bc d

    ⎣⎢

    ⎦⎥ =

    2 01 2

    ⎣⎢

    ⎦⎥

    tr A( ) = λ1 + λ2 = 4A = λ1λ2 = 4

    37GG3038/17/17

    λ1 = 2, λ2 = 0

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    EigenvalueequaMon:AX=λX

    Eigenvectorsfornon-symmetric[A]

    a bc d

    ⎣⎢

    ⎦⎥

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥= λ1

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥⇒ 2 0

    1 2⎡

    ⎣⎢

    ⎦⎥

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥=

    2α1α1 + 2β1

    ⎣⎢⎢

    ⎦⎥⎥= 2

    α1β1

    ⎣⎢⎢

    ⎦⎥⎥⇒α1 = 0

    a bc d

    ⎣⎢

    ⎦⎥

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥= λ2

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥⇒ 2 0

    1 2⎡

    ⎣⎢

    ⎦⎥

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥=

    2α 2α 2 + 2β2

    ⎣⎢⎢

    ⎦⎥⎥= 2

    α 2β2

    ⎣⎢⎢

    ⎦⎥⎥⇒α 2 = 0

    A = a bc d

    ⎣⎢

    ⎦⎥ =

    2 01 2

    ⎣⎢

    ⎦⎥

    38GG3038/17/17

    θ1 = tan−1 β1α1

    = tan−1 β10= tan−1∞ = ±90!

    θ2 = tan−1 β2α 2

    = tan−1 β20

    = tan−1∞ = ±90!

    Angleforeigenvector1

    Angleforeigenvector2

    λ1

    λ2

  • 8/17/17

    20

    Appendix2

    ProofthatthevectorsλXarethelongestandshortestvectorsfromthecenterofanellipsetoitsperimeter

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    39GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI Eigenvectorsofasymmetricmatrix

    A MaximumandminimumsquaredlengthsSetderivaMveofsquaredlengthstozerotofindorientaMonofmaximaandminimumdistancefromorigintoellipse

    B PosiMonvectors(X’)withmaximumandminimum(squared)lengthsarethosethatareperpendiculartotangentvectors(dX’)alongellipse

    !′X •!′X = Lf

    2

    d!′X •!′X( )

    dθ=!′X • d!′X

    dθ+ d!′X

    dθ•!′X = 0

    2!′X • d!′X

    dθ⎛⎝⎜

    ⎞⎠⎟= 0

    !′X • d!′X

    dθ⎛⎝⎜

    ⎞⎠⎟= 0

    40GG3038/17/17

  • 8/17/17

    21

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVIEigenvectorsofa

    symmetricmatrixCAX=λXD SinceeigenvectorsXof

    symmetricmatricesaremutuallyperpendicular,sotooarethetransformedvectorsλX

    E AtthepointidenMfiedbythetransformedvectorλX,theperpendiculareigenvector(s)mustparalleldX’andbetangenttotheellipse

    41GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI Eigenvectorsofasymmetric

    matrixF RecallthatposiMonvectors

    (X’)withmaximumandminimum(squared)lengthsarethosethatareperpendiculartotangentvectors(dX’)alongellipse.Hence,thesmallestandlargesttransformedvectorsλXgivetheminimumandmaximumdistancestoanellipsefromitscenter.

    G Theλvaluesaretheprincipalstretches

    H Theseconclusionsextendtothreedimensionsandellipsoids

    42GG3038/17/17

  • 8/17/17

    22

    Appendix3

    ProofthatdisMncteigenvectorsofarealsymmetricmatrixA=ATare

    perpendicular

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    43GG3038/17/17

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    1a AX1=λ1X1 1b AX2=λ2X2EigenvectorsX1andX2parallelAX1andAX2,respecMvelyDo{ngAX1byX2andAX2byX1cantestwhetherX1andX2areorthogonal.

    2a X2•AX1=X2•λ1X1=λ1(X2•X1)2b X1•AX2=X1•λ2X2=λ2(X1•X2)IfA=AT,thenthele|sidesof(2a)and(2b)areequal:3X2•AX1=AX1•X2=[AX1]T[X2]=[[X1]T[A]T][X2] =[X1]T[A][X2]=[X1]T[[A][X2]]=X1•AX2

    8/17/17 GG303 44

  • 8/17/17

    23

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    Sincethele|sidesof(2a)and(2b)areequal,therightsidesmustbeequaltoo.Hence,

    4  λ1(X2•X1)=λ2(X1•X2)Nowsubtracttherightsideof(4)fromthele|5  (λ1–λ2)(X2•X1)=0• Theeigenvaluesgenerallyaredifferent,soλ1–λ2≠0.• For(5)tohold,thenX2•X1=0.• Therefore,theeigenvectors(X1,X2)ofarealsymmetric2x2

    matrixareperpendicularwhereeigenvaluesaredisMnct• Theeigenvectorscanbechosentobeperpendicularifthe

    eignevactorsarethesame

    8/17/17 GG303 45

    Appendix4

    RotaMonsinhomogenousdeformaMon:AnalgebraicperspecMve

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAIN

    46GG3038/17/17

  • 8/17/17

    24

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneousdeformaMon

    A Justge{ngthesizeandshapeofthe“strain”(stretch)ellipseisnotenoughif[F]isnotsymmetric.Needtoconsiderhowpointsontheellipsetransform

    B CandothisthroughacombinaMonofstretchesandrotaMons1 F=VR(which“R”?)

    a V=symmetricstretchmatrixb R=rotaMonmatrix

    2 F=RU(which“U”?“R”?)a R=rotaMonmatrixb U= symmetricstretchmatrix

    3 Thechoicesbecomeuniqueforsymmetricstretchmatrices

    8/17/17 GG303 47

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneous

    deformaMonC Ifanellipseistransformedto

    aunitcircle,theaxesoftheellipsearetransformedtoo.

    D Ingeneral,theaxesoftheellipsesdonotmaintaintheirorientaMonwhentheellipseistransformedbacktoaunitcircle

    E IfFisnotsymmetric,theaxesoftheredellipseandtheretro-deformed(black)axeswillhaveadifferentabsoluteorientaMon

    F ThetransformaMonfromthetheretro-deformed(black)axestothetheorientaMonoftheprincipalaxesgivestherotaMonoftheaxes.

    8/17/17 GG303 48

  • 8/17/17

    25

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneous

    deformaMonG Weknowhowtofindthe

    principalstretchmagnitudes:theyarethesquarerootsoftheeigenvaluesofthesymmetricmatrix[[FT][F]]

    H Theeigenvectorsof[[FT][F]]givesomeoftheinformaMonneededtofindthedirecMonoftheprincipalstretchaxes.TherotaMondescribestheorientaMondifferencebetweenthe(red)principalstrain(stretch)axesandtheir(black)retro-deformedcounterparts

    8/17/17 GG303 49

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneous

    deformaMonI TofindtherotaMonofthe

    principalaxes,startwiththeparametricequaMonforanellipseanditstangent,andtherequirementthattheposiMonvectorsforthesemi-axesoftheellipseareperpendiculartothetangent

    LetθgivetheorientaMonofX,whereXtransformstoX’.

    8/17/17 GG303 50

    !′X = acosθ + bsinθ( )

    !i + ccosθ + d sinθ( )

    !j

    d ′!Xdθ

    = −asinθ + bcosθ( )!i + −csinθ + d cosθ( )

    !j

    ′!X • d ′

    !Xdθ

    = 0WhatvalueofθwillyieldavectorXsuchthatX’willbeperpendiculartothetangentoftheellipse?

    XisaposiMonvectorforaunitcircle.[X’]=[F][X].

  • 8/17/17

    26

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneous

    deformaMonNowsolveforθsaMsfying

    X’•dX’/dθ=0

    8/17/17 GG303 51

    !′X = acosθ + bsinθ( )

    !i + ccosθ + d sinθ( )

    !j

    d ′!Xdθ

    = −asinθ + bcosθ( )!i + −csinθ + d cosθ( )

    !j

    ′!X • d ′

    !Xdθ

    = 0

    = −a2 sinθ cosθ + abcos2θ − absin2θ + b2 sinθ cosθ− c2 sinθ cosθ + cd cos2θ − cd sin2θ + d 2 sinθ cosθ

    = − a2 − b2 + c2 − d 2( )sinθ cosθ + ab + cd( )cos2θ − ab + cd( )sin2θ= − a2 − b2 + c2 − d 2( )sinθ cosθ + ab + cd( ) cos2θ − sin2θ( )=− a2 − b2 + c2 − d 2( )

    2sin2θ + ab + cd( )cos2θ

    =a2 − b2 + c2 − d 2( )

    2sin −2θ( ) + ab + cd( )cos −2θ( ) = 0

    9.EIGENVECTORS,EIGENVALUES,ANDFINITESTRAINVI RotaMonsinhomogeneous

    deformaMon(Cont.)

    8/17/17 GG303 52

    a2 − b2 + c2 − d 2( )2

    sin −2θ( ) + ab + cd( )cos −2θ( ) = 0

    tan −2θ( ) = −2 ab + cd( )a2 − b2 + c2 − d 2

    θ1 =12tan−1 2 ab + cd( )

    a2 − b2 + c2 − d 2⎛⎝⎜

    ⎞⎠⎟, θ2 =

    12tan−1 2 ab + cd( )

    a2 − b2 + c2 − d 2⎛⎝⎜

    ⎞⎠⎟± 90!

    Recallthattwoanglesthatdifferby180°havethesametangent

    Soθ1andθ2are90°apart.SoX1andX2thattransformtoX1’andX2’areperpendicular.


Recommended