+ All Categories
Home > Documents > Ejemplo3.8 Smith.xlsx

Ejemplo3.8 Smith.xlsx

Date post: 25-Dec-2015
Category:
Upload: leonardo-medina
View: 2 times
Download: 0 times
Share this document with a friend
85
-388 C= -26000 473.15 83.14 10 3934 1 3545.7691 0.9014 ) = = ^3 ^(−1) ^(−1) = /= = ^3 ^(−1) = ( =1 ) ) (3.38) = /+ = = ^3 ^(−1) ^3 ^(−1) = / = /( / )=
Transcript

-388 C= -26000

473.1583.14

10

3934

1

3545.7691

0.9014

𝑎) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 𝑑𝑒𝑙 𝑔𝑎𝑠 𝑖𝑑𝑒𝑎𝑙𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝑉=𝑅𝑇/𝑃=𝑃= 𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑧= (𝑧=1 𝑝𝑎𝑟𝑎 𝑢𝑛 𝑔𝑎𝑠 𝑖𝑑𝑒𝑎𝑙)

𝑏) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 (3.38)

𝑉=𝑅𝑇/𝑃+𝐵=

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1) 〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=

𝑉_1=3934[1−388/3934−2600/(3934)^2 ]=

𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

-388 C=

〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

𝑐) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 (3.40)

𝑉_1=3934[1−388/3934−2600/(3934)^2 ]=

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝐾

473.1583.14

10

0 3933.7691 1 -0.09863314 -0.00168018 3539.15966275571 -0.10963054 -0.00207574 3494.342369205082 -0.11103663 -0.00212933 3488.600354498653 -0.11121939 -0.00213634 3487.853825484424 -0.11124319 -0.00213726 3487.756584089195 -0.1112463 -0.00213738 3487.743914496066 -0.1112467 -0.00213739 3487.742263720257 -0.11124675 -0.00213739 3487.742048632678 -0.11124676 -0.00213739 3487.742020607859 -0.11124676 -0.00213739 3487.74201695636

𝑅𝑇/𝑃 1 𝐵/𝑉_1 𝐶/(𝑉_2^2 )

𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑃= 𝑏𝑎𝑟𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

-26000 3934〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2) 𝑉_0=

0.8866

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=

9.4573 37.96350 425.1

6.6043784 0.02621697

𝑃= 𝐾𝑇= 𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

0.24913857

0.82333569

9.4573350

83.141

0 1 0.026216971 1 0.026216972 1 0.026216973 1 0.026216974 1 0.026216975 1 0.026216976 1 0.026216977 1 0.026216978 1 0.026216979 1 0.02621697

10 1 0.02621697

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃=𝑇=𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑍=𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝒂) 𝑽𝒂𝒑𝒐𝒓 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

0.164299947881145 0.861917020.189025717886723 0.837191250.194258771204626 0.83195820.195403596800381 0.830813370.19565584520833 0.83056112

0.195711512456589 0.830505460.195723801597824 0.830493170.19572651476484 0.83049045

0.195727113781435 0.830489850.195727246033602 0.830489720.195727275232543 0.83048969

��

𝑏𝑎𝑟〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝑍_(𝑖+1)

2555.31913

0 0.02621697 0.026216971 0.02621697 0.034156242 0.02621697 0.038032093 0.02621697 0.040162684 0.02621697 0.041399495 0.02621697 0.042138656 0.02621697 0.042587777 0.02621697 0.042863378 0.02621697 0.043033489 0.02621697 0.04313887

10 0.02621697 0.0432043111 0.02621697 0.04324512 0.02621697 0.0432703213 0.02621697 0.0432860814 0.02621697 0.043295915 0.02621697 0.0433020216 0.02621697 0.0433058317 0.02621697 0.0433082

𝑉^𝑣=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑃=𝑇=𝑅=𝑍=

𝛽 (𝑍+𝜖𝛽)𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

𝒃) 𝒍𝒊𝒒𝒖𝒊𝒅𝒐 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

9.4573350

83.140.02621697

0.05243394 5.7754467735466 0.034156240.06037321 5.7295939483537 0.038032090.06424906 5.7072091830642 0.040162680.06637965 5.6949040556462 0.041399490.06761646 5.6877609001015 0.042138650.06835561 5.6834919736046 0.042587770.06880474 5.6808980665392 0.042863370.06908033 5.679306387077 0.043033480.06925045 5.6783238848209 0.043138870.06935584 5.6777152075963 0.043204310.06942128 5.6773372779346 0.0432450.06946197 5.677102295555 0.043270320.06948728 5.6769560670329 0.043286080.06950305 5.6768650211409 0.04329590.06951287 5.6768083146705 0.043302020.06951898 5.6767729886664 0.043305830.0695228 5.6767509790619 0.0433082

0.06952517 5.6767372650433 0.04330968

133.258796

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

(𝑍+𝜎𝛽)((1+𝛽−𝑍)/𝑞𝛽) 𝑍_(𝑖+1)

𝑉^𝑣=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝒃) 𝒍𝒊𝒒𝒖𝒊𝒅𝒐 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

25510

83.14

1696.056

25510

83.14

0.65858799

1.19971771

X0 0.8779X1 0.8647X2 0.833

X0 0.0326X1 0.0377X2 0.0499

𝒂) 𝑷𝒐𝒓 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆𝒍 𝒈𝒂𝒔 𝒊𝒅𝒆𝒂𝒍𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝑉=𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1) 𝒃) 𝑷𝒐𝒓 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆𝒍 𝒈𝒂𝒔 𝒊𝒅𝒆𝒂𝒍

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

Y0 0.6Y1 0.65858799 0.8647Y2 0.8

Y0 0.6Y1 0.65858799 0.0377Y2 0.8

0.8723

1479.4367

𝒃) 𝑷𝒐𝒓 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆𝒍 𝒈𝒂𝒔 𝒊𝒅𝒆𝒂𝒍

𝑍^0=

𝑍^1=𝑍=𝑍^0+𝜔𝑍^1=

𝑉=𝑍𝑅𝑇/𝑃=

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟔𝟏) 𝒄𝒐𝒏 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒑𝒂𝒓𝒂 𝑩 ̂T〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

L40
Leonardo: El valor de 0.2 es de la Tabla B1

25510

83.14

0.65858799

1.19971771

-0.23234499

0.05894355

-0.22055628

0.87892509

1490.70617

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃=𝑇=𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟔𝟏) 𝒄𝒐𝒏 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒑𝒂𝒓𝒂 𝑩 ̂T

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

-194 C=

348.1583.14

15

0 1929.6794 1 -0.10053483 0.00410886 1743.608178220881 -0.11126353 0.00503261 1724.687791015682 -0.11248413 0.00514364 1722.546671466983 -0.11262394 0.00515643 1722.301558991584 -0.11263997 0.0051579 1722.273461928785 -0.11264181 0.00515807 1722.270240697986 -0.11264202 0.00515809 1722.269871388667 -0.11264204 0.00515809 1722.269829047818 -0.11264205 0.00515809 1722.269824193499 -0.11264205 0.00515809 1722.26982363694

𝒂) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟒𝟎)

𝑅𝑇/𝑃 1 𝐵/𝑉_1 𝐶/(𝑉_2^2 )

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑃= 𝑏𝑎𝑟

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

15300 1930

0.8925

〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=

𝑉=𝑅𝑇/𝑃= _0=𝑉

𝒃) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒗𝒊𝒓𝒂𝒍 𝒕𝒓𝒖𝒏𝒄𝒂𝒅𝒂 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟑𝟖)], 𝒄𝒐𝒏 𝒖𝒏 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝑩 𝒐𝒃𝒕𝒆𝒏𝒊𝒅𝒐 𝒅𝒆 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒅𝒆 𝑷𝒊𝒕𝒛𝒆𝒓 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟔𝟑)]

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃=𝑇=𝑅=

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃=

𝒃) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒗𝒊𝒓𝒂𝒍 𝒕𝒓𝒖𝒏𝒄𝒂𝒅𝒂 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟑𝟖)], 𝒄𝒐𝒏 𝒖𝒏 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝑩 𝒐𝒃𝒕𝒆𝒏𝒊𝒅𝒐 𝒅𝒆 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒅𝒆 𝑷𝒊𝒕𝒛𝒆𝒓 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟔𝟑)]

15 318.7348.15 37.683.14 0.286

0.39893617

1.09240665

-0.28335111

0.0203373

-0.27928365

0.89800836

1732.86823

15348.15

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝑇_𝐶=𝑃_𝐶= 𝐾𝑏𝑎𝑟𝜔=

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒆𝒅𝒍𝒊𝒄𝒉/𝑲𝒘𝒐𝒏𝒈𝑃=𝑇=

𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)=

37.6 0.39893617318.7

1.09240665

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒆𝒅𝒍𝒊𝒄𝒉/𝑲𝒘𝒐𝒏𝒈𝐾𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =

𝑇_𝑅=𝑇/𝑇_𝐶 =

4.32136403 0.03164008𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

15348.1583.14

1

0 1 0.03164008 0.0296992939183426 1.001940781 1 0.03164008 0.128108577874186 0.90353152 1 0.03164008 0.141086735528185 0.890553343 1 0.03164008 0.142996605976417 0.888643474 1 0.03164008 0.143282023127357 0.888358055 1 0.03164008 0.143324774368379 0.88831536 1 0.03164008 0.143331180058159 0.88830897 1 0.03164008 0.14333213991249 0.888307948 1 0.03164008 0.143332283742029 0.888307799 1 0.03164008 0.143332305294216 0.88830777

10 1 0.03164008 0.143332308523711 0.88830777

1714.1492

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑍=

𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

15 37.6348.15 318.7

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑺𝒐𝒂𝒗𝒆∕ ∕〖𝑹𝒆𝒅𝒍𝒊𝒄𝒉 𝑲𝒘𝒐𝒏𝒈〗

𝑃= 𝐾𝑇= 𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

0.9189585

4.15058126𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

𝛼_𝑆𝑅𝐾 (𝑇_𝑟;𝜔)=〖 [1+(0.480+1.574𝜔−0.176𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

0.39893617

1.09240665

0.286

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝜔=

0.03164008

0 11 12 13 14 15 16 17 18 19 1

10 1

𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =𝑃=𝑇=𝑅=𝑍=

𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝛼_𝑆𝑅𝐾 (𝑇_𝑟;𝜔)=〖 [1+(0.480+1.574𝜔−0.176𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

15348.1583.14

1

0.03164008 0.123269332662569 0.9083707436068310.03164008 0.134839349768117 0.8968007265012830.03164008 0.136456123890228 0.8951839523791720.03164008 0.136685132480636 0.8949549437887640.03164008 0.136717632468677 0.8949224438007230.03164008 0.136722245986264 0.8949178302831360.03164008 0.136722900920728 0.8949171753486710.03164008 0.136722993895662 0.8949170823737380.03164008 0.136723007094456 0.8949170691749440.03164008 0.136723008968167 0.8949170673012320.03164008 0.136723009234161 0.894917067035239

1726.90302896632

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑷𝒆𝒏𝒈 𝑹𝒐𝒃𝒊𝒏𝒔𝒐𝒏

𝑃=𝑇=

𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )=𝛼_𝑃𝑅 (𝑇_𝑟;𝜔)=〖 [1+(0.37464+1.5422𝜔−0.26992𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

15 37.6 0.39893617348.15 318.7

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑷𝒆𝒏𝒈 𝑹𝒐𝒃𝒊𝒏𝒔𝒐𝒏

𝐾𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =

1.09240665

0.286

0.92956922

5.00105946 0.0284118

𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =𝛼_𝑃𝑅 (𝑇_𝑟;𝜔)=〖 [1+(0.37464+1.5422𝜔−0.26992𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

𝜔=

15348.1583.14

1

0 1 0.0284118 0.1307291028525891 1 0.0284118 0.1442857796861582 1 0.0284118 0.1462953489261953 1 0.0284118 0.146597998447154 1 0.0284118 0.146643686984315 1 0.0284118 0.1466505866791916 1 0.0284118 0.1466516286990087 1 0.0284118 0.1466517860703378 1 0.0284118 0.1466518098374159 1 0.0284118 0.146651813426849

10 1 0.0284118 0.146651813968945

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑍=

𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

0.8976826923200720.8841260154865020.8821164462464650.8818137967255110.8817681081883510.8817612084934690.8817601664736530.8817600091023230.8817599853352460.8817599817458110.881759981203715

1701.5140714732

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

13.71 42.48313.15 369.8

0.152

6.33168198 0.03302067

𝑃= 𝐾𝑇= 𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

𝜔=

0.32274011

0.84680909

13.71313.1583.14

1

0 1 0.033020671 1 0.033020672 1 0.033020673 1 0.033020674 1 0.033020675 1 0.033020676 1 0.033020677 1 0.033020678 1 0.033020679 1 0.03302067

10 1 0.03302067

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃=𝑇=𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝒂) 𝑽𝒂𝒑𝒐𝒓 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

𝑍=𝑃𝑉/𝑅𝑇=

0.195710061600095 0.837310610.230752505276873 0.802268160.240001982751862 0.793018690.242567868564688 0.79045280.243289375316991 0.789731290.243493027728658 0.789527640.243550572079773 0.78947010.243566836810948 0.789453830.243571434378505 0.789449240.243572734008777 0.789447940.243573101387903 0.78944757

��

𝑏𝑎𝑟〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝑍_(𝑖+1)

1499.16099

0 0.03302067 0.033020671 0.03302067 0.043450972 0.03302067 0.04874753 0.03302067 0.051785624 0.03302067 0.053631975 0.03302067 0.054790536 0.03302067 0.05553157 0.03302067 0.056011028 0.03302067 0.056323689 0.03302067 0.05652852

10 0.03302067 0.0566631511 0.03302067 0.0567518212 0.03302067 0.0568102913 0.03302067 0.0568488814 0.03302067 0.0568743715 0.03302067 0.0568912116 0.03302067 0.0569023417 0.03302067 0.0569097

𝑉^𝑣=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑃=𝑇=𝑅=𝑍=

𝛽 (𝑍+𝜖𝛽)𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

𝒃) 𝒍𝒊𝒒𝒖𝒊𝒅𝒐 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

13.71313.1583.14

0.03302067

0.06604134 4.7829410213472 0.043450970.07647164 4.7330535135002 0.04874750.08176817 4.7077205042542 0.051785620.08480629 4.6931893855353 0.053631970.08665264 4.6843584111724 0.054790530.0878112 4.6788170725066 0.0555315

0.08855217 4.6752730612459 0.056011020.08903169 4.6729795385743 0.056323680.08934435 4.6714841135986 0.056528520.08954919 4.6705043501487 0.056663150.08968382 4.6698604190952 0.056751820.08977249 4.6694363392409 0.056810290.08983096 4.6691566729502 0.056848880.08986955 4.6689720791988 0.056874370.08989504 4.6688501669871 0.056891210.08991188 4.6687696208763 0.056902340.08992301 4.6687163913865 0.05690970.08993037 4.6686812083811 0.05691456

108.080755

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

(𝑍+𝜎𝛽)((1+𝛽−𝑍)/𝑞𝛽) 𝑍_(𝑖+1)

𝑉^𝑙=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝒃) 𝒍𝒊𝒒𝒖𝒊𝒅𝒐 𝒔𝒂𝒕𝒖𝒓𝒂𝒅𝒐

𝒄) 𝑬𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒂𝒄𝒌𝒆𝒕𝒕

𝑃=𝑇=

13.71 42.48 0.32274011313.15 369.8

0.152

𝒄) 𝑬𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒂𝒄𝒌𝒆𝒕𝒕

𝐾𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =𝜔=

0.276 0.84680909200

94.171929

𝑇_𝑅=𝑇/𝑇_𝐶 =𝑍_𝐶=𝑉_𝐶=𝑉^𝑠𝑎𝑡=𝑉_𝐶 𝑍_𝐶^( 〖 (1−𝑇_𝑟) 〗 ^(2/7) )=

13.71313.1583.140.152

0.32274011

0.84680909

-0.46762463

-0.20680344

-0.49905876

0.80979623

1537.8031

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟔𝟏) 𝒄𝒐𝒏 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒑𝒂𝒓𝒂 𝑩 ̂T (𝑷𝒊𝒕𝒛𝒆𝒓)

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝜔=

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟔𝟏) 𝒄𝒐𝒏 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒑𝒂𝒓𝒂 𝑩 ̂T (𝑷𝒊𝒕𝒛𝒆𝒓)

0 273.15

Cloroformo 270.9 119.377 536.4 54.72 334.3Metanol 1189.5 32.042 512.6 80.97 337.9Tetraclorometano 217.8 153.822 556.4 45.6 349.8

𝒂) 𝑬𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆𝒍 𝒄𝒂𝒍𝒐𝒓 𝒍𝒂𝒕𝒆𝒏𝒕𝒆 𝒅𝒆 𝑻_𝒏 𝒎𝒆𝒅𝒊𝒂𝒏𝒕𝒆 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟒.𝟏𝟑), 𝒅𝒂𝒅𝒐 𝒆𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝟎℃

∆𝐻 𝑎 0℃ 𝑀 𝑔/𝑚𝑜𝑙 𝑇_𝐶 𝐾 𝑃_𝐶 𝑏𝑎𝑟 𝑇_𝑟1 𝐾

𝑇1= ℃ =

𝑇_𝑛 𝐾

0.50922819 0.62322893 245.0102310305840.53287163 0.65918845 1055.198367262270.4909238 0.6286844 193.189192365062

Cloroformo 270.9Metanol 1189.5Tetraclorome 217.8

𝒂) 𝑬𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆𝒍 𝒄𝒂𝒍𝒐𝒓 𝒍𝒂𝒕𝒆𝒏𝒕𝒆 𝒅𝒆 𝑻_𝒏 𝒎𝒆𝒅𝒊𝒂𝒏𝒕𝒆 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟒.𝟏𝟑), 𝒅𝒂𝒅𝒐 𝒆𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝟎℃

𝑇_𝑟1 𝐾 𝑇_𝑟2 𝐾

𝐾

∆𝐻_2=∆𝐻_1 ((1−𝑇_𝑟2)/(1−𝑇_𝑟1 ))^0.38

𝒃) 𝑬𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆𝒍 𝒄𝒂𝒍𝒐𝒓 𝒍𝒂𝒕𝒆𝒏𝒕𝒆 𝒂 𝑻_𝒏 𝒎𝒆𝒅𝒊𝒂𝒏𝒕𝒆 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟒.𝟏𝟐)

∆𝐻 𝑎 0℃

8.314

119.377 536.4 54.72 334.3 0.6232289332.042 512.6 80.97 337.9 0.65918845

153.822 556.4 45.6 349.8 0.6286844

𝒃) 𝑬𝒍 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆𝒍 𝒄𝒂𝒍𝒐𝒓 𝒍𝒂𝒕𝒆𝒏𝒕𝒆 𝒂 𝑻_𝒏 𝒎𝒆𝒅𝒊𝒂𝒏𝒕𝒆 𝒍𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟒.𝟏𝟐)

𝑀 𝑔/𝑚𝑜𝑙 𝑇_𝐶 𝐾 𝑃_𝐶 𝑏𝑎𝑟 𝑇_𝑟2 𝐾𝑇_𝑛 𝐾∆𝐻_𝑛=(𝑅𝑇_𝑛)/𝑀 [(1.092(𝐼𝑛𝑃_𝐶−1.013))/(0.930−𝑇_𝑟𝑛 )] 𝐽/𝑔𝑅= 𝐽 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

247.7383296558281195.33417084974192.327119409147

∆𝐻_𝑛=(𝑅𝑇_𝑛)/𝑀 [(1.092(𝐼𝑛𝑃_𝐶−1.013))/(0.930−𝑇_𝑟𝑛 )] 𝐽/𝑔 𝐽 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

-194 C=

348.1583.14

15

0 1929.6794 1 -0.10053483 0.00410886 1743.608178220881 -0.11126353 0.00503261 1724.687791015682 -0.11248413 0.00514364 1722.546671466983 -0.11262394 0.00515643 1722.301558991584 -0.11263997 0.0051579 1722.273461928785 -0.11264181 0.00515807 1722.270240697986 -0.11264202 0.00515809 1722.269871388667 -0.11264204 0.00515809 1722.269829047818 -0.11264205 0.00515809 1722.269824193499 -0.11264205 0.00515809 1722.26982363694

𝒂) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 (𝟑.𝟒𝟎)

𝑅𝑇/𝑃 1 𝐵/𝑉_1 𝐶/(𝑉_2^2 )

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑃= 𝑏𝑎𝑟

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

15300 1930

0.8925

〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=

𝑉=𝑅𝑇/𝑃=𝑉_0=

𝒃) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒗𝒊𝒓𝒂𝒍 𝒕𝒓𝒖𝒏𝒄𝒂𝒅𝒂 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟑𝟖)], 𝒄𝒐𝒏 𝒖𝒏 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝑩 𝒐𝒃𝒕𝒆𝒏𝒊𝒅𝒐 𝒅𝒆 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒅𝒆 𝑷𝒊𝒕𝒛𝒆𝒓 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟔𝟑)]

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑃=𝑇=𝑅=

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃=

𝒃) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒗𝒊𝒓𝒂𝒍 𝒕𝒓𝒖𝒏𝒄𝒂𝒅𝒂 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟑𝟖)], 𝒄𝒐𝒏 𝒖𝒏 𝒗𝒂𝒍𝒐𝒓 𝒅𝒆 𝑩 𝒐𝒃𝒕𝒆𝒏𝒊𝒅𝒐 𝒅𝒆 𝒍𝒂 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒄𝒊𝒐𝒏 𝒈𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒂𝒅𝒂 𝒅𝒆 𝑷𝒊𝒕𝒛𝒆𝒓 [𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏(𝟑.𝟔𝟑)]

15 318.7348.15 37.683.14 0.286

0.39893617

1.09240665

-0.28335111

0.0203373

-0.27928365

0.89800836

1732.86823

13.76333.15

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝐵^0=0.083−0.422/(𝑇_𝑟^1.6 )=𝐵^1=0.139−0.172/(𝑇_𝑟^4.2 )=

𝐵 ̂T=𝐵^0+𝜔𝐵^1=𝑍=1+𝐵𝑃/𝑅𝑇=1+𝐵 ̂T 𝑃_𝑟/𝑇_𝑟 =𝑉=𝑍𝑅𝑇/𝑃= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝑇_𝐶=𝑃_𝐶= 𝐾𝑏𝑎𝑟𝜔=

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒆𝒅𝒍𝒊𝒄𝒉/𝑲𝒘𝒐𝒏𝒈𝑃=𝑇=

𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)=

66.8 0.20598802416.3

0.80026423

𝒄) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑹𝒆𝒅𝒍𝒊𝒄𝒉/𝑲𝒘𝒐𝒏𝒈𝐾𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =

𝑇_𝑅=𝑇/𝑇_𝐶 =

6.89203139 0.02230114𝑞=(Ψ𝑇_𝑅^(−1/2))/(Ω𝑇_𝑅 )=Ψ/Ω 𝑇_𝑟^(−3/2)= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

13.76333.1583.14

1

0 1 0.02230114 0.0213281543247372 1.000972981 1 0.02230114 0.146857795319519 0.875443342 1 0.02230114 0.166845652712008 0.855455483 1 0.02230114 0.170540758719702 0.851760384 1 0.02230114 0.1712418348202 0.85105935 1 0.02230114 0.171375500726625 0.850925646 1 0.02230114 0.171401008878881 0.850900137 1 0.02230114 0.171405877592229 0.850895268 1 0.02230114 0.171406806909649 0.850894339 1 0.02230114 0.171406984294592 0.85089415

10 1 0.02230114 0.171407018153266 0.85089412

1712.80107

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑍=

𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

15 37.6348.15 318.7

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑺𝒐𝒂𝒗𝒆∕ ∕〖𝑹𝒆𝒅𝒍𝒊𝒄𝒉 𝑲𝒘𝒐𝒏𝒈〗

𝑃= 𝐾𝑇= 𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

0.9189585

4.15058126𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =

𝛼_𝑆𝑅𝐾 (𝑇_𝑟;𝜔)=〖 [1+(0.480+1.574𝜔−0.176𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

0.39893617

1.09240665

0.286

𝑃_𝑅=𝑃/𝑃_𝐶 =𝑇_𝑅=𝑇/𝑇_𝐶 =

𝜔=

0.03164008

0 11 12 13 14 15 16 17 18 19 1

10 1

𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =𝑃=𝑇=𝑅=𝑍=

𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝛼_𝑆𝑅𝐾 (𝑇_𝑟;𝜔)=〖 [1+(0.480+1.574𝜔−0.176𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

15348.1583.14

1

0.03164008 0.124458151784922 0.9071819244844780.03164008 0.135003710259921 0.8966363660094790.03164008 0.136479369853457 0.8951607064159430.03164008 0.136688430752737 0.8949516455166630.03164008 0.136718100658891 0.8949219756105090.03164008 0.136722312450211 0.8949177638191880.03164008 0.136722910355989 0.8949171659134110.03164008 0.136722995235099 0.8949170810343010.03164008 0.136723007284604 0.8949170689847960.03164008 0.136723008995161 0.8949170672742390.03164008 0.136723009237993 0.894917067031407

1726.90302895892

��𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑷𝒆𝒏𝒈 𝑹𝒐𝒃𝒊𝒏𝒔𝒐𝒏

𝑃=𝑇=

𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )=𝛼_𝑃𝑅 (𝑇_𝑟;𝜔)=〖 [1+(0.37464+1.5422𝜔−0.26992𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

15 37.6 0.39893617348.15 318.7

𝒅) 𝑳𝒂 𝒆𝒄𝒖𝒂𝒄𝒊𝒐𝒏 𝒅𝒆 𝑷𝒆𝒏𝒈 𝑹𝒐𝒃𝒊𝒏𝒔𝒐𝒏

𝐾𝑏𝑎𝑟 𝑃_𝐶=𝑇_𝐶= 𝑃_𝑅=𝑃/𝑃_𝐶 =

1.09240665

0.286

0.92956922

5.00105946 0.0284118

𝑇_𝑅=𝑇/𝑇_𝐶 =

𝑞=(Ψ𝛼(𝑇_(𝑟)))/(Ω𝑇_𝑅 )= 𝛽=Ω 𝑃_𝑟/𝑇_𝑟 =𝛼_𝑃𝑅 (𝑇_𝑟;𝜔)=〖 [1+(0.37464+1.5422𝜔−0.26992𝜔^2)(1−𝑇_𝑟^(1/2)]〗 ^2=

𝜔=

15348.1583.14

1

0 1 0.0284118 0.1307291028525891 1 0.0284118 0.1442857796861582 1 0.0284118 0.1462953489261953 1 0.0284118 0.146597998447154 1 0.0284118 0.146643686984315 1 0.0284118 0.1466505866791916 1 0.0284118 0.1466516286990087 1 0.0284118 0.1466517860703378 1 0.0284118 0.1466518098374159 1 0.0284118 0.146651813426849

10 1 0.0284118 0.146651813968945

𝑃= ��𝑇= 𝑏𝑎𝑟𝑅= 〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑍=

𝛽 𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛 1

𝑉^𝑣=𝑍𝑅𝑇/𝑃=

0.8976826923200720.8841260154865020.8821164462464650.8818137967255110.8817681081883510.8817612084934690.8817601664736530.8817600091023230.8817599853352460.8817599817458110.881759981203715

1701.5140714732

〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑞𝛽 (𝑍−𝛽)/((𝑍+𝜖𝛽)(𝑍+𝜎𝛽))𝑍_(𝑖+1)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)

-388 C= -26000

473.1583.14

10

3934

1

3545.7691

0.9014

𝑎) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 𝑑𝑒𝑙 𝑔𝑎𝑠 𝑖𝑑𝑒𝑎𝑙𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)

𝑉=𝑅𝑇/𝑃=𝑃= 𝑏𝑎𝑟

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑧= (𝑧=1 𝑝𝑎𝑟𝑎 𝑢𝑛 𝑔𝑎𝑠 𝑖𝑑𝑒𝑎𝑙)

𝑏) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 (3.38)

𝑉=𝑅𝑇/𝑃+𝐵=

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1) 〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=

𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

-388 C=

〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2)

𝑐) 𝐿𝑎 𝑒𝑐𝑢𝑎𝑐𝑖𝑜𝑛 (3.40)

𝐵= 〖𝑐𝑚〗 ^3 〖𝑚𝑜𝑙〗 ^(−1)𝐾

473.1583.14

10

0 3933.7691 1 -0.09863314 -0.00168018 3539.15966275571 -0.10963054 -0.00207574 3494.342369205082 -0.11103663 -0.00212933 3488.600354498653 -0.11121939 -0.00213634 3487.853825484424 -0.11124319 -0.00213726 3487.756584089195 -0.1112463 -0.00213738 3487.743914496066 -0.1112467 -0.00213739 3487.742263720257 -0.11124675 -0.00213739 3487.742048632678 -0.11124676 -0.00213739 3487.742020607859 -0.11124676 -0.00213739 3487.74201695636

𝑅𝑇/𝑃 1 𝐵/𝑉_1 𝐶/(𝑉_2^2 )

𝑇=𝑅= 𝐾〖𝑐𝑚〗 ^3 𝑏𝑎𝑟 〖𝑚𝑜𝑙〗 ^(−1) 𝐾^(−1)𝑃= 𝑏𝑎𝑟𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝐼𝑡𝑒𝑟𝑎𝑐𝑖𝑜𝑛

-26000 3934〖𝑐𝑚〗 ^6 〖𝑚𝑜𝑙〗 ^(−2) 𝑉_0=

0.8866

𝑉_(𝑖+1)=𝑅𝑇/𝑃 (1+𝐵/𝑉_𝑖 +𝐶/(𝑉_𝑖^2 ))𝑍=𝑃𝑉/𝑅𝑇=𝑉/(𝑅𝑇/𝑃)=