+ All Categories
Home > Documents > ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY...

ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY...

Date post: 24-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
49
ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY 17 Columbia Circle Albany, NY 12203 Joseph Tario, Senior Project Manager and THE U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY P.O. Box 10940, MS 920-L Pittsburgh, PA 15236-0940 Michael Scarpino, Project Manager Prepared by: Shorepower Technologies 414 Trenton Ave Suite 2D Utica, New York 13502
Transcript
Page 1: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

ELECTRIC-POWERED TRAILER REFRIGERATION UNIT

SAFETY INTEGRATION DEMONSTRATIONAgreement No. 8485-1-5

January 28, 2009

Prepared for:

THE NEW YORK STATE ENERGY

RESEARCH AND DEVELOPMENT AUTHORITY

17 Columbia CircleAlbany, NY 12203

Joseph Tario, Senior Project Manager

and

THE U.S. DEPARTMENT OF ENERGY

NATIONAL ENERGY TECHNOLOGY LABORATORY

P.O. Box 10940, MS 920-LPittsburgh, PA 15236-0940

Michael Scarpino, Project Manager

Prepared by:

Shorepower Technologies414 Trenton Ave

Suite 2DUtica, New York 13502

Page 2: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

i

TABLE OF CONTENTS

Section Page

LIST OF FIGURES................................................................................................................................................ ii

LIST OF TABLES ................................................................................................................................................ iii

NOTICE ............................................................................................................................................................... iv

ACKNOWLEDGEMENTS.................................................................................................................................... v

EXECUTIVE SUMMARY .............................................................................................................................. ES-1

INTRODUCTION...............................................................................................................................................1-1

PRE-INSTALLATION SITE DESIGN ACTIVITIES.......................................................................................... 2-1

TRAILER RETROFIT AND SITE CONSTRUCTION........................................................................................ 3-1

DATA ANALYSIS AND RESULTS ..................................................................................................................4-1

OPERATIONAL ISSUES AND SOLUTIONS ....................................................................................................5-1

TECHNOLOGY TRANSFER AND OUTREACH ACTIVITIES.........................................................................6-1

CONCLUSIONS AND RECOMMENDATIONS ................................................................................................ 7-1

LOGIC DIAGRAM FOR INTEGRATED TRAILER LOCK AND ELECTRICAL CONNECTION ................... A-1

SYSTEM TRAINING AND OPERATING INSTRUCTIONS ............................................................................ B-1

DETAILED DATA REPORT............................................................................................................................. C-1

SHOREPOWER TECHNOLOGIES PRESS RELEASE ..................................................................................... D-1

REFERENCES ...................................................................................................................................................E-1

Page 3: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

ii

LIST OF FIGURES

Figure Number .................................................................................................................. Page

Figure 1-1: Refrigerated box truck capable of using electric connections............................................................ 1-1

Figure 1-2: Refrigerated box truck connected to electric power .......................................................................... 1-2

Figure 1-3: Willow Run Foods dock door and dock safety system, exterior view................................................ 1-3

Figure 1-4: Trailer secured to warehouse dock with dock safety system ............................................................. 1-3

Figure 1-5: Dock control panel at Willow Run Foods ........................................................................................ 1-3

Figure 2-1: Overhead view of Willow Run Foods .............................................................................................. 2-1

Figure 2-2: One-line diagram of Willow Run Foods electrical wiring................................................................. 2-2

Figure 2-3: Upgraded dock system design ......................................................................................................... 2-3

Figure 3-1: Side view of trailer plug assembly ................................................................................................... 3-1

Figure 3-2: Underside view of trailer plug assembly .......................................................................................... 3-1

Figure 3-3: Installed trailer connection with new lighting fixture........................................................................ 3-1

Figure 3-4: Electrical wiring for eTRU connection ............................................................................................ 3-2

Figure 3-5: Protective bumper for eTRU connection.......................................................................................... 3-2

Figure 3-6: New eTRU breaker panel ................................................................................................................ 3-2

Figure 3-7: Dock safety system control box before upgrade ............................................................................... 3-3

Figure 3-8: Dock safety system control box after upgrade.................................................................................. 3-3

Figure 4-1: Monthly HDD vs. Monthly Power Consumption Scatter Plot with Regression Line.......................... 4-5

Figure 4-2: Monthly CDD vs. Monthly Power Consumption Scatter Plot with Regression Line.......................... 4-5

Figure 4-3: Trailer payback period in months as a function of standby electricity weekly usage, given a cost of

$3.50 per gallon for off-road diesel fuel........................................................................................... 4-7

Figure 4-4: Trailer payback period in months as a function of standby electricity utilization percentage, given

$3.50 per gallon for off-road diesel fuel........................................................................................... 4-7

Figure 4-5: Connection payback period in months as a function of weekly connection usage, given a cost of

$3.50 per gallon for off-road diesel fuel........................................................................................... 4-8

Figure 4-6: Connection payback period in months as a function of connection utilization percentage, given a

cost of $3.50 per gallon of off-road diesel fuel. ................................................................................ 4-9

Figure 4-7: System payback period in months as a function of weekly connection usage, given a cost of $3.50

per gallon of off-road diesel fuel.................................................................................................... 4-10

Figure 4-8: System payback period in months as a function of connection utilization percentage, given a cost

of $3.50 per gallon of off-road diesel fuel. ..................................................................................... 4-10

Figure 4-9: Tier 2 and Tier 4 Monthly Criteria Emission Reductions................................................................ 4-12

Figure 4-10: Monthly CO2 Criteria Emission Reductions .................................................................................. 4-12

Page 4: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

iii

LIST OF TABLES

Table Number ................................................................................................................... Page

Table 4-1 - System Performance by Month for Electrical Consumption ................................................................4-2

Table 4-2 - Dock Location Performance by Month for Electrical Consumption a...................................................4-3

Table 4-3 - Staging Area Performance by Month for Electrical Consumption a .....................................................4-4

Table 4-4 - Ambient Temperature Conditions by Month.......................................................................................4-4

Table 4-5 - System Fuel and Cost Savings by Month............................................................................................4-5

Table 4-6 - Projected Annual Fuel and Cost Savings ............................................................................................4-6

Table 4-7 - Criterion Pollutant Emissions from Power Generation in 2001, , ....................................................... 4-11

Table 4-8 - System Criteria Emission Reductions by Month Compared to Tier 2 and Tier 4 Requirements.......... 4-12

Table C-1 - June 2008 Electrical Connection Usage Summary ............................................................................ C-1

Table C-2 - July 2008 Electrical Connection Usage Summary ............................................................................. C-2

Table C-3 - August 2008 Electrical Connection Usage Summary ........................................................................ C-2

Table C-4 - September 2008 Electrical Connection Usage Summary ................................................................... C-3

Page 5: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

iv

NOTICE

This report was prepared by Shorepower Technologies (hereafter the “contractor) in the course of performing workcontracted for and sponsored by the New York State Energy Research and Development Authority and the UnitedStates Department of Energy, National Energy Technology Laboratory (hereafter the "Sponsors"). The opinionsexpressed in this report do not necessarily reflect those of the Sponsors or the State of New York, and reference toany specific product, service, process, or method does not constitute an implied or expressed recommendation orendorsement of it. Further, the Sponsors and the State of New York make no warranties or representations,expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service,or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described,disclosed, or referred to in this report. The Sponsors, the State of New York, and the contractor make norepresentation that the use of any product, apparatus, process, method, or other information will not infringeprivately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring inconnection with, the use of information contained, described, disclosed, or referred to in this report.

Page 6: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

v

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the sponsors of this effort and the respective project managers: Joseph Tario

(New York State Energy Research and Development Authority) and Michael Scarpino (U.S. Department of Energy)

for their guidance and support. The Willow Run Foods, Inc. staff of James Donovan, John Mueller and Len Basso

provided significant logistical assistance to enable the team to complete the installation of the on-site and trailer-side

equipment. In addition, the authors also would like to acknowledge the leadership and guidance of Michael Panich

of Shorepower Technologies. We are very grateful for the technical expertise and input provided by Jeffrey Kim of

Shorepower Technologies and the support provided by James Harvilla of New York State Electric and Gas as well

as Tracy Mattice of Carrier-Transicold, John Penizotto of Carrier-Transicold, Inc. and Kyle Nelson of Rite-Hite

Corporation, all of which was critical to the successful completion of this project.

Thomas PerrotKevin King

Joseph Licari

Page 7: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

ES-1

Section ES:

EXECUTIVE SUMMARY

Background

In the U.S., trailer refrigeration units (TRUs) powered by small diesel engines have traditionally provided the trailer

cooling required for the transport of fresh and frozen foods. Small diesel engines are notoriously high emitters of

nitrogen oxides (NOx), particulate matter (PM), and carbon monoxide (CO) pollution. One approach to alleviate

these on-site air pollutants and noise emissions is to use electric power. This allows the trailer’s diesel engine to be

switched off when the unit is plugged into electric (shore) power.

In 2004, the New York State Energy Research and Development Authority (NYSERDA) funded a Phase 1

assessment of hybrid electric trailer refrigeration units (eTRUs), followed by a Phase 2 demonstration. During the

Phase 2 eTRU demonstration activity, it became apparent that there were safety issues during regular warehouse

operations that had not been previously identified. Warehouse workers and yard jockeys could not communicate

directly and would not be aware of when a trailer was connected to electric power. Typically, when the warehouse

worker completed their loading of the trailer and closed the warehouse door, the outdoor light signal system would

activate a green light, which indicates that the trailer is ready to be moved. The yard jockey cannot easily determine

the difference between an electric-capable eTRU and a conventional diesel TRU trailer, without an additional

indicator that an eTRU is still connected to electric power at the dock. Thus, the need to safely disconnect from

power at the warehouse became apparent.

This issue of safety could deter installation and utilization of these power connections at warehouse locations.

Additional analysis and testing would be required to demonstrate the necessary technology improvements to ensure

commercial success. In order to develop a methodology to safely disconnect the electricity to the eTRU-equipped

trailers from the refrigerated warehouse docks and prevent damage to the equipment, Shorepower Technologies

proposed and was awarded a Phase 3 contract to develop a safe approach to interlock the eTRU trailer and the

warehouse when connected to electrical power.

Approach

It is critical that these electric connections be located where the electric power capable trailers are parked.

Therefore, electrical connection designs must include active prevention of drive-offs to ensure trailers powered by

electricity are connected safely to the electrical outlet. To accomplish this, Phase 3 focused on the integration of

door operations, eTRU-equipped trailers, and trailer docking systems.

The scope of work was separated into seven (7) tasks; the first four (4) task elements included the design and

installation of the electrical facility. These four (4) tasks, listed below, were successfully completed as of March 31,

2008.

Page 8: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

ES-2

Task 1: Procure eTRUs, trailers, and tractor Auxiliary Power Units (APUs)

Task 2: Evaluate/design/integrate new dock safety system

Task 3: Integrate/test trailer wiring system onto nine (9) new eTRU-equipped trailers

Task 4: Deploy Facility Electrical and Data Connections

The remaining three (3) tasks were operational and project management activities to confirm operation and

functionality of the electrical power and dock safety system during a six (6) month system demonstration. These

tasks, listed below, were completed as of October 31, 2008.

Task 5: Optimize design and operations, as needed

Task 6: Collect and Analyze Data

Task 7: Reporting and Management

Pre-Installation Site Design Activities

To perform the demonstration, a site partner that wanted to achieve lower costs via electric power utilization for

TRU operations, needed to be located. Willow Run Foods, Inc., aware of the initial eTRU demonstration project at

Maines Paper & Food Service, approached the team as an interested party for the Phase 3 activities. Willow Run

Foods was presented with, and accepted, the opportunity to utilize Carrier Transicold’s Vector 1800 MT eTRUs in

their operations and to work with the project team to implement a dock safety plug-in system incorporated into their

existing dock safety procedures. Since the distribution center currently had several docks outfitted with a state-of-

the-art dock safety system, they met the criteria established by the project team to integrate an eTRU facility with

the most current dock safety systems. At this point, all parties agreed to participate in the project and a Site

Agreement was signed in February 2007.

To ensure that adequate power was available to operate the eTRUs, the electrical capabilities at the distribution

center were assessed. In addition, staff reviewed the specifications of all dock doors, including the versions of the

dock safety system installed and the interior and exterior warehouse space available for additional hardware. Staff

also discussed IT requirements for data collection and operational strategies with Willow Run Foods management

staff to maximize the utilization of electric power. It was determined that all requirements could be met with the

facility and logistical operations, allowing a final site design to be developed. Four (4) dock locations equipped with

the latest trailer warehouse docking system were selected to be incorporated into the demonstration. In addition, one

non-docking location in a trailer staging area was also selected to assist Willow Run Foods in maximizing eTRU

electric power use.

Site Construction

A local contractor was chosen for site construction after three bids were evaluated for best value at the lowest cost.

Facility construction began in February 2008 and was completed in March 2008. Newly designed dock safety

system improvements were installed into the existing trailer docking system. Upgraded control hardware and

software as well as electrical switching systems were integrated to the existing controls to enable safe dock system

Page 9: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

ES-3

operation. This system upgrade also enabled power flow control to the electric power connections mounted at the

dock.

Electrical upgrades for five (5) 480 volt, three-phase power feeds, including a new 200 amp breaker panel, were

made to the warehouse electrical distribution system. Five (5) electrical connections were installed at the identified

warehouse locations. Four (4) dock locations – Dock 23, Dock 24, Dock 27 and Dock 28 – integrated the electrical

connections with the most current dock safety system. One (1) conventional eTRU connection was installed at a

staging area between Docks 42 and 43 since a warehouse door is not located in this space. The equipment installed

was inspected and functioned normally. After construction was completed, these connections were immediately

integrated into regular warehouse operations.

Trailer Retrofit

Nine (9) trailers were retrofitted with an under-trailer wiring system. The retrofit was performed by Penn Detroit

Diesel Allison, a Carrier Transicold dealership in Syracuse, NY. The retrofit began in April 2007 and it was

completed in June 2007. This system utilizes a re-designed trailer plug and socket system which provides additional

safety by preventing road debris from contaminating or damaging the trailer connector.

Data Collection

Electrical usage data were collected for six (6) months to ensure proper facility operation and to monitor diesel fuel

displacement and emissions reductions. During the demonstration period, the facility’s electrical connections

operated within expected parameters. Over a four (4) month period, 1430 gallons of diesel fuel has been displaced

by electricity, and reductions in criteria emissions were; 205.7 kg of CO, 265.7 kg of NMHC and NOX, 8.31 kg of

PM (at Tier 4), and 3,616 kg of CO2.

Conclusions

The design and installation of the modifications to integrate the dock safety system with the electrical power

infrastructure system was effective and was deemed successful by the project partners. All work was completed

prior to the end of the March 31, 2008 contract period for the installation of the equipment. This facility operated as

a demonstration site to collect data on the system operations and the diesel displacement via use of grid-supplied

electric power through October 31, 2008. Willow Run Foods management stated that these facility improvements

would be used as part of standard operations after the conclusion of the demonstration project. Hardware design,

facility installation, and data collection conclusions are as follows:

Integration of the control system design and the facility upgrades and modifications for the dock safety

system was successful.

The warehouse-mounted bumper system provided adequate protection for power outlet modules.

The warehouse dock safety system and power connection system were successfully integrated together to

provide efficient and faultless warehouse operations.

Page 10: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

ES-4

A cost effective design was developed to ensure that this system could be installed as either a new install or

a retrofit product at other warehouses using similar warehouse dock door safety systems to secure trailers.

It was documented through warehouse facility operations that use of electricity to power eTRUs is an

effective approach to reduce operational costs and environmental impacts by eliminating diesel fuel

consumption and corresponding emissions.

From this assessment, additional economic and environmental savings could be achieved by developing

and installing a power management system.

All partners participating in this demonstration project were satisfied with the outcomes of the design,

installation, and operation of the system.

Page 11: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

1-1

Section 1:

INTRODUCTION

1.1 BACKGROUND

Small diesel engines traditionally have powered trailer refrigeration units (TRUs) in the U.S. in order to provide

trailers with the cooling required for the transport of fresh and frozen foods. These small diesel engines are high

emitters of criteria pollution like nitrogen oxides (NOX), particulate matter (PM), carbon monoxide (CO), and

carbon dioxide (CO2). While most of these pollutants are regulated, diesel-powered TRUs remain significant

contributors to air quality issues in and around truck stops, distribution terminals and, to a lesser extent, grocery

stores. In addition, operation of TRU diesel engines creates noise pollution. This can be a significant concern in

populated areas, as these commodity deliveries often occur during the late evening and early morning hours. The

on/off cycling of these diesel engines generates the emissions and noise most urban areas are attempting to reduce.

Electric TRU Development

To address the inefficiencies associated with regular diesel-driven TRUs, manufacturers have developed hybrid

diesel-electric units and other alternative technologies. Many of the units that are capable of being powered by grid-

supplied electricity are belt-driven mechanical models with additional electric motors that allow the diesel engine to

be switched off when the unit is plugged into electric power (shore power). This is referred to as “standby”

operation. Some new hybrid-electric TRU models (eTRUs) have fully electric components that can use shore power

or be powered by small diesel generator-sets for over-the-road use. The eTRUs are now commercially available in

the United States; however, the shore power connection infrastructure for eTRUs and standby TRUs is unavailable

at most warehouse and truck stop locations. To support the deployment of these connections, the Electric Power

Research Institute (EPRI) is leading efforts for developing standards to ensure uniformity across the industry.

Electric-capable reefer units (whether electric-driven mechanical units or eTRUs) have high power requirements.

The electric-diven mechanical units generally use single-

phase 200VAC power. This limits large capacity trailers

to maintaining the temperature within the cargo

compartment. Newer eTRUs use three-phase 480VAC

power which provide the capability to bring a trailer down

to loading temperature. Most deployed shore power

infrastructure to date provides only single-phase power for

engine block heaters and cab “hotel” loads. Some

refrigerated warehouses and distribution centers have

electricity connections installed, usually for smaller

refrigerated box trucks equipped with a mechanical-driven

electric-standby connection. Photos of this type of unit and connection are shown in Figure 1-1 and Figure 1-2.

Although progress continues to be made, the ability to plug-in to shore power electricity remains limited.

Figure 1-1: Refrigerated box truck capable of using electricconnections

Page 12: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

1-2

As more eTRUs and electric-standby TRUs become

available in the marketplace, there becomes an increasing

risk for trailers to be inadvertently driven away from a

facility while still plugged in to grid power. These high-

voltage connections would be a serious safety hazard if

damaged by such an incident. Many warehouses and

delivery locations have lock mechanisms that secure trailers

to the docking location during loading and unloading. By

integrating the electrical connection’s operation into these

locking mechanisms, it would significantly reduce the risk of

drive-offs occurring. The demonstration of this technology integration will illustrate anticipated and unanticipated

safety benefits and shortcomings associated with this type of hardware interconnection.

1.2 PHASE 1 eTRU FEASIBILITY ASSESSMENT

Shurepower, LLC, now doing business as Shorepower Technologies, was tasked in September 2004 by the New

York State Energy Research and Development Authority (NYSERDA) to perform a feasibility analysis of eTRU

technology1. This assessment was completed in June 2005 and the Final Report can be found at

http://www.nyserda.org/publications/ElectricPoweredTrailerRefrigeration.pdf. The results of the study indicated

that eTRUs were ready to be commercially deployed. Following the completion of the feasibility assessment, a

Phase 2 demonstration project was proposed and awarded by NYSERDA to Shorepower Technologies.

1.3 PHASE 2 eTRU DEMONSTRATION

As a follow-on effort, Shorepower Technologies was tasked by NYSERDA to perform a demonstration of eTRU

technology at Maines Paper and Food Service in Conklin, NY. This demonstration was completed on January 31st,

20082. The results of the demonstration indicated that eTRUs are a commercially viable replacement for

conventional TRUs. The eTRUs outperformed their conventional counterparts in many areas including fuel

efficiency. However, the electric capability of these eTRUs was not fully utilized for a number of reasons; one

being that a safer connection to the warehouse could not be obtained. Following this Phase 2 demonstration, a Phase

3 eTRU safe warehouse connection design and demonstration project was proposed and awarded by NYSERDA to

Shorepower Technologies.

1.4 PHASE 3 APPROACH

In September 2006, Shorepower Technologies was awarded a cost-shared contract by NYSERDA, with co-funding

from the Department of Energy, to design, develop and field test an integrated dock electrical connection/safety

system. The goals of this phase of the eTRU project were to prove and fully demonstrate the facility and trailer

hardware to enable a sustainable market for eTRU/facility connections. Developing and demonstrating a safety

system that is needed to ensure safe and efficient eTRU/facility connections is essential to meet this goal.

Figure 1-2: Refrigerated box truck connected to electricpower

Page 13: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

1-3

The primary objective was to design, install, and evaluate a

system that would incorporate the operational demands of a

distribution center’s trailer loading and unloading procedures

and integrate a dock safety system. The location for this

demonstration was Willow Run Foods, Inc., a refrigerated

warehouse facility located in Kirkwood, NY. This warehouse

operation utilizes state-of-the-art warehouse-trailer safety

docking systems produced by Rite-Hite Corporation (see

Figure 1-3, Figure 1-4, and Figure 1-5). Upgrades to the Rite-

Hite docking system were integrated into the conventional

safety system to prevent the release of a trailer from the bumper

capture system while it was still connected to the electric outlet module. Shorepower Technologies, New West

Technologies, LLC, Willow Run Foods, and Rite Hite Corporation worked through various permutations of design

implementation to ultimately develop a system that met all of the project partners’ demands.

The scope of work for Phase 3 was broken out into seven (7) distinct tasks; each deemed necessary to effectively

demonstrate the components needed for a successful commercial deployment of eTRUs. The first four (4) tasks

were required to complete the design and installation of the electrical facility. The final three (3) tasks were

operational activities and project management. The first four (4) tasks were complete as of March 31, 2008; the

final three (3) tasks were complete as of October 31, 2008.

Design and Installation

Task 1: Procure eTRUs, trailers, and tractor APUs

Task 2: Evaluate/design/integrate new dock safety system

Task 3: Integrate/test trailer wiring system onto nine (9) new eTRU-equipped trailers

Task 4: Deploy Facility Electrical and Data Connections

Figure 1-5: Dock control panel at Willow Run FoodsFigure 1-4: Trailer secured to warehouse dock with dock safetysystem

Figure 1-3: Willow Run Foods dock door and dock safetysystem, exterior view

Page 14: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

1-4

System optimization, Data collection and analysis, and Project Management

Task 5: Optimize design and operations, as needed

Task 6: Collect and Analyze Data

Task 7: Reporting and Management

Page 15: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

2-1

Section 2:

PRE-INSTALLATION SITE DESIGN ACTIVITIES

2.1 SITE SELECTION

As one of the leading independent foodservice distributors in the country, Willow Run Foods has been committed to

providing the highest level of quality, reliability and customer service. One of their methods is to incorporate

leading edge technologies and equipment in their operations. Willow Run Foods was aware of the Phase 2

integration of new Carrier Transicold Vector 1800 MT electric-hybrid trailer refrigeration units at Maines Paper &

Food Service, which is located only a few miles from Willow Run Foods’ distribution center (Figure 2-1). This

center is also located in the project partner’s, New York State Electric and Gas (NYSEG), service area.

Willow Run Foods was presented with, and accepted, the

opportunity to utilize the Vector eTRUs into their

operations and to work with the project team to implement

a dock safety plug-in system incorporated into their

existing Rite Hite Corporation’s DokLok dock safety

system. The distribution center currently had several

docks outfitted with the latest dock-trailer safety system

that would facilitate design modifications. Both Willow

Run Foods and Rite Hite Corporation saw the development

of an electrical interlock to prevent trailers from leaving a

dock bay while the eTRU remained connected to the

power outlet as a desirable product enhancement.

2.2 PRE-DESIGN ASSESSMENT

Several factors were considered in the pre-design decisions. Primary among them were the power capabilities at the

distribution center and the trailer safety system installed at the bay doors.

The distribution center was already connected to the required 480VAC, 3-phase power. Shorepower Technologies,

New West Technologies, Willow Run Foods and an electrical subcontractor examined the existing electrical

infrastructure and determined that the required amperage was available at the main service panel. As part of the

preliminary design work, both the main panel and a secondary panel were investigated for the systems service feed

connections. After discussions with maintenance and management personnel, it was decided that a new 200-amp

electrical breaker panel would be installed adjacent to an existing panel in the refrigerated warehouse adjacent to the

bays that will be modified with the new dock safety system.

Warehouse operations were discussed with Willow Run Foods management to determine if any operational factors

would impact the design and implementation of the demonstration. They indicated that they had two dock lock

models installed at their doors with one being the latest version from Rite-Hite. After discussions with Rite-Hite

Figure 2-1: Overhead view of Willow Run Foods

Page 16: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

2-2

Corporation and a site visit by their staff, it was confirmed that docks number 23 through 28 were equipped with the

newer version of the control system and would be good candidates for modification. It was also determined that

trailers with the Vector units, as much as they will be used in normal procedures, can be somewhat optimized at the

proposed dock locations. Willow Run management was interested in maximizing any cost savings from operating

the Vector units on electrical power. Through these discussions, it was also decided that along with modifying four

dock safety systems, the project would install an outlet module at a trailer staging area to assist in further maximize

cost savings.

Access to Willow Run Foods’ computer and Internet connections was also a consideration in the design of the

electrical facility layout. The office containing the computer equipment and Internet connections was located

between the proposed dock location and the staging area location. The relative proximity of the electrical service

feed, breaker panels, and data center offered a good opportunity to minimize project installation costs as it was

centrally located near the two warehouse areas targeted for the demonstration.

2.3 FACILITY DESIGN

The overall site design was optimized by the project team and Willow Run Foods staff for maximum use of the

electrical connections. It was determined that five (5) connections would be installed. Four (4) of these eTRU

connections would be located at docks where a DokLok dock connection safety system would be integrated into

their operation. The fifth location would be a

staging area with no dock or existing safety

system.

From conversations with the dock safety system

manufacturer, Rite-Hite Corporation, and Willow

Run Foods, it was determined that the exact

locations for these connections would be Docks

23, 24, 27, and 28 and the staging area would be

between Docks 42 and 43. These dock locations

were chosen based upon the model of safety system currently installed as well as wall clearance from permanent

exterior structures like roof drainage downspouts. The staging area was chosen because it was the most convenient

location to install the hardware for trailer usage and costs. Approximate positions of the connections can be seen in

the drawing in Figure 2-2.

2.3.1 DOCK SAFETY SYSTEM INTEGRATION WITH HIGH VOLTAGE ELECTRICAL

CONNECTIONS

Two minor changes were made to previously designed power connection modules for use in the electrical facility

equipment. First, the dual gang modules installed during the Phase 2 Demonstration at Maines Paper and Food

Service were modified to a single gang electrical connection unit within dual gang housing. The installation of a

dual gang connection unit to service two dock bays would require the eTRU power cable to pass underneath a trailer

Figure 2-2: One-line diagram of Willow Run Foods electrical wiring

Page 17: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

2-3

docked to the right of the eTRU outlet connection, making it difficult and possibly unsafe to use dual gang units on

warehouse connections. All trailer connectors are located on the driver’s side. The dual gang enclosure was

selected as it was large enough to house the electrical power system, data collection and dock safety control

hardware. This hardware was the second change in design of the connection as the extra space in the dual gang

enclosure also permitted the installation of the dock safety sensor that determined if a trailer was connected to the

electrical power module (see Figure 2-3). This second change was designed to interrupt the manual internal

warehouse release switch and force the safety system to remain locked while a trailer is connected to shore power to

prevent a “drive-off” situation (trailer leaving the dock while still connected to shore power). This change was not

implemented on the equipment located at the staging area since a locking safety system was not installed at that

location.

In order to support communication with the power

connection module, the dock safety system also required

an upgrade. The upgrade included several new

components. The new hardware gave the system the

ability to monitor the status of the eTRU connection for

the trailer. A three-light indicator (Red, Yellow, and

Green) replaced the two-light indicator (Red and Green)

on the exterior of the warehouse at each modified bay to

inform the driver of the system’s status. The third

(yellow) light alerts the driver that the interior

warehouseman has closed the warehouse door, triggered the control panel release switch, and the trailer was ready

for departure; however, the trailer was still connected to shore power and, consequently, the safety system had not

released the trailer. When power is terminated at the power module, the dock safety system releases the trailer and

the light turns green. As part of this dock safety system upgrade, a relay that prevents electricity from flowing to the

eTRU connection while the dock safety system is not engaged was added. This supplementary design modification

was integrated as a second method to reduce the risk of electrical arcing during connection. A logic diagram is

included in Appendix A. The electric modules incorporate a limit switch that will turn power off at the outlet when

a plunger is pulled out or the connector is disengaged.

2.3.2 FACILITY DATA COLLECTION SYSTEM DESIGN

The data collection system design is very similar to the one used in Phase 2 of the project. As before, a sensor that

outputs pulses based on the amount of energy used by an eTRU connection was attached to a data logger, which

records the pulses. The data loggers interface with the existing Willow Run Foods Information Technology (IT)

infrastructure and report data across the Internet where it is stored for real-time or historical viewing. This data

collection system design takes advantage of the proximity of the warehouse-mounted connections to the IT control

hardware. This design change permitted the reduction of data collection devices. The design used all hard-wired

Figure 2-3: Upgraded dock system design

Page 18: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

2-4

line transmission to collect and report data, which significantly improved the system’s reliability in non-ideal

operating environments.

Page 19: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

3-1

Section 3:

TRAILER RETROFIT AND SITE CONSTRUCTION

3.1 UNDER-TRAILER CONNECTION INSTALLATION

The retrofit of the under trailer wiring system occurred after the new Vector-equipped trailers had begun use in

normal warehouse operations at Willow Run Foods. Nine (9) eTRU-equipped trailers were retrofitted with the

under trailer wiring system starting in April 2007 and finished in June 2007. The modifications were performed by

Penn Detroit Diesel Allison (PennDDA), a certified installer of Carrier-Transicold products. Pictures of the installed

connections are included as Figure 3-1 and Figure 3-2, and a detailed discussion of the design and installation of the

under trailer wiring system can be found in Appendix B of the Phase 2 report, referenced previously in this report.

3.2 ELECTRICAL FACILITY CONSTRUCTION

After the approval of the facility design by the host site, construction of

the electrical facility began. Three bids were received for the electrical

work per NYSERDA requirements and an electrical subcontractor was

selected for the work. The selection of the electrical subcontractor was

based upon multiple factors, which included the lowest cost and the best

value/accuracy based on demonstrated familiarity with the installation

parameters. A new 200Amp, 480VAC, 3-phase distribution panel with

five (5) ML breakers was installed on a wall of the control office located

in the center of the warehouse docks. To provide power, a new 200Amp

breaker was installed in the main service panel for the eTRU connections.

Figure 3-3 through Figure 3-6 show the installation of the facility wiring,

the electrical facility connections, and bumpers to protect the electrical connections. Figure 3-3 shows the installed

eTRU module and the new 3-light system. Figure 3-4 shows an electrical wiring junction box and the wall

penetrations to the eTRU module. Figure 3-5 shows the protective bumper for the eTRU module. Figure 3-6 shows

the new 200Amp 480VAC breaker panel that was installed for the eTRU modules.

Figure 3-2: Underside view of trailer plug assemblyFigure 3-1: Side view of trailer plug assembly

Figure 3-3: Installed trailer connection withnew lighting fixture

Page 20: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

3-2

3.3 INTEGRATION OF DOCK SAFETY SYSTEM DESIGN

The integration of the power connection module into the existing dock safety

system to ensure that a trailer could not be pulled away while it was still

connected to the warehouse-mounted power module was developed through

discussions with the manufacturer of the dock system (Rite-Hite Corporation),

New West Technologies, Willow Run Foods, and Shorepower Technologies.

The upgrade kit for the controls includes a 3-light outside light assembly and a

URC Panel Assembly consisting of several components. The control module

was preprogrammed with the special program required by the subsystem. All

existing system operations were accommodated, ensuring that the doors and

DokLok system would operate normally for non-Vector equipped trailers.

Before and after pictures of the upgraded panel assembly can be seen in Figure

3-7 and Figure 3-8. The new 3-light system was shown previously in Figure

3-3. The new light assembly and the eTRU electrical connection required the

installation of additional wiring.

Figure 3-5: Protective bumper for eTRU connectionFigure 3-4: Electrical wiring for eTRU connection

Figure 3-6: New eTRU breaker panel

Page 21: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

3-3

3.4 SYSTEM TRAINING

On March 26, 2008, Shorepower Technologies, and Carrier-Transicold conducted training for Willow Run Foods’

facilities operations personnel. The training included two parts: a classroom presentation and a field demonstration

of the system’s operation. The presentation was held at their corporate location in Kirkwood, NY and was attended

by the Willow Run Foods management, facilities personnel, safety training coordinator, drivers, and service

technicians. The presentation provided a background of the project, the project partners, Carrier Deltek eTRU

technology, electrical safety warnings, system components, detailed system connection/disconnection and operation

instructions, as well as precautions to prevent/limit an unattended drive-away from a vehicle still connected to the

power module that could occur at the staging area. The presentation included a copy of the instruction sticker that

was affixed to the face of each module enclosure, as well as a copy of the warning sticker that was attached at the

trailer electrical connector. The text of the instructional sticker is included in Appendix B.

Following the classroom presentation, all attendees visited a modified dock bay with an attached Vector equipped

trailer for a hands-on demonstration of the eTRU connection/disconnection procedure and correct operations. This

equipment demonstration during the training session was performed under the direction of Shorepower

Technologies and Carrier-Transicold. Questions from Willow Run Foods personnel were addressed during the

demonstration to ensure all operators understood how to properly operate the system. Each person attending the

demonstration was given the opportunity to complete a full connect/disconnect procedure.

Figure 3-8: Dock safety system control box after upgradeFigure 3-7: Dock safety system control box before upgrade

Page 22: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-1

Section 4:

DATA ANALYSIS AND RESULTS

4.1 APPROACH

The focus of this project phase was to integrate eTRU shore power connections with existing warehouse safety

operations. The process involved using existing mechanical interlocks between the trailer and the warehouse to

prevent a “drive-away”, or disembarkation from the warehouse while connected to shore power, from occurring. A

drive-away could cause serious damage to the trailer, the eTRU connection, and the warehouse in addition to posing

a serious safety hazard if 480 VAC electrical wiring was exposed in the incident.

Two necessary data elements were identified to document and assess the new safety system design. First, the

operation of the electrical facility must be inspected by the operations manager on a daily basis. This assessment of

operational readiness permitted the identification of system errors and issues that required repair or redesign.

Second, measured utilization of the electrical facility ensures that the connections are operating properly. These

data are assessed for validity. Finally, fuel and emissions savings are calculated using these data sets.

4.2 ELECTRICAL FACILITY USAGE DATA

Data collection was performed over a six (6) month period. The data collection period allowed for sufficient

observation of the facility to determine if the additional safety integration had negative impacts on system

performance or warehouse operations. Raw electrical data were collected remotely and archived in an off-site

database. The data collected allowed five key metrics to be assessed. These metrics included eTRU connect hours

(Total Hours in hr), the energy usage at the connection (Energy Usage in kW-hr), the average power usage of the

connection (Average Power in kW), the peak demand at the connection (Peak Demand in kW), and the peak to

average ratio of the connection (Peak to Average Ratio; no units). These metrics were applied to two distinct states

of the system: 1) when an eTRU was connected via power cable to the warehouse electrical power connection, and

2) when an eTRU is connected via power cable to the warehouse electrical power connection and utilized grid-

supplied electricity. To assess the amount of time an eTRU is grid connected and requires electrical power, two

ratios were also calculated: 1) the percentage of time an eTRU connects to a warehouse-mounted shore power

electrical power outlet (Connection Usage Percentage), and 2) the percentage of time an eTRU requires electricity to

maintain trailer temperature while connected to the warehouse-mounted shore power electrical power outlet

(Connection Operational Percentage).

Monthly data reports were created to evaluate the collected electrical data. These reports contain the comprehensive

warehouse-mounted shore power system usage summary and include a breakdown by dock location with the above

usage metrics. Since the warehouse-mounted shore power system has two distinct types of connections (warehouse

doors with the DokLok safety system and a staging area location), the two types of system connections were

evaluated separately and as an entire system.

Page 23: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-2

Additionally, the system envelope was documented to understand how system usage affects warehouse demand on

the electrical utility. The system envelope for this project is defined as the total demand at any given time by the

eTRU electrical infrastructure system. Documentation of the system envelope data establishes the baseline

parameters for future eTRU system design improvements, such as demand-side management. However, it should be

noted that a complete system envelope assessment for these data is outside the demonstration scope for this project

and does not contribute to the assessment of the integrated eTRU safety system. The Data Reports, Term

Definitions, and Report Analysis Information are included in Appendix C of this report.

An assessment was performed on the data set to confirm validity to ensure the collected data are of statistical

significance. When these statistical tests were performed on the data collected during the months of April 2008 and

May 2008, systemic performance anomalies were identified. Specifically, the data collection system was not

operating properly on two docks (Dock 23 and Dock 24). Two distinct causes of these data collection failures were

identified. On Dock 23, one-third of the expected power usage was reported for the first two months of data

collection. Evaluation of the hardware indicated that the data collection hardware was using incorrect settings. On

Dock 24, no power usage was reported for the first 2 months of data collection. An evaluation of this dock

determined that a data collection wire had failed. The data collection system for both dock connections was repaired

and recalibrated in May 2008.

Although two causes of the anomalies were isolated, the anomalies could not be retroactively corrected and

therefore the data could not be validated. All succeeding data reports were successfully validated via statistical

assessment. Only the four (4) valid data sets were included in Appendix A, Table 4-1, and the subsequent analysis

of the system’s performance. In this report, we define the “System” to be the collection of electrical infrastructure

hardware (connections, breakers, electrical conduit, safety hardware, etc.) and the associated eTRUs.

Table 4-1 - System Performance by Month for Electrical Consumptiona

Month

HoursRefrigerationSystems On

StandbyPower

HoursRefrigeration

SystemsDraw Power

EnergyConsumed

(kW-hr)

AveragePower(kW)

ConnectionUsage

Percentage

JUNE 2008 471.4 372.3 3630.4 ± 0.8 7.7 ± 5.1 12.7%

JULY 2008 463.8 367.8 3569.8 ± 0.8 8.2 ± 5.5 12.5%

AUGUST 2008 238.6 198.9 1857.2 ± 0.6 7.8 ± 4.9 6.4%

SEPTEMBER 2008 317.8 248.5 2211.2 ± 0.6 7.0 ± 4.9 8.5%

Totals 1491.5 1187.6 11268.6 ± 1.4 10.2%

Ideally, any time an eTRU-equipped trailer is parked at the warehouse and required temperature control, the unit

would be connected to one of the electrified docks to achieve maximum utilization. In the first phase of this

demonstration, it was shown that an operational refrigerated trailer spends, on average, six (6) hours each day

a Energy Consumed (kW-hr) and Average Power (kW) were measured in system state one (1), when an eTRU isconnected to a shorepower connection.

Page 24: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-3

stationary (http://www.nyserda.org/publications/ElectricPoweredTrailerRefrigeration.pdf). This stationary period

includes time when the trailer is located at the warehouse preparing to receive a load or loaded and waiting for

distribution. On average, refrigerated trailers are used six (6) days a week. If all nine (9) of the eTRUs at Willow

Run Foods are connected to electricity during the six (6) stationary hours, six (6) days a week, then there would be

324 hours of usage each week. Willow Run Foods has five (5) available connections, which results in 840 hours of

available usage over 24 hours a day, seven (7) days per week. If the facility is experiencing the predicted maximum

utilization, then the Connection Usage Percentage metric would be 39%, or 324 hours divided by 840 hours. From

Table 4-1, we can see that the average facility usage is roughly one quarter what is expected for maximum usage.

4.2.1 ELECTRICAL FACILITY EQUIPMENT ISSUES

During the month of September 2008, one of the warehouse-mounted outlets suffered a failure with the hardware

that integrated the trailer DokLok mechanism to the power relay that allows electricity to flow to the eTRU. While

the failure did not prevent the normal operation of the lock, it defeated one of the safety measures that was

developed to increase system safety. The electrical connection was temporarily decommissioned until repairs could

be completed, which reduced connection utilization for the month of September 2008.

4.2.2 STAGING AREA AND DOCK LOCATION OPERATIONAL DIFFERENCES

Electrical connection utilization data from the staging area and dock locations were collected and a usage

assessment was performed. Table 4-2 and Table 4-3 show the monthly summaries of DokLok-mounted electrical

connections and the staging area electrical connection, respectively. From these summaries, two specific differences

in the usage at these locations are illustrated. First, the connection operational percentage is higher for the DokLok

warehouse door location versus the staging area location. Second, the average power used at the staging area is

significantly lower than the DokLok warehouse door locations.

Table 4-2 - Dock Location Performance by Month for Electrical Consumption a

Month

HoursRefrigerationSystems On

StandbyPower

HoursRefrigeration

SystemsDraw Power

EnergyConsumed

(kW-hr)

AveragePower(kW)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

JUNE 2008 382.3 315.3 3232.1 ± 0.7 8.5 ± 5.2 12.8% 82.5%

JULY 2008 318.3 271.3 2849.6 ± 0.6 9.0 ± 5.8 10.7% 85.3%

AUGUST 2008 175.3 152.9 1544.6 ± 0.5 8.8 ± 5.1 5.9% 87.3%

SEPTEMBER 2008 215.9 179.0 1780.7 ± 0.5 8.2 ± 5.2 7.3% 82.9%

Totals 1091.7 918.6 9407.1 ± 1.2 9.3% 84.1%

One possible cause for this discrepancy in connection operation percentage and average power usage is that trailers

are being prepared to receive loads while connected to the DokLok warehouse door locations. This scenario is

unlikely, since the design of the lock system prevents electricity from flowing to the trailer when the trailer lock

system is not engaged. Trailers are locked to the warehouse by personnel inside the facility when they are ready to

load a trailer. Any trailer connected to the warehouse that is to receive a load must be pre-cooled prior to loading

Page 25: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-4

any product. Since the safety lock system requires the trailer lock system to be positively engaged by the interior

facility staff, the flow of electricity to the eTRU does not begin until the lock is engaged therefore significantly

reducing the likelihood of electricity use to pull down the trailer temperature.

Table 4-3 - Staging Area Performance by Month for Electrical Consumption a

Month

HoursRefrigerationSystems On

StandbyPower

HoursRefrigeration

SystemsDraw Power

EnergyConsumed

(kW-hr)

AveragePower(kW)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

JUNE 2008 89.2 57.0 398.3 ± 0.3 4.5 ± 4.7 12.0% 63.9%

JULY 2008 145.5 96.5 720.2 ± 0.4 4.9 ± 4.7 19.6% 66.3%

AUGUST 2008 63.3 46.0 312.6 ± 0.3 4.9 ± 4.4 8.5% 72.6%

SEPTEMBER 2008 101.8 69.5 430.5 ± 0.4 4.2 ± 4.0 13.7% 68.2%

Totals 399.8 269.0 1861.6 ± 0.7 13.7% 67.3%

A more plausible explanation is that, when connected at the staging area, the doors to the trailer are closed;

conversely, when the trailer is connected at the dock, the doors are open. The seal between the trailer and the

warehouse dock is neither highly insulated nor air tight which may result in heat transfer from air outside of the

warehouse. The impact of moderate infiltration of warmer ambient air would result in the need for the refrigeration

system to operate more frequently at the docks than at the staging area. This could result in higher average power

consumption and higher operational percentages at the dock locations. Data were not collected that could be used to

determine how the temperature profile near dock doors varies while a trailer is docked and the door is open.

However, anecdotal data suggest that the temperature difference due to outside air infiltration is noticeable.

4.2.3 ANALYSIS OF AMBIENT TEMPERATURE IMPACTS

To determine the affect of the ambient exterior temperature on the average monthly energy usage of the system, the

average energy usage was plotted against Heating Degree Days (HDD) and Cooling Degree Days (CDD). HDD is

defined as the number of degrees Fahrenheit (°F) the average temperature deviates below 65°F. CDD is defined as

the number of degrees Fahrenheit (°F) the average temperature deviates above 65°F. HDD and CDD are standards

of measurement for the heating and cooling industry. The average monthly temperature, monthly HDD, and

monthly CDD are include in Table 4-4.

Table 4-4 - Ambient Temperature Conditions by Month3

MonthAVGTEMP(°F)

HDD(°F)

CDD(°F)

JUNE 2008 66.3 64 102

JULY 2008 68.9 5 125

AUGUST 2008 65.6 35 55

SEPTEMBER 2008 60.1 174 30

Page 26: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-5

Figure 4-1 and Figure 4-2 show that fuel consumption increases when the temperature increases. This result is

expected because eTRU units generally use set points of 45°F, 32°F, or 0°F. A lower ambient temperature means

that the temperature differential between the outside and inside of the trailer decreases. The trailer loses heat energy

slower when that temperature differential is smaller, which means the refrigeration system cools the load less often

and uses less fuel.

4.3 FINANCIAL IMPACTS

Using fuel data from the second phase of this project, the amount of fuel displaced by the electrical connections was

calculated. This fuel consumption reduction is illustrated in Table 4-5.

Table 4-5 - System Fuel and Cost Savings by Month

MonthHours

Connected

EstimatedMonthly

GPH

EstimatedGallonsSaved

EstimatedDollarsSaved

JUNE 2008 471.4 1.02 480.8 $1,968.70

JULY 2008 463.8 0.95 440.6 $1,784.69

AUGUST 2008 238.6 0.92 219.5 $744.28

SEPTEMBER 2008 317.8 0.91 289.2 $891.31

Totals 1,491.5 0.96 1,430.1 $5,388.98

By using standby power to displace diesel fuel consumption on nine (9) Vector units, diesel fuel savings varied from

220 to 481 gallons per month for the demonstration period. The amount of diesel fuel saved for the four (4) months

of operational data totaled 1,430 gallons.

From the fuel savings, a net cost savings between $744 and $1,969 per month was calculated, for a total of $5,389.

These calculations were based on the actual monthly fuel and kilowatt costs experienced at the facility. The average

cost of a gallon of diesel fuel was $4.43 (excluding road taxes) during the demonstration. Assuming that the total

amount saved during this four (4) month period would be similar to any other four (4) month period, an

extrapolation of the demonstration data results in an annual savings of $16,167 (see Table 4-6).

Figure 4-2: Monthly CDD vs. Monthly Power ConsumptionScatter Plot with Regression Line

Figure 4-1: Monthly HDD vs. Monthly Power ConsumptionScatter Plot with Regression Line

Page 27: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-6

Table 4-6 - Projected Annual Fuel and Cost Savings

HoursConnected

EstimatedGPH

EstimatedGallonsSaved

EstimatedDollarsSaved

System 4,474.5 0.96 4,290.3 $16,166.94

Per Connection 894.9 0.96 858.1 $3,233.39

The trailer upgrade cost for electrical connection capability is approximately $3,585 (which includes the $3,000

incremental cost for the Vector eTRU as well as the approximately $585 for the trailer wiring system). The

construction cost for the installation of the electrical connections at the warehouse was $30,400. The facility cost

includes all electrical hardware, DokLok integration hardware, and other accessories necessary to make the system

usable and safe. However, this cost does not include the data collection equipment.

Combining facility and trailer upgrade costs, The total incremental cost is, therefore, $62,665. The payback period

of this total cost is 47 months given the annual savings, which is based upon system utilization. The payback period

becomes 13 months if the predicted maximum utilization of 39% is experienced at the facility.

4.4 ALTERNATIVE PAYBACK PERIOD SCENARIOS

It is important to note that the costs per connection and the resulting payback period will vary significantly from

facility to facility. Payback depends on many existing factors including; the available electricity supply, the

suitability of existing electrical infrastructure to support additional demand, the locations within the facility of the

connections, and some operating procedures of the facility. Environmental factors affecting the payback period

include the variation of the price of diesel fuel and electricity and the fluctuating energy demand profile caused by

the change in seasons. Controllable factors that affect the payback period include the number of connections and

trailers, the usage of the connections by the trailers, and some operating procedures of the facility.

For additional reference, a cost sensitivity analysis was performed during Phase 1 of this project; the Phase 1 project

report can be found at http://www.nyserda.org/publications/ElectricPoweredTrailerRefrigeration.pdf.

4.4.1 TRAILER PAYBACK PERIOD SCENARIOS

Facility utilization is a primary driver of the system payback period, and is one of the easiest elements to control.

Both trailers and connections must be used to their greatest potential in order to achieve a short payback period.

Figure 4-3 and Figure 4-4 show how the payback period for the incremental cost increase of the trailer is affected by

trailer usage, given an average price of $3.50 for non-road diesel fuel. Our previously predicted maximum usage per

trailer, 36 hours per week, corresponds to a weekly connection percentage of 21.4%; this means that trailers could

pay back their incremental cost in approximately nine (9) months.

Page 28: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-7

Figure 4-4: Trailer payback period in months as a function of standby electricity utilization percentage,given $3.50 per gallon for off-road diesel fuel.

Figure 4-3: Trailer payback period in months as a function of standby electricity weekly usage, given acost of $3.50 per gallon for off-road diesel fuel.

Page 29: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-8

4.4.2 CONNECTION PAYBACK PERIOD SCENARIOS

Figure 4-5 and Figure 4-6 show how the payback period for the facility infrastructure is affected by trailer usage,

given an average price of $3.50 for non-road diesel fuel. Depending on the number of connections, this means that

the costs associated with the installation of the electrical infrastructure could be recovered in as few as 3 months.

Our previously predicted maximum usage per trailer, 36 hours per week, corresponds to a trailer-to-connection ratio

of 14:3 for 100% utilization of the connections and maximum utilization of the trailers. In reality, a trailer-to-

connection ratio of 4:1, or a connection utilization of approximately 84%, is likely to yield the minimum achievable

payback period for a system of trailers and connections given normal facility operating efficiencies. For eight (8)

connections, this 84% utilization results in the minimum achievable payback period of approximately four (4)

months.

Figure 4-5: Connection payback period in months as a function of weekly connection usage, given a costof $3.50 per gallon for off-road diesel fuel.

Page 30: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-9

4.4.3 SYSTEM PAYBACK PERIOD SCENARIOS

Figure 4-7 and Figure 4-8 show how the payback period for the total system is affected by utilization, given an

average price of $3.50 for non-road diesel fuel. A trailer-to-connection ratio of 4:1 is used to generate these figures

based on the discussion in the previous section. A system with eight (8) connections and 32 trailers could be paid

back in as few as 12 months at an off-road diesel price of $3.50 per gallon and the theoretical maximum utilization

of 84% (36 hours per trailer per week).

Figure 4-6: Connection payback period in months as a function of connection utilization percentage,given a cost of $3.50 per gallon of off-road diesel fuel.

Page 31: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-10

Figure 4-8 - System payback period in months as a function of connection utilization percentage, given acost of $3.50 per gallon of off-road diesel fuel.

Figure 4-7: System payback period in months as a function of weekly connection usage, given a cost of$3.50 per gallon of off-road diesel fuel.

Page 32: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-11

4.5 ENVIRONMENTAL IMPACTS

There are many positive environmental impacts from reducing diesel fuel usage; however, the full impact can only

be assessed by subtracting any negative impacts of electricity generation. This environmental assessment integrates

the emissions of electric power generation in New York in order to assess the net environmental benefit, if any, for

displacing diesel fuel consumption with electricity. The emissions from the eTRU running on electricity were

compared to the emissions that would have been emitted by combusting diesel fuel. The criteria emissions

identified for comparison include carbon monoxide (CO), oxides of nitrogen (NOX), non-methane hydrocarbons

(NMHC), carbon dioxide (CO2), and particulate matter (PM). Table 4-7 shows the levels of these emissions from

four (4) different perspectives: from the entire U.S.; from Ohio, a state that produces power from sources that emit

higher levels of pollutants; from California, a state that produces power from sources that emit lower levels of

pollutants; and the state of New York. The 2001 electrical generation emission data, specifically, the total emitted

tons of each pollutant and the total power generated, were used to determine the grams per kilowatt-hour emission

rates for electricity generation in the geographical regions. This emission rate was converted to grams per

horsepower-hour, a rate commonly used in engine rating, which is an ideal quantity to use for this comparison.

Table 4-7 - Criterion Pollutant Emissions from Power Generation in 2001b, 4, 5

Location United States Ohio New York California

Total Power (MW) 3,736,643,653 142,262,000 142,391,000 198,596,000

CO

tons 483,461 15,920 12,918 34,605

g/kW-h 0.12 0.10 0.08 0.16

g/hp-h 0.09 0.08 0.06 0.12

NOX

tons 3,799,000 348,330 106,924 117,947

g/kW-h 0.92 2.23 0.68 0.54

g/hp-h 0.69 1.66 0.51 0.40

PM

tons 695,905 68,798 16,592 4,290

g/kW-h 0.17 0.44 0.11 0.02

g/hp-h 0.13 0.33 0.08 0.01

CO2

tons 2,459,800,000 130,393,470 66,649,029 78,548,477

g/kW-h 598.45 833.25 425.52 359.56

g/hp-h 446.27 621.36 317.31 268.13

Information on the pollutants emitted by a conventional TRU at two different levels of acceptable emission

standards was determined in the first phase of this study. Combining that information with the fuel consumption

data from Table 4-1, and the pollutant information for New York in Table 4-7, the criteria pollutant reductions for

each month can be calculated. The results are shown in Table 4-8, Figure 4-9, and Figure 4-10. For a single eTRU,

b Between 2001 and 2008, many power generation facilities have implemented processes and technologies that havereduced the amount of criterion emissions from these sources. As 2001 is the most recent comprehensive emissionsdata set, it was used to keep the basis for emission reductions assessment constant. The power generation data do notnecessarily represent power consumption. Electric power is sold regularly across state and international borders.The emission reduction can and does differ greatly depending on the type of electric power generation.

Page 33: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

4-12

the emission reduction numbers from this demonstration translate to yearly reductions of 68.6 kg in CO, 88.6 kg in

NMHC and NOX, 2.77 kg in PM (at Tier 4), and 1,206 kg in CO2. These numbers will increase or decrease as

electrical connection utilization increases or decreases, respectively.

Table 4-8 - System Criteria Emission Reductions by Month Compared to Tier 2 and Tier 4 Requirementsc

Month

Tier 2 Tier 4

CO(kg)

NMHC +NOX

(kg)

PM(kg)

CO(kg)

NMHC +NOX

(kg)

PM(kg)

CO2

Reduction(kg)

JUNE 2008 65.02 83.97 6.31 65.02 83.97 2.63 1143.03

JULY 2008 63.96 82.60 6.21 63.96 82.60 2.58 1124.44

AUGUST 2008 32.90 42.49 3.20 32.90 42.49 1.33 578.48

SEPTEMBER 2008 43.82 56.60 4.26 43.82 56.60 1.77 770.44

Totals 205.70 265.65 19.98 205.70 265.65 8.31 3616.39

c Non-Road diesel engines are required to comply with certain emission standards set out by the EPA. Theseemission standards are phased in over time. Tiers 1 through 3 were phased in through 2006. Tier 4 compliance willbe phased in from 2008 through 2015. For more information on these standards, seehttp://www.dieselnet.com/standards/us/nonroad.php (Accessed October 31, 2008).

Figure 4-10: Monthly CO2 Criteria Emission ReductionsFigure 4-9: Tier 2 and Tier 4 Monthly Criteria EmissionReductions

Page 34: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

5-1

Section 5:

OPERATIONAL ISSUES AND SOLUTIONS

5.1 DATA COLLECTION SYSTEM

Issue 1: After initial wiring and calibration of the data collection hardware, the system was commissioned. As data

were collected during the first two months, it was determined by assessing the collected data that Docks 23 and 24

were not accurately reporting the collected data. Dock 23 was only reporting 1/3 of the expected power usage.

Dock 24 was not reporting any usage.

Resolution 1: Upon inspection of the hardware at Willow Run Foods, two separate problems were discovered. It

was determined that Dock 23’s measurement device’s settings were incorrectly configuration. Once the settings

were corrected, the measurement device was recalibrated and the problem was resolved. As for Dock 24, the wiring

connecting the measurement device to the data collection hardware was damaged during installation of the data

collection system. The damaged wire was repaired and the problem was resolved.

During the assessment of the damaged data collection wire, it was also determined that the wiring between the

measurement device and the collection hardware could continue to be a concern in future installations. Cold

temperatures make direct wiring of these connections extremely difficult and susceptible to damage. A wiring

harness was developed to address this issue. The wiring harness converts the direct wiring connection to a standard

RJ-14 connection, making connections easier, more secure, and more reliable at a very nominal cost increase. It is

recommended that a harness of this type be used in all future data collection system installations.

Issue 2: During recalibration of the data collection equipment in May, the manufacturer of the data recorders was

concerned that data being provided by the measurement equipment exceeded the throughput capability of the

recording hardware’s input. If the data being provided were not being properly recorded, it would have been a

major issue. The measurement hardware sensitivity is not easily changed; in order to bring its output down to a

lower throughput, it would have required a change in some of the hardware components of the system.

Resolution 2: Testing was performed by the data recording hardware manufacturer to determine the signal input

throughput threshold. It was determined that, while the input was operating at 91.5% of fall-off, the throughput of

the input was not being exceeded, and the sensitivity of the measurement hardware did not need to be changed. It is

recommended that the sensitivity of the measurement hardware installed in future facilities be adjusted to keep the

throughput below 85% of fall-off to conform to generally accepted data collection guidelines. The fall-off point is

the point at which the signal input to output ratio is no longer 1-to-1, and 85% of fall-off is generally considered the

maximum normal operating condition desired.

5.2 FACILITY ELECTRICAL HARDWARE

Issue 1: One of the eTRU outlets was not watertight. This was a serious concern because water causes rust and

deterioration. It also increases the risk of injury from electrical discharge.

Page 35: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

5-2

Resolution 1: The wiring holes in the connection housing were determined to be the cause of the water leak. The

installing subcontractor was instructed to remove and remount all of the eTRU connections. After the contractor

remounted the connections, no more leaking occurred. Any possible water entry routes were also caulked by the

electrical subcontractor to provide an added measure to prevent water from entering the enclosure.

Issue 2: Some of the plungers that connect to the internal breaker of the eTRU connection began to operate

improperly. It was not possible to pull the plunger down to disconnect power on two outlets. These plungers would

not automatically drop when the electrical cord was disconnected, leaving the wall plug connection live. Another

connection’s plunger would not remain in the off position while an extension cord was connected. This plunger did

drop down when the extension cord was disconnected, but also went up when the extension cord was connected.

These are both serious safety concerns as they increase the chances of arcing, which could cause serious injury.

Resolution 2: Willow Run Foods staff disconnected power to the three malfunctioning connections. The electrical

contractor inspected the connection modules for damage, replaced the hardware, and sent the malfunctioning

modules back to the manufacturer for testing. None of the returned modules showed signs of damage or tampering.

Two of the units that failed contained the new micro-switch for the dock systems. An investigation is under way by

the manufacturer to determine the cause of the hardware failures. Willow Run Foods staff continues to inspect the

hardware periodically, and all connections are currently operating.

Page 36: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

6-1

Section 6:

TECHNOLOGY TRANSFER AND OUTREACH ACTIVITIES

Technology transfer and community outreach are critical to NYSERDA-funded activities. Visibility of

demonstration projects helps encourage adoption by the market and promotes innovation activities sponsored by

NYSERDA to residents of New York and other interested parties by providing information regarding ongoing

research and development in New York State. Specifically, promotion of this project occurred through a report to

be released by the U.S. Department of Energy and a press release from Shorepower Technologies. The system was

also included in a Shorepower Technologies PowerPoint presentation given at the Southeast Diesel Collaborative

(SEDC) partners meeting in Atlanta, Georgia on June 24th, 2008.

6.1 U.S. DEPARTMENT OF ENERGY REPORT

On June 30, 2008, a report titled “Idling Reduction Infrastructure Deployment: A Solution for Clean Communities”

was released for publication to the U.S. Department of Energy. The report was authored by several members of the

Shorepower team and highlighted the technology’s benefits and the safety improvements at the current

demonstration facility. The report is under review by the Department of Energy and is not yet available for release

to the public.

6.2 PRESS RELEASES

A press release occurred on February 20, 2007 to promote the eTRU and hybrid electrification technology to a wider

audience, presenting the technology’s positive operational effects of the project. The Shorepower Technologies

press release focused on announcing the project and explaining the potential benefits that can be seen by using

eTRU technology instead of standard TRU technology, including reduced emissions, fuel use and noise. It also

explained the role and described the expertise of each partner involved in the project. The full text of the release has

been included in Appendix D.

Page 37: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

7-1

Section 7:

CONCLUSIONS AND RECOMMENDATIONS

The system design was effective and the electrical power modifications were successful. All tractor, trailer, and

facility modifications were completely installed by the March 31, 2008 performance period. The equipment was

demonstrated as part of the facility operations through September 30, 2008. From this demonstration project, it is

clear that eTRU shore power connections can be successfully integrated as a retrofit or a new install into a

warehouse facility. In addition, these systems can become part of the warehouse’s standard operating procedures for

dock safety systems operations. Specific conclusions and recommendations from the hardware integration and

demonstration are as follows:

Integration of the control system design and the facility upgrades and modifications for the dock safety

system was successful. The design of the dock safety system modification was successful and met all design

requirements outlined for the eTRU/docking safety system. Over the six (6) month demonstration period, the

loading and unloading operations at the docks were not impaired by the integration of the eTRU connections. There

were no documented drive-offs at any of the dock locations and none of the dock connections sustained any physical

damaged.

The warehouse-mounted bumper protection system provided adequate protection for power modules. Safety

systems for the power modules were installed to minimize the risk of collision with the exterior power modules.

This approach was a lower cost method than installing protective bollards and did not affect the operation of the

warehouse.

The warehouse dock safety system and power connection system were successfully integrated together to

provide efficient and faultless warehouse operations. The system design utilizing the advance DokLok units

permitted and upgrade module to be integrated into the existing system trailer dock safety system. This upgraded

module expanded the capacity of the DokLok system to permit the integration of the electrical system controls

seamlessly and undetectable to the warehouse personnel.

A cost effective design was developed to ensure that this system could be installed as either a new install or a

retrofit product at other warehouses using similar warehouse dock door safety systems to secure trailers. For

warehouses that do have an existing DokLok system, an upgraded DokLok control system will permit the

installation of this integrated eTRU power/trailer dock safety system at their facility. This will permit quick and cost

effective retrofit upgrades integrating the DokLok safety system with the eTRU power connections at other

warehouses that wish to power eTRU with electricity at their warehouse docks.

Page 38: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

7-2

It was again documented through warehouse facility operations that the use of electricity to power eTRUs is

an effective approach to reduce operational costs and environmental impacts by eliminating diesel fuel

consumption. For a small incremental purchase price increase, the overall cost of ownership of an eTRU can be

lower than the cost of ownership for a conventional TRU through the displacement of higher cost diesel fuel by

lower cost electricity. Additionally, local noise and local criteria pollutants are also significantly reduced.

From this assessment, additional economic and environmental savings could be achieved by developing and

installing a power management system. A power surge caused by a number of eTRUs starting up at once may

become an issue with larger fleets. Large numbers of eTRU-equipped trailers connecting to a grid-electric power

facility may result in a power demand spike if left unmanaged. This could result in an electricity demand surcharge

from the utility as well as a possible brown-out condition from this increased demand. To avoid these types of

situations, an energy management system should be developed to control power flow and eliminate the possibility of

a power surge caused by operating multiple units simultaneously.

All partners participating in this demonstration project were satisfied with the outcomes of the design,

installation, and operation of the system. Willow Run Foods management and operations personnel have

expressed their satisfaction with the modifications performed to integrate the electric power connections to the dock

safety units. Willow Run Foods management required that all system modifications installed in the dock safety

system be inconspicuous to the warehouse personnel and require no changes to their operational procedures. The

final design achieved this performance goal. Outside of the power connection modules and bumper system, the only

visible changes to the system were the three (3) color exterior signal lights installed as an upgrade to the two (2)

color exterior signal lights. This signal light upgrade helps the yard jockeys identify the dock doors where the eTRU

power connections are installed and identifies the status of the trailer system. These modifications were developed

to have a minimal effect on the overall logistical operations of facility. All partners visited the site for a post

installation inspection and approved the facility design and installation as final and complete.

Page 39: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

A-1

Appendix A:

LOGIC DIAGRAM FOR INTEGRATED TRAILER LOCK AND ELECTRICAL CONNECTION

Page 40: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28,2009

B-1

Appendix B:

SYSTEM TRAINING AND OPERATING INSTRUCTIONS

Connecting to Electric Power

If ENGINE is OFF - Place All Compartment Switches to OFF and Move START/RUN Switch to OFF

If ENGINE is ON - Move the START/RUN Switch to the OFF Position

1) Plug Extension Cord End without the Lock Collar into Trailer Connection First.2) Plug Extension Cord End with Lock Collar into Electric Outlet Connection and Secure Outlet Lock Collar.3) Push Electric Outlet Module Plunger in to Activate Power.4) Move STANDBY/ENGINE Switch on Vector Unit to STANDBY, and if ENGINE is OFF Move Desired

Compartment Switches to ON.5) Move the START/RUN Switch to the START/RUN Position.

Disconnecting from Electric Power

1) Move the START/RUN Switch to the OFF Position.2) Switch STANDBY/ENGINE Switch on Vector Unit to ENGINE.3) Pull Outlet Module Plunger Out to Disconnect Power.4) Disconnect Cord at Outlet Module End First.5) Disconnect Cord at Trailer Last.6) Roll Up Cord While Returning to Outlet Module.7) Hang Entire Extension Cord (with Plug Ends Facing Down) on the Outlet Module Hook.8) Move the START/RUN Switch to the START/RUN Position.

Page 41: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

C-1

Appendix C:

DETAILED DATA REPORT

C.1 ELECTRICAL FACILITY DATA

Table C-1 - June 2008 Electrical Connection Usage SummaryJune 2008

TotalHours(hr)

TotalHours

(hr)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

Dock 23 60.6 529.13 ± 0.28 8.73 ± 4.89 15.70 ± 0.01 1.80 ± 0.56 49.5 529.00 ± 0.25 10.69 ± 4.08 15.70 ± 0.01 1.47 ± 0.38 8.1% 81.7%Dock 24 81.2 711.66 ± 0.32 8.77 ± 5.22 15.66 ± 0.01 1.79 ± 0.60 68.3 711.42 ± 0.30 10.41 ± 4.39 15.66 ± 0.01 1.50 ± 0.42 10.9% 84.2%Dock 27 80.3 672.78 ± 0.32 8.37 ± 5.22 15.64 ± 0.01 1.87 ± 0.62 64.8 672.56 ± 0.29 10.37 ± 4.15 15.64 ± 0.01 1.51 ± 0.40 10.8% 80.7%

Dock 28 160.2 1318.54 ± 0.46 8.23 ± 5.33 15.74 ± 0.01 1.91 ± 0.65 132.7 1317.96 ± 0.41 9.93 ± 4.41 15.74 ± 0.01 1.58 ± 0.44 21.5% 82.8%Dock Totals 382.3 3232.11 ± 0.70 315.3 3230.94 ± 0.64 12.8% 82.5%

Dock Averages 8.46 ± 5.22 15.69 ± 0.01 1.86 ± 0.62 10.25 ± 4.30 15.69 ± 0.01 1.53 ± 0.42

Staging Area 89.2 398.34 ± 0.34 4.47 ± 4.65 14.20 ± 0.01 3.18 ± 1.04 57.0 397.80 ± 0.27 6.98 ± 3.85 14.20 ± 0.01 2.03 ± 0.55 12.0% 63.9%Staging Area

Totals89.2 398.34 ± 0.34 57.0 397.80 ± 0.27 12.0% 63.9%

Staging Area

Averages4.47 ± 4.65 14.20 ± 0.01 3.18 ± 1.04 6.98 ± 3.85 14.20 ± 0.01 2.03 ± 0.55

System Totals 471.4 3630.45 ± 0.78 372.3 3628.74 ± 0.69 12.7% 79.0%

System Averages 7.70 ± 5.11 15.39 ± 0.01 2.00 ± 0.66 9.75 ± 4.24 15.39 ± 0.01 1.58 ± 0.43

System Envelope 301.8 3630.78 ± 1.40 12.03 ± 9.43 48.86 ± 0.02 4.06 ± 0.78 258.67 3629.64 ± 1.29 14.03 ± 8.72 48.86 ± 0.02 3.48 ± 0.62 40.6% 85.7%

Peak Demand(kW)

Peak toAverage

Ratio

Trailer Connected Trailer Compressor Running

Energy Usage(kW-hr)

Average Power(kW)

Peak Demand(kW)

Peak toAverage

Ratio

Energy Usage(kW-hr)

AveragePower (kW)

Page 42: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

C-2

Table C-2 - July 2008 Electrical Connection Usage SummaryJuly 2008

TotalHours(hr)

TotalHours

(hr)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

Dock 23 41.0 370.55 ± 0.23 9.04 ± 4.96 15.76 ± 0.01 1.74 ± 0.55 36.4 370.43 ± 0.22 10.17 ± 4.33 15.76 ± 0.01 1.55 ± 0.43 5.5% 88.8%Dock 24 74.8 697.42 ± 0.31 9.32 ± 5.05 15.78 ± 0.01 1.69 ± 0.54 64.2 697.21 ± 0.29 10.87 ± 4.09 15.78 ± 0.01 1.45 ± 0.38 10.1% 85.7%Dock 27 100.4 820.90 ± 0.36 8.17 ± 4.94 15.69 ± 0.01 1.92 ± 0.60 80.8 820.62 ± 0.32 10.16 ± 4.10 15.69 ± 0.01 1.54 ± 0.40 13.5% 80.4%

Dock 28 102.0 960.74 ± 0.36 9.42 ± 5.12 15.80 ± 0.01 1.68 ± 0.54 90.0 960.44 ± 0.34 10.67 ± 4.33 15.80 ± 0.01 1.48 ± 0.41 13.7% 88.2%Dock Totals 318.3 2849.60 ± 0.64 271.3 2848.70 ± 0.59 10.7% 85.3%

Dock Averages 8.99 ± 5.80 15.76 ± 0.01 1.75 ± 0.64 10.47 ± 4.87 15.76 ± 0.01 1.51 ± 0.46

Staging Area 145.5 720.22 ± 0.43 4.95 ± 4.70 14.12 ± 0.01 2.85 ± 0.95 96.5 719.37 ± 0.35 7.45 ± 3.87 14.12 ± 0.01 1.89 ± 0.52 19.6% 66.3%Staging Area

Totals145.5 720.22 ± 0.43 96.5 719.37 ± 0.35 19.6% 66.3%

Staging Area

Averages4.95 ± 4.70 14.12 ± 0.01 2.85 ± 0.95 7.45 ± 3.87 14.12 ± 0.01 1.89 ± 0.52

System Totals 463.8 3569.82 ± 0.77 367.8 3568.06 ± 0.69 12.5% 79.3%

System Averages 8.18 ± 5.54 15.43 ± 0.01 1.89 ± 0.68 9.87 ± 4.64 15.43 ± 0.01 1.56 ± 0.47

System Envelope 318.2 3570.21 ± 1.43 11.22 ± 8.98 57.25 ± 0.02 5.10 ± 0.80 264.75 3568.94 ± 1.31 13.48 ± 8.21 57.25 ± 0.02 4.25 ± 0.61 42.8% 83.2%

Peak Demand(kW)

Peak toAverage

Ratio

Trailer Connected Trailer Compressor Running

Energy Usage(kW-hr)

Average Power(kW)

Peak Demand(kW)

Peak toAverage

Ratio

Energy Usage(kW-hr)

AveragePower (kW)

Table C-3 - August 2008 Electrical Connection Usage SummaryAugust 2008

TotalHours(hr)

TotalHours

(hr)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

Dock 23 15.4 158.68 ± 0.14 10.29 ± 6.15 15.74 ± 0.01 1.53 ± 0.60 13.8 158.65 ± 0.13 11.47 ± 5.06 15.74 ± 0.01 1.37 ± 0.44 2.1% 89.7%Dock 24 28.6 249.34 ± 0.19 8.72 ± 4.81 15.66 ± 0.01 1.80 ± 0.55 25.6 249.28 ± 0.18 9.74 ± 4.41 15.66 ± 0.01 1.61 ± 0.45 3.8% 89.5%Dock 27 47.5 455.78 ± 0.25 9.60 ± 4.87 15.62 ± 0.01 1.63 ± 0.51 42.3 455.65 ± 0.23 10.78 ± 4.09 15.62 ± 0.01 1.45 ± 0.38 6.4% 88.9%

Dock 28 83.8 680.85 ± 0.33 8.13 ± 5.06 15.80 ± 0.01 1.94 ± 0.62 71.3 680.56 ± 0.30 9.55 ± 4.32 15.80 ± 0.01 1.65 ± 0.45 11.3% 85.1%Dock Totals 175.3 1544.64 ± 0.48 152.9 1544.14 ± 0.44 5.9% 87.3%

Dock Averages 8.81 ± 5.07 15.71 ± 0.01 1.78 ± 0.58 10.10 ± 4.35 15.71 ± 0.01 1.56 ± 0.43

Staging Area 63.3 312.56 ± 0.29 4.94 ± 4.35 13.94 ± 0.01 2.82 ± 0.88 46.0 312.17 ± 0.24 6.79 ± 3.69 13.94 ± 0.01 2.05 ± 0.54 8.5% 72.6%Staging Area

Totals63.3 312.56 ± 0.29 46.0 312.17 ± 0.24 8.5% 72.6%

Staging Area

Averages4.94 ± 4.35 13.94 ± 0.01 2.82 ± 0.88 6.79 ± 3.69 13.94 ± 0.01 2.05 ± 0.54

System Totals 238.6 1857.20 ± 0.56 198.9 1856.30 ± 0.51 6.4% 83.4%

System Averages 7.78 ± 4.89 15.35 ± 0.01 1.97 ± 0.63 9.33 ± 4.20 15.35 ± 0.01 1.65 ± 0.45

System Envelope 192.8 1857.45 ± 1.12 9.63 ± 6.59 42.24 ± 0.02 4.39 ± 0.68 163.42 1856.58 ± 1.03 11.36 ± 5.89 42.24 ± 0.02 3.72 ± 0.52 25.9% 84.7%

Peak Demand(kW)

Peak toAverage

Ratio

Trailer Connected Trailer Compresor Running

Energy Usage(kW-hr)

Average Power(kW)

Peak Demand(kW)

Peak toAverage

Ratio

Energy Usage(kW-hr)

AveragePower (kW)

Page 43: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

C-3

Table C-4 - September 2008 Electrical Connection Usage SummarySeptember 2008

TotalHours(hr)

TotalHours

(hr)

ConnectionUsage

Percentage

ConnectionOperationalPercentage

Dock 23 59.3 511.35 ± 0.28 8.63 ± 5.30 15.80 ± 0.01 1.83 ± 0.61 50.0 511.12 ± 0.25 10.22 ± 4.34 15.80 ± 0.01 1.55 ± 0.42 8.0% 84.4%Dock 24 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.0% 0.0%Dock 27 62.3 587.74 ± 0.28 9.44 ± 5.11 15.95 ± 0.01 1.69 ± 0.54 54.8 587.58 ± 0.27 10.72 ± 4.26 15.95 ± 0.01 1.49 ± 0.40 8.4% 88.1%

Dock 28 94.4 681.63 ± 0.35 7.22 ± 5.26 15.66 ± 0.01 2.17 ± 0.73 74.2 681.21 ± 0.31 9.18 ± 4.42 15.66 ± 0.01 1.70 ± 0.48 12.7% 78.6%Dock Totals 215.9 1780.72 ± 0.53 179.0 1779.91 ± 0.48 7.3% 82.9%

Dock Averages 8.25 ± 5.23 11.85 ± 0.01 1.44 ± 0.63 9.94 ± 4.35 11.85 ± 0.01 1.19 ± 0.44

Staging Area 101.8 430.46 ± 0.36 4.23 ± 3.97 13.84 ± 0.01 3.27 ± 0.94 69.5 429.87 ± 0.30 6.19 ± 3.43 13.84 ± 0.01 2.24 ± 0.55 13.7% 68.2%Staging Area

Totals101.8 430.46 ± 0.36 69.5 429.87 ± 0.30 13.7% 68.2%

Staging Area

Averages4.23 ± 3.97 13.84 ± 0.01 3.27 ± 0.94 6.19 ± 3.43 13.84 ± 0.01 2.24 ± 0.55

System Totals 317.8 2211.18 ± 0.64 248.5 2209.78 ± 0.57 8.5% 78.2%

System Averages 6.96 ± 4.86 12.25 ± 0.01 1.76 ± 0.70 8.89 ± 4.11 12.25 ± 0.01 1.38 ± 0.46

System Envelope 236.9 2211.63 ± 1.24 9.34 ± 7.05 52.64 ± 0.02 5.64 ± 0.76 194.58 2210.45 ± 1.12 11.36 ± 6.28 52.64 ± 0.02 4.63 ± 0.55 31.8% 82.1%

Peak Demand(kW)

Peak toAverage

Ratio

Trailer Connected Trailer Compresor Running

Energy Usage(kW-hr)

Average Power(kW)

Peak Demand(kW)

Peak toAverage

Ratio

Energy Usage(kW-hr)

AveragePower (kW)

Page 44: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

C-4

C.2 EXPLANATION OF TABLES

C.2.1 TRAILER CONNECTED

TRUs (conventional and eTRU) generally have two modes of operation: “Continuous” and “Stop/Start”. For an

eTRU in Stop/Start mode, the unit will only operate the generator and compressor when there is the need to cool the

load. If the interior temperatures are within the programmed temperature range (usually 1°F-2°F), the compressor

and generator will shut down to conserve fuel. This is considered to be the most efficient way to operate a

conventional TRU. When an eTRU is operating in Stop/Start mode on grid-supplied electricity, the eTRU will stop

pulling grid-electricity when power is not needed to heat or cool the load; however, the unit will still be connected to

electricity. This set of measurements applies to the total amount of time an eTRU spends connected to electricity.

Total Hours (hr) – The total number of hours that an eTRU-equipped trailer spent connected to a shorepower

location.

Energy Usage (kW-hr) – The total amount of electrical energy consumed at the shorepower location by eTRU-

equipped trailers.

Peak Demand (kW) – The highest measured power demand during a five (5) minute interval experienced at a

connection.

Average Power (kW) – The average power draw experienced at the connection during the one month period.

Peak to Average Ratio – The ratio of the Peak Demand to the Average Demand. A ratio near one (1.0) indicates

more even usage; a higher ratio indicates intermittent, strong usage with larger periods of weak usage.

C.2.2 TRAILER COMPRESSOR ON

The data contained within the “trailer compressor on” dataset are a subset of the overall dataset discussed above.

These measurements are only focused on periods of time when the compressor is operating.

Total Hours (hr) – The total number of hours that an eTRU-equipped trailer’s compressor spent running while

connected to a shorepower location.

Energy Usage (kW-hr) – The total amount of electrical energy consumed at the shorepower location by eTRU-

equipped trailers while the compressor was running. This number should be within the margin of error for the

measured energy usage while the trailer is connected.

Peak Demand (kW) – The highest measured power demand during a five (5) minute interval experienced at a

connection. This number should be identical to the peak demand while the eTRU-equipped trailers are connected.

Page 45: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

C-5

Average Power (kW) – The average power draw experienced at the connection during the one month period when

power was being used. This number should be higher than the average power when the eTRU-equipped trailers are

connected.

Peak to Average Ratio – The ratio of the Peak Demand to the Average Demand. A ratio near one (1.0) indicates

more even usage; a higher ratio indicates intermittent, strong usage with larger periods of weak usage. This ratio

should be smaller than the Peak to Average Ratio when the trailer is connected.

C.2.3 OTHER CALCULATIONS

Connection Usage Percentage – This percentage calculates how much a specific shorepower connection is used

during a month. Percentages greater than 15% indicate medium usage while percentages above 30% indicate high

usage. Full utilization for the facility was calculated to be 39% based on nine (9) trailers connected to a shorepower

connection six (6) hours each day, six (6) days a week (36 hours per week) given that there are five (5) available

connections at the facility 24 hours a day, seven (7) days a week.

Connection Operational Percentage – The “connection operational percentage” is defined as the percentage of

time an eTRU-equipped trailer connected to the shorepower connection requires electricity. This calculation permits

the analysis of how much time the eTRU is operating on electricity versus how much time the eTRU is in standby

mode (connected to electricity but not requiring electricity).

C.3 ASSUMPTIONS AND REFERENCE MATERIALS

C.3.1 BASIC ASSUMPTIONS

Energy usage is being measured in fixed five (5) minute intervals. We have assumed that there is an inherent

uncertainty in each of these small, fixed measurements. The hardware being used to measure the electrical

consumptions has a resolution of 0.01036 kW; therefore, we have integrated this error bar into each of these

measurements. Since all of these measurements are, by definition of the quantities, non-negative (that is, they are

either zero or positive), we can assume that these fixed, small interval measurements will behave as Poisson

Random Variables and can be interpreted using the appropriate statistics (Introduction to Mathematical Statistics 6th

Edition; Hogg, McKean, Craig; p143).

Each of the measurements is taken for a fixed period of time, and associated with a time/date-stamp. The clock used

is periodically synchronized with an atomic clock that is known to keep time accurately (assumed drift < 1.0x10-

6sec). Due to this periodic synchronization, the time drift for the measurements is negligible and has been ignored.

C.3.2 REFERENCE MATERIALS NOT LISTED ELSEWHERE

Probability, Random Variables and Stochastic Processes 4th Edition; A. Papoulis, S. Pillai; p249.

Page 46: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

D-1

Appendix D:

SHOREPOWER TECHNOLOGIES PRESS RELEASE

Shurepower, LLC demonstrates advanced dock safety systems for hybrid electric trailer refrigeration unit (TRU)

technology

KIRKWOOD, NY -- (SBWIRE) -- 02/20/2007 -- The New York State Energy Research and Development Authority

(NYSERDA) has recently awarded a cost-shared contract to Shurepower, LLC to fund a second demonstration

project of hybrid diesel-electric trailer refrigeration unit (TRU) technology in upstate New York. This project will

include the implementation and development of docking safety systems and advanced wiring connections for heavy-

duty diesel trucks and refrigerated trailers. With co-funding from the U.S. Department of Energy’s (DOE) National

Energy Technology Laboratory, this project will also further demonstrate electric-powered TRUs and document

their ability to reduce air pollution, noise, and diesel fuel use.

This demonstration project uses a modified version of Shurepower’s Truck Electrified Parking (STEP) technology,

which will be integrated with the existing Dok Lok docking systems manufactured by Rite-Hite Corporation to

increase the overall safety and reliability of this electric technology. Carrier-Transicold’s new DeltekTM TRU

featuring hybrid diesel-electric technology offers an excellent alternative to diesel-powered TRUs, a significant

source of local air and noise pollutants. Providing shorepower electricity to tractor cabs and trailer refrigeration units

can eliminate these unnecessary exhaust emissions.

Located at the Willow Run Foods distribution facility in Kirkwood, NY, this demonstration project will supply grid

power to over-the-road hybrid diesel electric TRU refrigerated trailers and develop an integrated docking safety

system for the TRUs. New West Technologies, LLC will be assisting Shurepower in the project by providing

engineering expertise. Shurepower will work with the utility company, New York State Electric & Gas (NYSEG), to

provide three-phase power to the site. Designated loading docks will be electrified, and Rite-Hite Corporation will

assist in integrating a trailer bumper locking safety system into the operation of the facility’s Dok Lok systems. Nine

(9) demonstration trailers manufactured by Great Dane Trailers will be outfitted with Carrier-Transicold TRUs

equipped with DeltekTM hybrid diesel electric technology. Shurepower will provide the design of an under-trailer

wiring system to carry electricity from the rear connection point (at the loading bay) to the TRU mounted on the

front of the trailer. In addition, truck tractors will be retrofitted with Carrier’s new shorepower-capable

ComfortProTM APUs to permit fuel savings as well as reduced air and noise pollutants.

Partners with Shurepower, LLC in this demonstration project include NYSERDA, Willow Run Foods, Rite-Hite,

NYSEG, Carrier Transicold, Great Dane Trailers, Ryder System, Inc., and the U.S. DOE’s National Energy

Technology Laboratory.

Shurepower, LLC is a New York based limited liability company with the corporate goal of improving air quality,

reducing U.S. dependence on foreign oil, and improving public safety. Shurepower’s shorepower truck electrified

Page 47: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

D-2

parking (STEP) system is a low cost alternative to idling that provides drivers with grid based electricity, cable

television and high-speed Internet connections to enable drivers of long-haul heavy-duty trucks to shut down their

engines and save fuel during mandated rest periods. Shurepower is currently deploying a national network of STEP

facilities at truck stops, rest areas, and fleet terminal facilities along major U.S. Interstate highways.

www.shurepower.com

NYSERDA, New York State Energy Research and Development Authority, is a public benefit corporation created

in 1975 by the New York State Legislature. NYSERDA’s responsibilities, among others, include conducting a

multifaceted energy and environmental research and development program to meet New York’s diverse economic

needs; administering the New York Energy $mart program; making energy more affordable for residential and low-

income households; assisting industries, schools, hospital, municipalities, not-for-profits, and the residential sector

implement energy efficiency measures; financing energy-related projects that reduce cost for ratepayers.

www.nyserda.org

Willow Run Foods, Incorporated is the Northeast and Mid-Atlantic's premier fast food systems distributor. Serving

customers in 14 states, they provide one-stop-shopping for their chain restaurant operators while focusing on

building customer relationships and providing service that is second to none. From their state-of-the-art facility in

Kirkwood, New York, they continue to be committed to their existing customers and look forward to serving new

ones as well. www.willowrunfoods.com

Rite-Hite Corporation, headquartered in Milwaukee, WI, is a recognized world leader in the manufacture and sale of

loading dock and industrial door safety products. Comprised of seven separate corporations, Rite-Hite’s unique

customer-based focus provides high-quality, compelling products that improve safety and productivity. The

company has historically placed a strong emphasis on research and development, leading to new products that

pioneer the industry. www.ritehite.com

NYSEG, New York State Electric & Gas Corporation, is a subsidiary of Energy East Corp [NYSE:EAS], a super-

regional energy services and delivery company in the Northeast. NYSEG serves 854,000 electricity customers and

254,000 natural gas customers across more than 40% of upstate New York. By providing outstanding customer

service, promoting competition and focusing on growth, NYSEG will continue to be a valuable asset to the

communities it serves. www.nyseg.com

Carrier Transicold provides industry-leading transport temperature-control solutions with a complete line of

equipment for refrigerated trucks, trailers and containers, and transport air conditioning systems for buses and

recreational vehicles. Carrier-Transicold is a division of Farmington, Conn.-based Carrier Corporation, the world’s

largest heating, air conditioning and refrigeration solutions provider, with operations in 172 countries. It is part of

United Technologies Corporation (NYSE:UTX), a Hartford, Conn.-based provider of a broad range of high-

technology products and support services to the aerospace and building systems industries.

www.trucktrailer.carrier.com

Page 48: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

D-3

Great Dane Trailers, a manufacturer of dry van, refrigerated and platform trailers, has long been regarded as the

industry leader in technology, innovation and quality. The company has headquarters in Savannah, Ga., and

Chicago, Ill., with nine strategically located manufacturing plants in the United States. Four of the manufacturing

facilities Savannah; Terre Haute and Brazil, Ind.; and Wayne, Neb. have received ISO 9001:2000 certification. With

distribution points across North and South America, Great Dane utilizes a network of company-owned branches and

full-line independent dealers as well as parts-only independent dealers. www.greatdanetrailers.com

Ryder System, Inc. is a Fortune 500 provider of leading-edge transportation, logistics and supply chain management

solutions worldwide. Ryder’s product offerings include: Fleet Management Solutions (FMS), which provides

leasing, rental and programmed maintenance of trucks, tractors and trailers to commercial customers; Supply Chain

Solutions (SCS), which manages the movement of materials and related information from the acquisition of raw

materials to the delivery of finished products to end-users; and Dedicated Contract Carriage (DCC), which provides

a turn-key transportation service that includes vehicles, drivers, routing and scheduling. Ryder serves customer

needs throughout North America, Latin America, Europe and Asia. www.ryder.com

The National Energy Technology Laboratory (NETL), part of DOE’s national laboratory system, is owned and

operated by the U.S. Department of Energy (DOE). NETL supports DOE’s mission to advance the national,

economic, and energy security of the United States. The only U.S. national laboratory devoted to fossil energy

research, NETL implements a broad spectrum of energy and environmental research and development (R&D)

programs that will return benefits for generations to come. www.netl.doe.gov

New West Technologies, LLC is a small native American-owned engineering services company headquartered in

Denver, Colorado with a transportation systems and technology practice based in Landover, Maryland and Rome,

New York. The firm has extensive experience with truck stop electrification and in heavy truck systems. New West

supplies technical and engineering services to both Federal and state governments as well as to the private sector.

www.nwttech.com.

Page 49: ELECTRIC-POWERED TRAILER REFRIGERATION …ELECTRIC-POWERED TRAILER REFRIGERATION UNIT SAFETY INTEGRATION DEMONSTRATION Agreement No. 8485-1-5 January 28, 2009 Prepared for: THE NEW

Electric-Powered Trailer Refrigeration Unit Safety Integration Demonstration January 28, 2009

E-1

Appendix E:

REFERENCES

1 Electric-Powered Trailer Refrigeration Unit Market Study and Technology Assessment, June 2005,http://www.nyserda.org/publications/ElectricPoweredTrailerRefrigeration.pdf.

2 Electric-Powered Trailer Refrigeration Unit Demonstration, January 31, 2008.http://epa.gov/omswww/smartway/documents/adeq-nyserda-final-report.pdf.

3 Historical Weather Data for the United States. Retrieved October 1, 2008, fromhttp://www.weatherunderground.com.

4 Energy Information Administration (June 2008). Energy Information Administration Annual Energy Review.Retrieved October 17, 2008, from http://www.eia.doe.gov/emeu/aer/elect.html.

5 Historical Air Pollution Data for the United States. Retrieved October 21, 2008, fromhttp://www.epa.gov/air/data/geosel.html


Recommended