+ All Categories
Home > Documents > Electrical Power Systems_C. L. Wadhwa.pdf

Electrical Power Systems_C. L. Wadhwa.pdf

Date post: 28-Feb-2018
Category:
Upload: upendran-mukundarajan
View: 216 times
Download: 0 times
Share this document with a friend

of 120

Transcript
  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    1/120

    Scilab Textbook Companion for

    Electrical Power Systems

    by C. L. Wadhwa1

    Created byAnuj Bansal

    B.EElectrical Engineering

    Thapar University, Patiala(Punjab)College Teacher

    Dr. Sunil Kumar SinglaCross-Checked by

    Lavitha Pereira

    May 23, 2016

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    2/120

    Book Description

    Title: Electrical Power Systems

    Author: C. L. Wadhwa

    Publisher: New Age International Pvt. Ltd., New Delhi

    Edition: 6

    Year: 2010

    ISBN: 9788122428391

    1

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    3/120

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    4/120

    Contents

    List of Scilab Codes 4

    1 FUNDAMENTALS OF POWER SYSTEMS 5

    2 LINE CONSTANT CALCULATIONS 7

    3 CAPACITANCE OF TRANSMISSION LINES 11

    4 PERFORMANCE OF LINES 13

    5 HIGH VOLTAGE DC TRANSMISSION 23

    6 CORONA 26

    7 MECHANICAL DESIGN OF TRANSMISSION LINES 30

    8 OVERHEAD LINE INSULATORS 34

    9 INSULATED CABLES 35

    10 VOLTAGE CONTROL 40

    11 NEUTRAL GROUNDING 44

    12 TRANSIENTS IN POWER SYSTEMS 46

    13 SYMMETRICAL COMPONENTS AND FAULT CALCU-

    LATIONS 51

    14 PROTECTIVE RELAYS 65

    3

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    5/120

    15 CIRCUIT BREAKERS 71

    17 POWER SYSTEM SYNCHRONOUS STABILITY 75

    18 LOAD FLOWS 85

    19 ECONOMIC LOAD DISPATCH 91

    20 LOAD FREQUENCY CONTROL 94

    21 COMPENSATION IN POWER SYSTEMS 96

    22 POWER SYSTEM VOLTAGE STABILITY 98

    23 STATE ESTIMATION IN POWER SYSTEMS 102

    24 UNIT COMMITMENT 107

    25 ECONOMIC SCHEDULING OF HYDROTHERMAL PLANTS

    AND OPTIMAL POWER FLOWS 110

    4

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    6/120

    List of Scilab Codes

    Exa 1.1 To determine the Base values and pu values . . . . . . 5Exa 2.2 To dtermine inductance of a 3 phase line . . . . . . . 7Exa 2.3 Determine the equivalent radius of bundle conductor

    having its part conductors r on the periphery of circleof dia d . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Exa 2.4 To determine the inductance of single phase Transmis-sion line . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    Exa 2.5 To determine the inductance per Km of 3 phase line . 9Exa 2.6 To determine the inductance of double circuit line . . 10Exa 2.7 To determine the inductance per Km per phase of single

    circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Exa 3.1 To determine the capacitance and charging current . 11Exa 3.2 To determine the capacitance and charging current . 11

    Exa 3.3 To determine the capacitance and charging current . 12Exa 4.1 To determine the sending end voltage and current power

    and power factor Evaluate A B C D parameters . . . . 13Exa 4.2 To determine power input and output i star connected

    ii delta connected . . . . . . . . . . . . . . . . . . . . 14Exa 4.3 To determine efficiency and regulation of line . . . . . 15Exa 4.4 To calculate the voltage across each load impedence and

    current in the nuetral . . . . . . . . . . . . . . . . . . 15Exa 4.5 To determine efficiency and regulation of 3 phase line. 16Exa 4.6 To find the rms value and phase values i The incident

    voltage to neutral at the recieving end ii The reflected

    voltage to neutral at the recieving end iii The incidentand reflected voltage to neutral at 120 km from the re-cieving end . . . . . . . . . . . . . . . . . . . . . . . . 17

    Exa 4.7 To determine of efficiency of line . . . . . . . . . . . . 19

    5

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    7/120

    Exa 4.8 To determine the ABCD parameters of Line . . . . . . 19

    Exa 4.9 To determine the sending end voltage and efficiency us-ing Nominal pi and Nominal T method . . . . . . . . 20Exa 4.10 To determine the sending end voltage and current power

    and power factor Evaluate A B C D parameters . . . . 21Exa 5.1 To determine the dc output voltage when delay anglw

    a0 b30 c45 . . . . . . . . . . . . . . . . . . . . . . . . 23Exa 5.2 To determine the necessary line secondary voltage and

    tap ratio required . . . . . . . . . . . . . . . . . . . . 23Exa 5.3 To determine the effective reactance per phase . . . . 24Exa 5.4 Calculate the direct current delivered. . . . . . . . . . 24Exa 6.1 To determine the critical disruptive voltage and critical

    voltage for local and general corona . . . . . . . . . . 26Exa 6.2 To determine whether corona will be present in the air

    space round the conductor. . . . . . . . . . . . . . . . 27Exa 6.3 To determine the critical disruptive voltage and corona

    loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Exa 6.4 To determine the voltage for which corona will com-

    mence on the line . . . . . . . . . . . . . . . . . . . . 28Exa 6.5 To determine the corona characterstics . . . . . . . . . 28Exa 7.1 Calculate the sag . . . . . . . . . . . . . . . . . . . . 30Exa 7.2 To calculate the maximum Sag . . . . . . . . . . . . . 30

    Exa 7.3 To determine the Sag . . . . . . . . . . . . . . . . . . 31Exa 7.4 To determine the clearence between the conductor andwater level . . . . . . . . . . . . . . . . . . . . . . . . 32

    Exa 8.1 To determine the maximum voltage that the string ofthe suspension insulators can withstand . . . . . . . . 34

    Exa 9.1 To determine the economic overall diameter of a 1corecable metal sheathead . . . . . . . . . . . . . . . . . . 35

    Exa 9.2 To determine the minimum internal diameter of the leadsheath . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    Exa 9.3 To determine the maximum safe working voltage . . . 36Exa 9.4 To determine the maximum stresses in each of the three

    layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Exa 9.5 o dtermine the equivalent star connected capacity and

    the kVA required . . . . . . . . . . . . . . . . . . . . . 37

    6

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    8/120

    Exa 9.6 Determine the capacitance a between any two conduc-

    tors b between any two bunched conductors and thethird conductor c Also calculate the charging currentper phase per km. . . . . . . . . . . . . . . . . . . . . 38

    Exa 9.7 To calculate the induced emf in each sheath . . . . . 38Exa 9.8 To determine the ratio of sheath loss to core loss of the

    cable . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Exa 10.1 To determine the total power active and reactive sup-

    plied by the generator and the pf at which the generatormust operate . . . . . . . . . . . . . . . . . . . . . . . 40

    Exa 10.2 Determine the settings of the tap changers required tomaintain the voltage of load bus bar . . . . . . . . . . 41

    Exa 10.3 i Find the sending end Voltage and the regulation ofline ii Determine the reactance power supplied by theline and by synchronous capacotor and pf of line iii De-termine the maximum power transmitted . . . . . . . 41

    Exa 10.4 Determine the KV Ar of the Modifier and the maximumload that can be transmitted . . . . . . . . . . . . . . 42

    Exa 11.1 To find the inductance and KVA rating of the arc sup-pressor coil in the system . . . . . . . . . . . . . . . . 44

    Exa 11.2 Determine the reactance to neutralize the capacitanceof i 100 percent of the length of line ii 90 percent of the

    length of line iii 80 percent of the length of line . . . . 44Exa 12.1 To determine the i the neutral impedence of line ii linecurrent iii rate of energy absorption rate of reflectionand state form of reflection iv terminating resistance vamount of reflected and transmitted power . . . . . . 46

    Exa 12.2 Find the voltage rise at the junction due to surge . . 47Exa 12.3 To find the surge voltages and currents transmitted into

    branch line . . . . . . . . . . . . . . . . . . . . . . . . 48Exa 12.4 Determine the maximum value of transmitted wave. . 48Exa 12.5 Determine the maximum value of transmitted surge . 49Exa 12.6 Determine i the value of the Voltage wave when it has

    travelled through a distance 50 Km ii Power loss andHeat loss . . . . . . . . . . . . . . . . . . . . . . . . . 49

    Exa 13.1 Determine the symmetrical components of voltages . . 51Exa 13.2 Find the symmetrical component of currents . . . . . 51Exa 13.3 Determine the fault current and line to line voltages . 52

    7

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    9/120

    Exa 13.4 determine the fault current and line to line voltages at

    the fault . . . . . . . . . . . . . . . . . . . . . . . . . 53Exa 13.5 determine the fault current and line to line voltages atthe fault . . . . . . . . . . . . . . . . . . . . . . . . . 54

    Exa 13.6 Determine the fault current when i LG ii LL iii LLGfault takes place at P . . . . . . . . . . . . . . . . . . 55

    Exa 13.8 Determine the percent increase of busbar voltage . . . 57Exa 13.9 Determine the short circuit capacity of the breaker . . 57Exa 13.10 To determine the short circuit capacity of each station 57Exa 13.11 Determine the Fault MVA . . . . . . . . . . . . . . . 58Exa 13.12 To Determine the subtransient current in the alternator

    motor and the fault . . . . . . . . . . . . . . . . . . . 58

    Exa 13.13 To Determine the reactance of the reactor to preventthe brakers being overloaded . . . . . . . . . . . . . . 59

    Exa 13.14 Determine the subtransient currents in all phases of ma-chine1 the fault current and the voltages of machine 1and voltage at the fault point . . . . . . . . . . . . . . 60

    Exa 13.15 To determine the i pre fault current in line a ii the sub-transient current in pu iii the subtransient current ineach phase of generator in pu . . . . . . . . . . . . . 61

    Exa 13.16 Determine the shorrt circuit MVA of the transformer 62Exa 13.17 To determine the line voltages and currents in per unit

    on delta side of the transformer . . . . . . . . . . . . . 63Exa 14.1 To determine the time of operation of relay . . . . . . 65Exa 14.2 To determine the phase shifting network to be used. . 65Exa 14.3 To provide time current grading . . . . . . . . . . . . 66Exa 14.4 To determine the proportion of the winding which re-

    mains unprotected against earth fault . . . . . . . . . 66Exa 14.5 To determine i percent winding which remains unpro-

    tected ii min value of earthing resistance required toprotect 80 percent of winding . . . . . . . . . . . . . 67

    Exa 14.6 To determine whether relay will operate or not . . . . 68Exa 14.7 To determine the ratio of CT on HV side . . . . . . . 68

    Exa 14.8 To determine the number of turns each current trans-former should have . . . . . . . . . . . . . . . . . . . . 68

    Exa 14.9 To determine the R1 R2 and C also The potential acrossrelays . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    8

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    10/120

    Exa 14.10 To determine the kneepoint voltage and cross section of

    core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Exa 14.11 To determine the VA output of CT . . . . . . . . . . 70Exa 15.1 To determine the voltage appearing across the pole of

    CB also determine the value of resistance to be usedacross contacts . . . . . . . . . . . . . . . . . . . . . . 71

    Exa 15.2 To determine the rate of rise of restriking voltage . . . 71Exa 15.3 To Determine the average rate of rise of restriking voltage 72Exa 15.4 To determine the rated normal current breaking current

    making current and short time rating current . . . . . 73Exa 15.5 TO Determine i sustained short circuit current in the

    breaker ii initial symmetrical rms current in the breaker

    iii maximum possible dc component of the short circuitcurrent in the breaker iv momentary current rating ofthe breaker v the current . . . . . . . . . . . . . . . . 73

    Exa 17.1 To determine the acceleration Also determine the changein torque angle and rpmat the end of 15 cycles . . . . 75

    Exa 17.2 To determine the frequency of natural oscillations if thegenrator is loaded to i 60 Percent and ii 75 percent ofits maximum power transfer capacity. . . . . . . . . . 76

    Exa 17.3 To calculate the maximum value of d during the swing-ing of the rotor around its new equilibrium position. . 77

    Exa 17.4 To calculate the critical clearing angle for the conditiondescribed . . . . . . . . . . . . . . . . . . . . . . . . . 77Exa 17.5 To calculate the critical clearing angle for the generator

    for a 3phase fault. . . . . . . . . . . . . . . . . . . . . 78Exa 17.6 determine the critical clearing angle . . . . . . . . . . 79Exa 17.7 To determine the centre and radius for the pull out curve

    ans also minimum output vars when the output powersare i 0 ii 25pu iii 5pu. . . . . . . . . . . . . . . . . . . 80

    Exa 17.8 Compute the prefault faulted and post fault reduced Ymatrices. . . . . . . . . . . . . . . . . . . . . . . . . . 80

    Exa 17.9 Determine the reduced admittance matrices for prefault

    fault and post fault conditions and determine the powerangle characterstics for three conditions . . . . . . . . 81

    Exa 17.10 To Determine the rotor angle and angular frequency us-ing runga kutta and eulers modified method . . . . . . 82

    9

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    11/120

    Exa 18.1 Determine the voltages at the end of first iteration using

    gauss seidal method . . . . . . . . . . . . . . . . . . . 85Exa 18.2 Determine the voltages starting with a flat voltage profile 86Exa 18.3 Solve the prevous problem for for voltages at the end of

    first iteration . . . . . . . . . . . . . . . . . . . . . . . 87Exa 18.4 Determine the set of load flow equations at the end of

    first iteration by using Newton Raphson method . . . 88Exa 18.5 Determine the equations at the end of first iteration

    after applying given constraints . . . . . . . . . . . . . 90Exa 19.1 To Determine the economic operating schedule and the

    corresponding cost of generation b Determine the sav-ings obtained by loading the units . . . . . . . . . . . 91

    Exa 19.2 Determine the incremental cost of recieved power andpenalty factor of the plant. . . . . . . . . . . . . . . . 92

    Exa 19.4 Determine the minimum cost of generation . . . . . . 92Exa 20.1 Determine the load taken by the set C and indicate the

    direction in which the energy is flowing . . . . . . . . 94Exa 20.2 Determine the load shared by each machine . . . . . . 94Exa 20.3 Determine the frequency to which the generated voltage

    drops before the steam flow commences to increase tomeet the new load . . . . . . . . . . . . . . . . . . . . 95

    Exa 21.1 Determine the load bus voltage . . . . . . . . . . . . . 96

    Exa 22.2 To Determine the source voltage when the load is dis-connected to load pf i unity ii 8 lag . . . . . . . . . . . 98Exa 22.3 To determine thee Ac system voltage when the dc sys-

    tem is disconnected or shutdown . . . . . . . . . . . . 99Exa 22.4 To Calculate the new on and off times for constant energy 99Exa 22.6 To discuss the effect of tap changing . . . . . . . . . . 100Exa 22.7 To determine the effect of tapping to raise the secondary

    voltage by 10percent . . . . . . . . . . . . . . . . . . . 100Exa 22.8 Calculate the additional reactive power capability at full

    load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Exa 23.1 To determine the state vector at the end of first iteration 102

    Exa 23.2 Determine The States of the systems at the end of firstiteration. . . . . . . . . . . . . . . . . . . . . . . . . . 104

    Exa 23.3 Problem on State Estimator Linear Model . . . . . . . 105Exa 23.4 Determine theta1 Theta2 . . . . . . . . . . . . . . . . 105Exa 24.3 Priority List Method. . . . . . . . . . . . . . . . . . . 107

    10

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    12/120

    Exa 24.4 illustrate the dynamic programming for preparing an

    optimal unit commitment . . . . . . . . . . . . . . . . 108Exa 25.1 illustrating the procedure for economic scheduling clearall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    11

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    13/120

    Chapter 1

    FUNDAMENTALS OF

    POWER SYSTEMS

    Scilab code Exa 1.1 To determine the Base values and pu values

    1 / / To d e t er m i ne t h e B as e v a l u e s and p . u v a l u e s2 clear

    3 clc ;

    4 S b = 1 0 0 ; / / b a s e v a l u e o f p o we r (MVA)5 V b = 3 3 ; // b as e v al u e o f v o l t ag e ( Kv )6 V b l = V b * 1 1 0 / 3 2 ;

    7 V b m = V b l * 3 2 / 1 1 0 ;

    8 Z p . u t = 0 . 0 8 * 1 0 0 * 3 2 * 3 2 / ( 1 1 0 * 3 3 * 3 3 ) ;

    9 Z p . u . l = 5 0 * 1 0 0 / ( V b l ^ 2 ) ;

    10 Z p . u m 1 = . 2 * 1 0 0 * 3 0 * 3 0 / ( 3 0 * 3 3 * 3 3 ) ;

    11 Z p . u m 2 = . 2 * 1 0 0 * 3 0 * 3 0 / ( 2 0 * 3 3 * 3 3 ) ;

    12 Z p . u m 3 = . 2 * 1 0 0 * 3 0 * 3 0 / ( 5 0 * 3 3 * 3 3 ) ;

    13 mprintf ( Base v al ue o f v o l t a ge i n l i n e = %. 2 f kV\n ,V b l ) ;

    14 mprintf ( B ase v a lu e o f v o l t a g e i n motor c i r c u i t =%. 0 f kV\n , V b m ) ;15 mprintf ( p . u v a l u e o f r e a c t a n c e t r a n s f o r m e r =%. 5 f p .

    u\n , Z p . u t ) ;16 mprintf ( p . u v a l u e o f i m pe de n ce o f l i n e =%. 4 f p . u\n ,

    12

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    14/120

    Z p . u . l ) ;

    17 mprintf ( p . u v a l u e o f r e a c t a n c e o f m oto r 1 =%. 4 f p . u\n , Z p . u m 1 ) ;18 mprintf ( p . u v a l u e o f r e a c t a n c e o f m oto r 2 =%. 3 f p . u

    \n , Z p . u m 2 ) ;19 mprintf ( p . u v a l u e o f r e a c t a n c e o f m oto r 3 =%. 4 f p . u

    \n , Z p . u m 3 ) ;

    13

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    15/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    16/120

    p e r i ph e r y o f c i r c l e o f d ia d i f t he number o f

    c on du c to r s i s 2 , 3 , 4 , 6 ?23 clear

    4 clc ;

    5 r = poly (0 , r ) ;6 D 1 1 = r ^ 1 ;

    7 D 1 2 = 2 * r ;

    8 D 1 4 = 4 * r

    9 D 1 3 = sqrt ( 1 6 - 4 ) * r ;

    10 D s 1 = ( ( 1 * 2 * 2 * sqrt ( 3 ) * 4 * 2 * sqrt ( 3 ) * 2 * 2 ) ^ ( 1 / 7 ) ) * r ;

    11 D s 7 = ( ( 2 * 1 * 2 * 2 * * 2 * 2 * 2 ) ^ ( 1 / 7 ) ) * r ; // we g e t t h i s a f t e r

    Taking r o u t s i d e t he 1/7 t h r o ot12 D s = ( ( ( ( 1 * 2 * 2 * sqrt ( 3 ) * 4 * 2 * sqrt ( 3 ) * 2 * 2 ) ^ ( 1 / 7 ) ) ^ 6 )

    * ( ( 2 * 1 * 2 * 2 * * 2 * 2 * 2 ) ^ ( 1 / 7 ) ) ) ^ ( 1 / 7 ) * r ;

    13 D s e q = ( ( . 7 7 8 8 ) ^ ( 1 / 7 ) ) * D s ;

    14 disp ( D s e q , D se q .= ) ;

    Scilab code Exa 2.4 To determine the inductance of single phase Trans-mission line

    1 / / To d et er mi ne t he i n du c t a nc e o f s i n g l e p ha seT ra n sm i ss i on l i n e

    2 clear

    3 clc ;

    4 G M D a = 0 . 0 0 1 9 4 7 ; / / GMD o f c o n d u c t o r i n g ro u p A5 D S A = ( ( . 0 0 1 9 4 7 * 6 * 1 2 * . 0 0 1 9 4 7 * 6 * 6 * 0 . 0 0 1 9 4 7 * 6 * 1 2 ) ^ ( 1 / 9 ) )

    ;

    6 D S B = sqrt ( 5 * ( 1 0 ^ - 3 ) * . 7 7 8 8 * 6 ) ;

    7 D a e = sqrt ( ( 9 ^ 2 ) + 6 ^ 2 ) ;

    8 D c d = sqrt ( ( 1 2 ^ 2 ) + 9 ^ 2 ) ;9 D M A = ( ( 9 * 1 0 . 8 1 * 1 0 . 8 1 * 9 * 1 5 * 1 0 . 8 1 ) ^ ( 1 / 6 ) ) ;

    10 L A = 2 * ( 1 0 ^ - 7 ) * ( 1 0 ^ 6 ) * log ( D M A / D S A ) ;

    11 L B = 2 * ( 1 0 ^ - 7 ) * ( 1 0 ^ 6 ) * log ( D M A / D S B ) ;

    12 T o t = L A + L B ;

    15

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    17/120

    13 mprintf ( i n d u c t a n c e o f l i n e A , LA=% . 3 f mH/km\n , L A ) ;

    // A ns we rs don t match d ue t o d i f f e r e n c e i nr o u n d i n g o f f o f d i g i t s14 mprintf ( i n d u c t a n c e o f l i n e B , LB=% . 1 f mH/km\n , L B ) ;

    // A ns we rs don t match d ue t o d i f f e r e n c e i nr o u n d i n g o f f o f d i g i t s

    15 mprintf ( t o t a l i n d u c t a n c e o f l i n e =%. 2 f mH/km\n ,Tot) ; // A ns we rs don t match du e t o d i f f e r e n c e i nr o u n d i n g o f f o f d i g i t s

    Scilab code Exa 2.5 To determine the inductance per Km of 3 phase line

    1 / / To d e t er m in e t he i n d uc t a nc e p er Km o f 3p h a s el i n e

    2 clear

    3 clc ;

    4 G M D c = 1 . 2 6 6 * 0 . 7 7 8 8 * ( 1 0 ^ - 2 ) ; // s e l f GMD of e ac hc o n d u c t o r

    5 D b c = sqrt ( ( 4 ^ 2 ) + ( . 7 5 ^ 2 ) ) ;

    6 D a b = D b c ;

    7 D a b = sqrt ( ( 4 ^ 2 ) + ( 8 . 2 5 ^ 2 ) ) ;8 D a a = sqrt ( ( 8 ^ 2 ) + ( 7 . 5 ^ 2 ) ) ;

    9 D m 1 = ( D b c * 8 * 7 . 5 * 9 . 1 6 8 5 ) ^ ( 1 / 4 ) ;

    10 D m 2 = ( D b c * D b c * 9 . 1 6 8 5 * 9 . 1 6 8 5 ) ^ ( 1 / 4 ) ;

    11 D m 3 = D m 1 ;

    12 D m = ( ( D m 1 * D m 2 * D m 3 ) ^ ( 1 / 3 ) ) ;

    13 D s 1 = sqrt ( G M D c * D a a ) ; / / s e l f GMD o f e a c h p h a s e14 D s 3 = D s 1 ;

    15 D s 2 = sqrt ( G M D c * 9 ) ;

    16 D s = ( ( D s 1 * D s 2 * D s 3 ) ^ ( 1 / 3 ) ) ;

    17 Z = 2 * ( 1 0 ^ - 4 ) * ( 1 0 0 0 ) * log ( D m / D s ) ;18 mprintf ( in du ct an ce=%.3 f mH/km/ph ase \n , Z ) ;

    16

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    18/120

    Scilab code Exa 2.6 To determine the inductance of double circuit line

    1 / / To d et er mi ne t he i n du c t a nc e o f d ou bl e c i r c u i tl i n e

    2 clear

    3 clc ;

    4 G M D s = . 0 0 6 9 ; / / s e l f GMD o f t h e c o n d u c t o r5 D a b = sqrt ( ( 3 ^ 2 ) + . 5 ^ 2 ) ;

    6 D b c = D a b ;

    7 D a c = 6 ;

    8 D a b = sqrt ( ( 3 ^ 2 ) + 6 ^ 2 ) ;

    9 D a a = sqrt ( ( 6 ^ 2 ) + 5 . 5 ^ 2 ) ;

    10 D m 1 = ( ( 3 . 0 4 * 6 * 5 . 5 * 6 . 7 0 8 ) ^ . 2 5 ) ;11 D m 2 = ( ( 3 . 0 4 * 3 . 0 4 * 6 . 7 0 8 * 6 . 7 0 8 ) ^ . 2 5 ) ;

    12 D m = 4 . 8 9 ;

    13 D s 1 = sqrt ( G M D s * D a a ) ;

    14 D s 2 = 0 . 2 2 1 7 ;

    15 D s = . 2 2 8 ;

    16 Z = 2 * ( 1 0 ^ - 7 ) * ( 1 0 ^ 6 ) * log ( D m / D s ) ;

    17 mprintf ( in du ct an ce =%.3 f mH/km, Z ) ;

    Scilab code Exa 2.7 To determine the inductance per Km per phase ofsingle circuit

    1 / / / / To d e te r m in e t h e i n d u c t a nc e p e r Km p er p ha seo f s i n g l e c i r c u i t

    2 clear

    3 clc ;

    4 Ds = sqrt ( 0 . 0 2 5 * . 4 * . 7 7 8 8 ) ;

    5 D m = ( ( 6 . 5 * 1 3 . 0 * 6 . 5 ) ^ ( 1 / 3 ) ) ;

    6 Z = 2 * ( 1 0 ^ - 4 ) * 1 0 0 0 * log ( D m / D s ) ;7 mprintf ( i n du c t an c e =%. 3 f mH/km/ phase , Z ) ;

    17

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    19/120

    Chapter 3

    CAPACITANCE OF

    TRANSMISSION LINES

    Scilab code Exa 3.1 To determine the capacitance and charging current

    1 / /To d et er m in e t he c a p a c i t an c e and c h a rg i n g c u r r e nt2 clear

    3 clc ;

    4 D m = 2 . 0 1 5 ; / / m u tu a l GMD o f c o n d u c t o r s (m)5 r = . 4 ; / / r a d i u s o f c o n du c to r ( cm )6 C = 1 0 ^ - 9 * 1 0 0 0 / ( 1 8 * log ( 2 0 1 . 5 / . 4 ) ) ;

    7 I c = 1 3 2 * 1 0 0 0 * 8 . 9 2 8 * 3 1 4 * ( 1 0 ^ - 9 ) / sqrt ( 3 ) ;

    8 mprintf ( c a p a c i t a n c e =%. 1 3 f F/km\n , C ) ; / / A n s w er s d on t match due t o d i f f e r e n t r e p r e n t a t i o n

    9 mprintf ( c h ar gi ng c u r r e n t =%. 4 f amp/km , I c ) ;

    Scilab code Exa 3.2 To determine the capacitance and charging current

    1 / /To d et er m in e t he c a p a c i t an c e and c h a rg i n g c u r r e nt2 clear

    3 clc ;

    18

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    20/120

    4 G M D m = 6 . 6 1 ; // mu tu al GMD(m)

    5 D s 1 = sqrt ( 1 . 2 5 * ( 1 0 ^ - 2 ) * 1 0 . 9 6 5 ) ;6 D s 3 = D s 1 ;

    7 D s 2 = sqrt ( 1 . 2 5 * ( 1 0 ^ - 2 ) * 9 ) ;

    8 D s = ( ( D s 1 * D s 2 * D s 3 ) ^ . 3 3 3 3 3 3 ) ;

    9 C = 1 / ( 1 8 * log ( G M D m / D s ) ) ;

    10 I c = 2 2 0 * 1 0 0 0 * 3 1 4 * . 0 1 9 0 5 * ( 1 0 ^ - 6 ) / sqrt ( 3 ) ;

    11 mprintf ( c a p a c i t a n c e =%. 6 f m i cr oFarad/km\n , C ) ;12 mprintf ( c h a r g i n g c u r r e n t =% . 2 f amp /km , I c ) ;

    Scilab code Exa 3.3 To determine the capacitance and charging current

    1 / /To d et er m in e t he c a p a c i t an c e and c h a rg i n g c u r r e nt2 clear

    3 clc ;

    4 G M D = 8 . 1 9 ;

    5 Ds = sqrt ( 2 . 2 5 * ( 1 0 ^ - 2 ) * . 4 ) ;

    6 C = 1 / ( 1 8 * log ( G M D / D s ) ) ;

    7 I c = 2 2 0 * 1 0 0 0 * 3 1 4 * C * ( 1 0 ^ - 6 ) / sqrt ( 3 ) ;

    8 mprintf ( c a p a c i t a n c e p e r km =%. 5 f m i cr oFarad\n , C ) ;

    9 mprintf ( c h a r g i n g c u r r e n t =%. 3 f amp , I c ) ;

    19

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    21/120

    Chapter 4

    PERFORMANCE OF LINES

    Scilab code Exa 4.1 To determine the sending end voltage and currentpower and power factor Evaluate A B C D parameters

    1 / /To d et re mi ne t he t he v o l t ag e a t t he g e n e r a t i n gs t a t i o n and e f f i c i e n c y o f t r a n s m i s s i o n

    2 clear

    3 clc ;

    4 R = 0 . 4 9 6 ; // r e s i s t a n c e

    5 X = 1 . 5 3 6 ;6 V r = 2 0 0 0 ;

    7 Z = ( 1 0 * 2* 2 / ( 11 * 1 1 ) ) + % i * 3 0 * 2 *2 / ( 1 1* 1 1 ) ;

    8 Z t = ( .0 4 +( 1 .3 * 2* 2 /( 1 1* 1 1) ) ) + % i * (. 12 5 +

    ( 4 . 5 * 2 * 2 / ( 1 1 * 1 1 ) ) ) ; / / T r a n s f o r m e r i m p e d e n c e9 I l = 2 5 0 * 1 0 0 0 / 2 0 0 0 ; // l i n e c u r r e n t ( amps . )

    10 P l = I l * I l * R ; / / l i n e l o s s (kW)11 P o = 2 5 0 * 0 . 8 ; // ou tp ut (kW)12 c o s r = 0 . 8 ; // power f a c t o r13 s i n r = . 6 ;

    14 % n = 2 0 0 * 1 0 0 / ( 2 0 0 + 7 . 7 ) ;15 V s = ( V r * c o s r + I l * R ) + % i * ( V r * s i n r + I l * X ) ;

    16 V = sqrt ( ( 1 66 2 ^ 2) + ( 1 3 92 ^ 2 ) ) ;

    17 mprintf ( e f f i c i e n c y = %. 1 f p e r ce n t \n , % n ) ;18 mprintf ( S e n di ng end v o l t a g e ,|Vs |=%. 0 f v o l t s , V ) ;

    20

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    22/120

    Scilab code Exa 4.2 To determine power input and output i star con-nected ii delta connected

    1 / /To d e t er m i ne p ower i n p u t and o u tp ut ( i ) s t a rc o n n e c te d ( i i ) d e l t a c o n n e c t ed

    2 clear

    3 clc ;

    4 mprintf ( when l o a d i s s t a r c on n ec te d \n ) ;

    5 V l n = 4 0 0 / sqrt ( 3 ) ; // L in e t o n e u t r a l v o l t a g e (V)6 Z = 7+ % i * 11 ; / / I mp ed en ce p e r p h a se7 I l = 2 3 1 / Z ; // l i n e c u r r e nt ( amp . )8 I = abs ( 2 3 1 / Z ) ;

    9 P i = 3 * I * I * 7 ;

    10 P o = 3 * I * I * 6 ;

    11 mprintf ( p o we r i n p u t =%. 0 f w a t t s \n , P i ) ; //A nsw e r sdon t match due t o d i f f e r e n c e i n r ou nd in g o f f o f d i g i t s

    12 mprintf ( p o w er o u t p u t =% . 0 f w a t t s \n , P o ) ; //A nsw e r sdon t match due t o d i f f e r e n c e i n r ou nd in g o f f o f d i g i t s

    13 mprintf ( when l o ad i s d e l t a c o nn e ct ed \n ) ;14 Z e = 2 + % i * 3; / / e q u i v a l e n t i m pe de n ce ( ohm )15 Z p = 3 + % i * 5 ; / / i mp ed en ce p e r p ha s e16 i l = 2 3 1 / Z p ; / / L i n e c u r r e n t ( a mps . )17 IL = abs ( i l ) ;

    18 p i = 3 * I L * I L * 3 ;

    19 p o = 3 * I L * I L * 2 ;

    20 mprintf ( p o w er i n p u t =% . 1 f w a t t s \n , p i ) ; / / A n s w er s d on t match due t o d i f f e r e n c e i n r ou nd in g o f f o f

    d i g i t s21 mprintf ( p ow er o u tp u t = %. 0 f w a t ts \n , p o ) ; //A nsw e r s

    don t match due t o d i f f e r e n c e i n r ou nd in g o f f o f d i g i t s

    21

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    23/120

    Scilab code Exa 4.3 To determine efficiency and regulation of line

    1 // To d e t er mi ne e f f i c i e n c y and r e g u l a t i o n o f l i n e2 clear

    3 clc ;

    4 a = 1 0 0 / . 5

    5 X l = 2 * ( 1 0 ^ - 7 ) * log ( 1 0 0 / . 5 ) ; // i n du c t an c e (H/ me t e r )6 X L = 2 0 * ( 1 0 0 0 ) * X l ; // i n d uc t an c e o f 20 km l e n g t h7 R = 6 . 6 5 ; // r e s i s t a n c e ( ohm )8 R c = 2 0 * 1 0 0 0 / ( 5 8 * 9 0 ) ; // r e s i s t a n c e o f c op pe r ( ohm )9 I = 1 0 * 1 0 0 0 / ( 3 3 * . 8 * sqrt ( 3 ) ) ; / / t h e c u r r e n t ( amps . )

    10 P l = 3 * I * I * R c / ( 1 0 ^ 6 ) ; // l o s s (MW)11 n = 1 0 / ( 1 0 + P l ) ;

    12 mprintf ( e f f i c i e n c y =%. 4 f p e r c e n t \n , n ) ;13 V r = 1 9 0 5 2 ;

    14 c o s r = . 8 ; / / po wer f a c t o r15 s i n r = . 6 ;

    16 Vs = abs ( (( V r * c o s r + I * Rc ) + % i * ( V r * s in r + I * R ) ) ) ;

    17 mprintf ( Vs =%. 0 f v o l t s\n , V s ) ; //A nswe r don t matc h

    due t o d i f f e r e n c e i n r o u n d i n g o f f o f d i g i t s18 R e g = ( V s - V r ) * 1 0 0 / V r ;

    19 mprintf ( r e g u l a t i o n =%. 2 f p e r c e n t , R e g )

    Scilab code Exa 4.4 To calculate the voltage across each load impedenceand current in the nuetral

    1 / /To c a l c u l a t e t he v o l t a ge a c r o s s e a ch l oa d

    i mp ed en ce and c u r r e n t i n t he n u e t r a l2 clear

    3 clc ;

    4 I R = ( 4 0 0 ) / ( ( sqrt ( 3 ) * ( 6 . 3 + % i * 9 ) ) ) ;

    5 I Y = 2 3 1 * ( c o sd ( - 12 0) + % i * s in d ( - 1 20 ) ) / 8 . 3;

    22

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    24/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    25/120

    19 % n = 2 0 * 1 0 0 / ( 2 0 + P l ) ;

    20 mprintf ( p e r c e n t r e g u l a t i o n =%. 1 f \n , R e g ) ;21 mprintf ( p e r c e n t e f f i c i e n c y =%. 1 f \n\n , % n ) ;22 mprintf ( U s i n g N om in alp i m et ho d\n ) ;23 I r 1 = 2 1 8 . 6 8 * ( . 8 - % i * . 6 ) ;

    24 I c 1 = % i * 3 1 4 * . 4 9 7 7 * ( 1 0 ^ - 6 ) * V r ;

    25 I l = I r 1 + I c 1 ;

    26 v s 1 = V r + I l * ( 1 0 + % i * 3 5 . 1 ) ;

    27 V s 1 = abs ( v s 1 ) ;

    28 V r 1 = V s 1 * ( - % i * 6 3 9 8 ) / ( 1 0 - % i * 6 3 6 3 ) ;

    29 V R 1 = abs ( V r 1 ) ; // no l oa d r e c i e v i n g end v o l t a ge30 R e g 2 = ( V R 1 - V r ) * 1 0 0 / V r ;

    31 IL = abs ( I r 1 + I c 1 ) ;32 L o s s = 3 * I L * I L * 1 0 ;

    33 % n = 2 0 * 1 0 0 / 2 1 . 3 8 8 ;

    34 mprintf ( p e r c e n t r e g u l a t i o n =%. 2 f \n , R e g 2 ) ;35 mprintf ( p e r c e n t e f f i c i e n c y =%. 1 f \n , % n ) ;

    Scilab code Exa 4.6 To find the rms value and phase values i The incidentvoltage to neutral at the recieving end ii The reflected voltage to neutral at

    the recieving end iii The incident and reflected voltage to neutral at 120 kmfrom the recieving end

    1 / /To f i n d t h e rms v a l u e and p ha se v a l u e s ( i ) Thei n c i d e n t v o l t a ge t o n e u t r al a t t he r e c i e v i n g end( i i ) The r e f l e c t e d v o l t a g e t o n e u t r a l a t t her e c i e v i n g end ( i i i ) The i n c i d e n t and r e f l e c t e dv o l t a g e t o n e u t ra l a t 120 km from t he r e c i e v i n gend .

    2 clear

    3 clc ;4 R = 0 . 2 ;

    5 L = 1 . 3 ;

    6 C = 0 . 0 1 * ( 1 0 ^ - 6 ) ;

    7 z = R + % i * L * 3 1 4 * ( 1 0 ^ - 3 ) ; // s e r i e i mp ed en ce

    24

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    26/120

    8 y = % i * 3 1 4 * C ; / / s hu nt a d mi t ta n ce

    9 Zc = sqrt ( z / y ) ; // c h a r a c t e r s t i c i mp ed en ce10 Y = sqrt ( y * z ) ;11 V r = 1 3 2 * 1 0 0 0 / sqrt ( 3 ) ;

    12 I r = 0 ;

    13 V in = ( V r + I r * Zc ) / 2; // i n c i d e n t v o l t a g e t o n e u t r a l a tt h e r e c i e v i n g end

    14 mprintf ( Vr =%. 3 f v o l t s \n , V r ) ; // Answer don t matchdue t o d i f f e r e n c e i n r o u n d i n g o f f o f d i g i t s

    15 mprintf ( ( i ) The i n c i d e n t v o l t a g e t o n e u t ra l a t t her e c i e v i n g end =%. 3 f v o l t s \n , V i n ) ; // Answer don t

    match d ue t o d i f f e r e n c e i n r o un di ng o f f o f

    d i g i t s16 V in 2 =( V r - I r * Zc ) / 2; // The r e f l e c t e d v o l t a ge t o

    n e u t r al a t t h e r e c i e v i n g end17 mprintf ( ( i i ) The r e f l e c t e d v o l t a g e t o n e u t ra l a t t he

    r e c i e v i n g end=%. 3 f v o l t s \n , V i n 2 ) ; // Answer don t match d ue t o d i f f e r e n c e i nr ou nd i n g o f f o f d i g i t s

    18 V r p = V r * exp ( . 2 7 1 4 * 1 2 0 * ( 1 0 ^ - 3 ) ) * exp ( %i

    * 1 . 1 6 9 * 1 2 0 * ( 1 0 ^ - 3 ) ) / 1 0 0 0 ; // Takin g Vrp=Vr+19 V r m = V r * exp ( - 0 . 0 3 2 5 ) * exp ( - % i * . 1 4 0 ) / 1 0 0 0 ; // Takin g Vrm=

    Vr20 v 1 = V r m / 2 ; // r e f l e c t e d v o l t a ge t o n e ut r a l a t 1 20 kmfrom t he r e c i e v i n g end

    21 p h a s e _ v 1 = a t a n d ( imag ( v 1 ) / real ( v 1 ) ) ; // P hase a n g le o f v1

    22 v 2 = V r p / 2 ; // i n c i d e n t v o l t a g e t o n e u t r a l a t 120 kmfrom t he r e c i e v i n g end

    23 p h a s e _ v 2 = a t a n d ( imag ( v 2 ) / real ( v 2 ) ) ; // P hase a n g le o f v2

    24 mprintf ( ( i i i ) r e f l e c t e d v o l t a ge t o n e ut r a l a t 120km fro m t he r e c i e v i n g end =%. 2 f a t a n g le o f %. 2 f

    \n , abs ( v 1 ) , p h a s e _ v 1 ) ;25 mprintf ( i n c i d e n t v o l t ag e t o n e u t r a l a t 120 km f rom

    t he r e c i e v i n g end = %. 2 f a t a n gl e o f %. 2 f \n , abs (v 2 ) , p h a s e _ v 2 ) ;

    25

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    27/120

    Scilab code Exa 4.7 To determine of efficiency of line

    1 //To d et er mi ne o f e f f i c i e n c y o f l i n e2 clear

    3 clc ;

    4 I r = 4 0 * 1 0 0 0 / ( sqrt ( 3 ) * 1 3 2 * . 8 ) ;

    5 V r = 1 3 2 * 1 0 0 0 / sqrt ( 3 ) ;

    6 Z c = 3 8 0* ( c o s d ( - 1 3. 0 6) + % i * s i nd ( - 1 3. 0 6) ) ;

    7 I R = I r *( c o s d ( - 3 6 . 8) + % i * s in d ( - 3 6. 8 ) ) ;

    8 V sp = ( V r + I R * Z c ) * ( 1 .0 3 3 *( c o sd ( 8 . 0 2 ) + % i * s in d ( 8 . 0 2) ) )

    /2;

    9 V sm = ( V r - I R * Z c ) * ( .9 6 8 *( c o sd ( - 8 .0 2) + % i * s in d ( - 8 .0 2 ) ) )

    /2;

    10 v s = V sp + V sm ;

    11 Vs = abs ( v s ) ;

    12 i s = ( V s p - V s m ) / Z c ;

    13 Is = abs ( i s )

    14 P = 3 * V s * I s * c o s d ( 3 3 . 7 2 ) / 1 0 ^ 6 ;

    15 n = 4 0 * 1 0 0 / P ;

    16 mprintf ( e f f i c i e n c y =%. 1 f , n ) ; //Answer don t matchdue t o d i f f e r e n c e i n r o u n d i n g o f f o f d i g i t s

    Scilab code Exa 4.8 To determine the ABCD parameters of Line

    1 / /To d e t e r m i ne t h e ABCD p a r a m e t e r s o f L i n e2 clear

    3 clc ;

    4 y l = ( 0 . 27 1 4 + % i * 1 . 16 9 ) * 1 2 0 *( 1 0 ^ - 3 ) ;5 I r = 4 0 * 1 0 0 0 / ( sqrt ( 3 ) * 1 3 2 * . 8 )

    6 A = cosh ( y l ) ;

    7 p h a s e _ A = a t a n d ( imag ( A ) / real ( A ) ) ; // P ha se a n g le o f A8 I R = I r *( c o s d ( - 3 6 . 8) + % i * s in d ( - 3 6. 8 ) )

    26

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    28/120

    9 V r = 1 3 2 * 1 0 0 0 / sqrt ( 3 ) ;

    10 Z c = 3 8 0* ( c o s d ( - 1 3. 0 6) + % i * s i nd ( - 1 3. 0 6) ) ;11 B = Z c * sinh ( y l ) ;

    12 p h a s e _ B = a t a n d ( imag ( B ) / real ( B ) ) ; // P ha se a n g le o f B13 V s = ( A * V r + B * I R ) ;

    14 f = abs ( B ) ;

    15 d = abs ( V s ) ;

    16 C = sinh ( y l ) / Z c ;

    17 p h a s e _ C = a t a n d ( imag ( C ) / real ( C ) ) ; // P ha se a n g le o f C18 D = cosh ( y l ) ;

    19 p h a s e _ D = a t a n d ( imag ( D ) / real ( D ) ) ; // P ha se a n g le o f D20 mprintf ( A=%. 2 f a t a n a n g l e o f %. 2 f \n , abs ( A ) ,

    p h a s e _ A )21 mprintf ( B=%. 1 f a t a n a n g l e o f %. 0 f \n , abs ( B ) ,

    p h a s e _ B )

    22 mprintf ( C=%. 2 f a t a n a n g l e o f %. 2 f \n , abs ( C ) ,p h a s e _ C )

    23 mprintf ( D=%. 2 f a t a n a n g l e o f %. 2 f \n , abs ( D ) ,p h a s e _ D )

    Scilab code Exa 4.9 To determine the sending end voltage and efficiencyusing Nominal pi and Nominal T method

    1 / /To d et er m in e t he s e nd i n g end v o l t a g e ande f f i c i e n c y u s i ng N om in a l p i and NominalT method

    2 clear

    3 clc ;

    4 I r = 2 1 8 . 7 * ( . 8 - % i * . 6 ) ;

    5 I c 1 = % i * 3 1 4 * . 6 * ( 1 0 ^ - 6 ) * 7 6 2 0 0 ;

    6 I l = I c 1 + I r ;

    7 V s = 7 6 20 0 + I l * (2 4+ % i * 48 . 38 ) ;8 p h a s e _ V s = a t a n d ( imag ( V s ) / real ( V s ) ) ; // p h as e a n g le o f VS

    9 P l = 3 * 2 4 * abs ( I l ) * abs ( I l ) / 1 0 0 0 0 0 0 ; // The L o s s (MW)10 n = 4 0 * 1 0 0 / ( 4 0 + P l ) ;

    27

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    29/120

    11 mprintf ( U s i n g N om in al p i m et ho d\n ) ;

    12 mprintf ( Vs=%. 0 f v o l t s a t an a n g l e o f % . 2 f \n , abs (V s ) , p h a s e _ V s )13 mprintf ( e f f i c i e n c y =%. 2 f p e r c e n t \n , n ) ;14 mprintf ( \ nU si ng N omi nalT method\n ) ;15 V c = 7 6 2 0 0* ( . 8 + % i * . 6) + 2 1 8 .7 * ( 12 + % i * 2 4 .4 9 ) ;

    16 I c = % i * 3 1 4* 1 . 2* ( 1 0^ - 6 ) * ( 6 3 5 84 + % i * 5 1 07 6 ) ;

    17 I s = 1 9 9 . 4 6+ % i * 2 3 .9 5 ;

    18 V s =( V c + I s * (1 2+ % i * 24 .4 9 ) ) / 10 0 0;

    19 p h a s e _ V s = a t a n d ( imag ( V s ) / real ( V s ) ) ; // P hase a n g le o f Vs

    20 P l1 = 3 * 1 2 *( ( 2 0 0. 8 9 ^ 2 ) + 2 1 8 .7 ^ 2 ) / 1 0 0 00 0 0 ; //The l o s s (MW

    )21 n 1 = 4 0 * 1 0 0 / ( 4 0 + P l 1 ) ;

    22 mprintf ( Vs=%. 2 f a t an a n g l e o f % . 2 f \n , abs ( V s ) ,p h a s e _ V s )

    23 mprintf ( e f f i c i e n c y =%. 2 f p e r c e n t \n , n 1 ) ;

    Scilab code Exa 4.10 To determine the sending end voltage and currentpower and power factor Evaluate A B C D parameters

    1 / / To d e te rm i ne t he s e nd i ng end v o l t a g e and c u r r e nt, power and power f a c t o r . E va lu a te A , B , C , Dp a r a m e t e r s .

    2 clear

    3 clc ;

    4 R = . 1 5 5 7 * 1 6 0

    5 G M D = ( 3 . 7 * 6 . 4 7 5 * 7 . 4 ) ^ ( 1 / 3 ) ;

    6 Z 1 = 2 * ( 1 0 ^ - 7 ) * log ( 5 6 0 / . 9 7 8 ) * 1 6 0 * 1 0 0 0 ;

    7 X L = 6 3 . 8 ;

    8 C = ( 1 0 ^ - 9 ) * 2 * ( 1 0 ^ 6 ) * % p i * 1 6 0 * 1 0 0 0 / ( 3 6 * % p i * log( 5 6 0 / . 9 7 8 ) ) ;

    9 Z = sqrt ( ( . 15 5 7 ^ 2) + . 3 9 87 5 ^ 2) * ( c o s d ( 6 8 . 67 ) + % i * s in d

    ( 6 8 . 6 7 ) ) ;

    10 j w C = % i * 3 1 4 * 1 . 3 9 9 * ( 1 0 ^ - 6 ) / 1 6 0 ;

    28

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    30/120

    11 Zc = sqrt ( Z / j w C ) ;

    12 y = sqrt ( Z * j w C ) ;13 y l = y * 1 6 0 ;

    14 A = cosh ( y l ) ;

    15 B = Z c * sinh ( y l )

    16 C = sinh ( y l ) / Z c ;

    17 I r = 5 0 0 0 0 / ( sqrt ( 3 ) * 1 3 2 ) ;

    18 V s = ( A * 7 6 .2 0 8 ) + ( B * ( 10 ^ - 3 ) * I r * ( c o sd ( - 3 6. 8 7) + % i * s i n d

    ( - 3 6 . 8 7 ) ) ) ;

    19 V S = 1 5 2 . 3 4 ;

    20 I s = C * 7 6 . 20 8 * ( 10 ^ 3 ) + ( A * Ir * ( c o s d ( - 3 6 . 87 ) + % i * s i nd

    ( - 3 6 . 8 7 ) ) ) ;

    21 P s = 3 * abs ( V s ) * abs ( I s ) * c o s d ( 3 3 . 9 6 ) ;22 p f = c o s d ( 3 3 . 9 6 ) ;

    23 V n l = abs ( V s ) / abs ( A ) ;

    24 r e g = ( V nl - 7 6 . 2 0 8 ) * 1 0 0 / 7 6 . 2 0 8 ;

    25 n = 5 0 0 0 0 * . 8 * 1 0 0 / abs ( P s ) ;

    26 mprintf ( Vs l i n e t o l i n e =%. 2 f kV\n , V S ) ;27 disp ( I s , s e n d i n g end c u r r e n t I s (A)= ) ; // Answer don t

    match d ue t o d i f f e r e n c e i n r o un di ng o f f o f d i g i t s

    28 mprintf ( s e n d i n g e nd p o we r=% . 0 f kW\n , P s ) ;29 mprintf (

    s e n d i n g e nd p . f =%. 3 f \n, p f ) ;

    30 mprintf ( p e r c e n t r e g u l a t i o n =%. 1 f \n , r e g ) ;31 mprintf ( p e r c e n t e f f i c e n c y =%. 1 f , n ) ;

    29

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    31/120

    Chapter 5

    HIGH VOLTAGE DC

    TRANSMISSION

    Scilab code Exa 5.1 To determine the dc output voltage when delay anglwa0 b30 c45

    1 / /To d e t er m i ne t h e d . c . o u tp u t v o l t a g e when d e l a ya ng lw ( a ) 0 ( b ) 3 0 ( c ) 4 5

    2 clear

    3 clc ;

    4 V o = 3 * sqrt ( 2 ) * 1 1 0 / % p i ;

    5 V d = V o * ( c o sd ( 0 ) + c o sd ( 1 5 ) ) / 2 ;

    6 V d 1 = V o * ( c os d ( 3 0 ) + c o sd ( 4 5 ) ) / 2 ;

    7 V d 2 = V o * ( c os d ( 4 5 ) + c o sd ( 6 0 ) ) / 2 ;

    8 mprintf ( ( a ) F or a=0, Vd=%. 2 f kV\n , V d ) ;9 mprintf ( ( b ) F or a=30, Vd=%. 2 f kV\n , V d 1 ) ;

    10 mprintf ( ( c ) For a =45 ,Vd=%.2 f kV\n , V d 2 ) ;

    Scilab code Exa 5.2 To determine the necessary line secondary voltageand tap ratio required

    30

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    32/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    33/120

    9 I d = ( 3 * sqrt ( 2 ) * 1 20 * ( c o sd ( a ) - c o s d ( d 0 + y) ) * 1 0 0 0) / ( ( R +

    ( 3 * 2 * X ) / % p i ) * % p i ) ;10 mprintf ( Id=%.2 f amp . \ n , I d ) ;

    32

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    34/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    35/120

    18 mprintf ( v i s u a l c r i t i c a l v o l t a g e f o r g e n e r a l c o ro n a=

    % . 2 f kV \n , V v g ) ;

    Scilab code Exa 6.2 To determine whether corona will be present in theair space round the conductor

    1 / / To d et er mi ne w h et h er c or on a w i l l be p r e s e nt i nt he a i r s pa ce r ound t he c on du ct or

    2 clear

    3 clc ;4 d = 2 . 5 ;

    5 d i = 3 ; // i n t e r n a l d ia me te r6 d o = 9 ; // e x t e r n al d ia me te r7 r i = d i / 2 ; // i n t e r n a l r a d i u s8 r o = d o / 2 ; // e x t e r n a l d ia me te r9 g 1 m a x = 2 0 / ( 1 . 2 5 * log ( r i / ( d / 2) ) + . 2 0 8* 1 . 5* log ( r o / r i ) ) ;

    10 mprintf ( g1max=%. 0 f kV/cm \n , g 1 m a x ) ;11 mprintf ( S i n ce t he g r a d i e n t e x ce e ds 2 1 . 1 /kV/cm ,

    c or on a w i l l be p r e s e nt . )

    Scilab code Exa 6.3 To determine the critical disruptive voltage and coronaloss

    1 / / To d e t er m i ne t h e c r i t i c a l d i s r u p t i v e v o l t a g e andc or on a l o s s

    2 clear

    3 clc ;

    4 m = 1 . 0 7 ;

    5 r = . 6 2 56 V = 2 1* m * r *log ( 3 0 5 / . 6 2 5 ) ;

    7 V l = V * sqrt ( 3 ) ;

    8 mprintf ( c r i t i c a l d i s r u p t i v e v o l t a g e =% . 0 f kV\n , V ) ;

    34

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    36/120

    9 mprintf ( s i n c e o p er a ti n g v o l t a ge i s 110 kV , c o ro na

    l o s s= 0 ) ;

    Scilab code Exa 6.4 To determine the voltage for which corona will com-mence on the line

    1 / /To d et er mi ne t he v o l t a g e f o r which c or on a w i l lcommence on t h e l i n e

    2 clear

    3 clc ;4 r = . 5 ;

    5 V = 2 1 * r * log ( 1 0 0 / . 5 ) ;

    6 mprintf ( c r i t i c a l d i s r u p t i v e v o l t a g e =% . 1 f kV , V ) ;

    Scilab code Exa 6.5 To determine the corona characterstics

    1 //To d et er mi ne t he c or on a c h a r a c t e r s t i c s2 clear

    3 clc ;

    4 D = 1 . 0 3 6 ; / / c o n d u c t o r d i a m e t e r ( cm )5 d = 2 . 4 4 ; / / d e l t a s p a c i n g (m)6 r = D / 2 ; // r a di us ( cm)7 R a t i o = d * 1 0 0 / r ;

    8 j = r / ( d * 1 0 0 ) ;

    9 R a t 2 = sqrt ( j ) ;

    10 t = 2 6 . 6 7 ; / / t e m p e r a t u r e11 b = 7 3 . 1 5 ; // b a r om e tr i c p r e s s u r e12 m v = . 7 2 ;

    13 V = 6 3 . 5 ;14 f = 5 0 ; / / f r e q u e n c y15 d o = 3 . 9 2 * b / ( 2 7 3 + t ) ; / / d o = d e l l16 v d = 2 1 . 1 * . 8 5 * d o * r * log ( R a t i o ) ;

    17 mprintf ( c r i t i c a l d i s r u p t i v e v o l t a g e =% . 2 f kV\n , v d ) ;

    35

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    37/120

    18 V v = 2 1. 1 * m v * d o * r * (1 + ( . 3/ sqrt ( r * d o ) ) ) * log ( R a t i o ) ;

    19 P l = 2 4 1 * ( 1 0 ^ - 5 ) * ( f + 2 5 ) * R a t 2 * ( ( V - v d ) ^ 2 ) / d o ; //pow e rl o s s20 V d = . 8 * v d ;

    21 P l 2 = 2 4 1 * ( 1 0 ^ - 5 ) * ( f + 2 5 ) * R a t 2 * ( ( V - V d ) ^ 2 ) * 1 6 0 / d o ; / / l o s sp e r p h a se /km

    22 T o t al = 3 * P l2 ;

    23 mprintf ( v i s u a l c r i t i c a l v o l t a g e =% . 0 f kV\n , V v ) ;24 mprintf ( Power l o s s=%.3 f kW/ pha se /km\n , P l ) ;25 mprintf ( u nde r f o u l w ea th er c o n d i t i o n ,\n ) ;26 mprintf ( c r i t i c a l d i s r u p t i v e v o l t a g e =% . 2 f kV\n , V d ) ;27 mprintf ( T o t a l l o s s =%. 0 f kW\n , T o t a l ) ;

    36

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    38/120

    Chapter 7

    MECHANICAL DESIGN OF

    TRANSMISSION LINES

    Scilab code Exa 7.1 Calculate the sag

    1 // C a l c u l a te t he s ag2 clear

    3 clc ;

    4 s f = 5 ; // F ac to r o f s a f e t y5 d = . 9 5 ; / / c o n d u c t o r d i a ( cm )6 W s = 4 2 5 0 / s f ; // w or ki ng s t r e s s ( k g/ cm 2 )7 A = % p i * ( d ^ 2 ) / 4 ; // a r e a ( cm 2 )8 W p = 4 0 * d * ( 1 0 ^ - 2 ) ; / / wi nd p r e s s u r e ( k g /cm )9 W = sqrt ( ( . 65 ^ 2 ) + ( . 38 ^ 2 ) ) ; // T ot al e f f e c t i v e w ei gh t (

    kg/m)10 T = 8 5 0 * A ; // w or k in g t e n s i o n ( kg )11 c = T / W ;

    12 l = 1 6 0 ;

    13 d = l ^ 2 / ( 8 * 8 0 0 ) ;

    14 mprintf ( sag , d=%.0 f me tre s \n , d ) ;

    37

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    39/120

    Scilab code Exa 7.2 To calculate the maximum Sag

    1 / / To c a l c u l a t e t h e maximum S ag2 clear

    3 clc ;

    4 D = 1 .9 5 + 2 .6 ; / / o v e r a l l d i a me t er ( cm )5 A = 4 . 5 5 * ( 1 0 ^ - 2 ) ; / / a r e a ( m 2 )6 d = 1 9 . 5 ; / / d i a m e t e r o f c o n d u c t o r (mm)7 r = d / 2 ; / / r a d i u s o f c o n d u c t o r (mm)8 W p = A * 3 9 ; / / wi nd p r e s s u r e ( k g / m 2 )9 t = 1 3 ; // i c e c o at i n g (mm)

    10 U S = 8 0 0 0 ; // u l t i m a te s t r e n g t h ( k g )

    11 A i c e = % p i * (1 0 ^ - 6 ) * (( r + t ) ^ 2 - r ^ 2 ) ; // a r e a s e c t i o n o f i c e ( m 2 )

    12 W i c e = A i c e * 9 1 0 ;

    13 W =( sqrt ( (. 85 + W i ce ) ^ 2 + W p ^2 ) ) ;// t o t a l w e i g h t o f i c e(kg/m)

    14 T = U S / 2 ; // w o rk in g t e a ns i o n ( kg )15 c = T / W ;

    16 l = 2 7 5 ; / / l e n g t h o f s p an (m)17 S m a x = l * l / ( 8 * c ) ;

    18 mprintf ( Maximum sa g=%.1 f me tr es \n , S m a x ) ;

    Scilab code Exa 7.3 To determine the Sag

    1 / /To d e t e r m i ne t h e S ag2 clear

    3 clc ;

    4 A = 1 3 . 2 ; // c r o s s s e c t i o n o f c on du ct or ( mm 2 )5 A r = 4 . 1 * ( 1 0 ^ - 3 ) ; // p r o j e c t e d a re a

    6 W p = A r * 4 8 . 8 2 ; / / w in d l o a d i n d /m( k g /m)7 w = . 1 1 5 ;8 W = sqrt ( ( .1 1 57 ^ 2) + ( W p ^2 ) ) ;// e f f e c t i v e l o a d i n g p e r

    m e t r e ( k g )9 q 1 = W / . 1 1 5 ;

    38

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    40/120

    10 b = w / A ;

    11 f 1 = 2 1 ; // w o rk in g s t r e s s12 T 1 = f 1 * A ;13 c = T 1 / W ;

    14 l = 4 5 . 7 ;

    15 S = l * l / ( 8 * c ) ;

    16 d T = 3 2 . 2 - 4 . 5 ; // d i f f e r e n c e i n t em pe ra tu re17 E = 1 . 2 6 * ( 1 0 0 0 0 ) ;

    18 a = 1 6 . 6 * ( 1 0 ^ - 6 ) ;

    19 d = 8 . 7 6 5 * ( 1 0 ^ - 3 ) ;

    20 K = f 1 - ( ( l * d * q 1 ) ^ 2 ) * E / ( 2 4 * f 1 * f 1 ) ;

    21 p = poly ( [ - 84 .2 3 0 - 14 .4 4 1] , f2 , c ) ;

    22 r = roots ( p ) ;23 f 2 = 1 4 . 8 23 3 3 2; // a cc ep te d v al ue o f f 224 T = f 2 * A ;

    25 c = T / w ;

    26 d 1 = l * l / ( 8 * c ) ;

    27 mprintf ( s a g a t 3 2 . 2 C e l s i u s , d=%. 4 f m et re s , d 1 ) ;

    Scilab code Exa 7.4 To determine the clearence between the conductor

    and water level

    1 / / To d e te rm i ne t he c l e a r e n c e b etw een t he c o nd u ct o rand w at er l e v e l

    2 clear

    3 clc ;

    4 T = 2 0 0 0 ; // w o rk in g t e n si o n ( kg )5 w = 1 ;

    6 c = T / w ;

    7 h = 9 0 - 3 0 ;

    8 l = 3 0 0 ; // span (m)9 a = ( l / 2 ) - ( c * h / l ) ;10 b = 5 5 0 ;

    11 d 1 = a * a / ( 2 * c ) ;

    12 d 2 = ( 4 0 0 ^ 2 ) / ( 2 * c ) ; // s a g a t 4 00 m e tr es (m)

    39

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    41/120

    13 H m = d 2 - d 1 ; // h e ig h t o f mid p o in t w i th r e s p e c t t o A

    14 C l = 3 0 + H m ;15 mprintf ( t h e c l e a r e n c e b et we en t he c o nd u ct o r andw a te r l e v e l midway b et we en t h e t o w e r s= %. 3 f m e t r e s \n , C l ) ;

    40

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    42/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    43/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    44/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    45/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    46/120

    o f f o f d i g i t s

    Scilab code Exa 9.6 Determine the capacitance a between any two con-ductors b between any two bunched conductors and the third conductor cAlso calculate the charging current per phase per km

    1 / / D et er mi ne t h e c a p a c i t a n c e ( a ) b et we en any twoc o n d u c t o r s ( b ) b et we en a ny two b un ch ed c o n d u c t o r sand t he t h i r d c on d uc to r ( c ) A ls o c a l c u l a t e t he

    c h a rg i n g c u r r e n t p er p ha se p er km2 clear3 clc ;

    4 C 1 = . 2 0 8 ;

    5 C 2 = . 0 9 6 ;

    6 C x = 3 * C 1 ;

    7 w = 3 1 4 ;

    8 V = 1 0 ;

    9 C y = ( C 1 + 2 * C 2 ) ;

    10 C o = ( ( 1 . 5 * C y ) - ( C x / 6 ) ) ;

    11 C = C o / 2 ;

    12 mprintf ( ( i ) C a p a c i t a n c e b e tw e en a ny t wo c o n d u c t o r s =%. 3 f m ic roFarad/km\n , C ) ;

    13 c = ( (2 * C 2 + ( (2 /3 ) * C1 ) ) ) ;

    14 mprintf ( ( i i ) C a p a c i t a n c e b e tw e en a ny t wo b un ch edc o n d u c t o r s and t h e t h i r d c o n d u c t o r=%. 2 f m ic roFarad/km\n , c ) ;

    15 I = V * w * C o * 1 0 0 0 * ( 1 0 ^ - 6 ) / sqrt ( 3 ) ;

    16 mprintf ( ( i i i ) t h e c h a r g i n g c u r r e n t p e r p ha s e p e r km=%. 3 f A\n , I ) ;

    Scilab code Exa 9.7 To calculate the induced emf in each sheath

    1 / / To c a l c u l a t e t he i nd uc ed emf i n e ac h s he at h .

    45

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    47/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    48/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    49/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    50/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    51/120

    maximum l o a d t h a t c an b e t r a n s m i t t e d

    2 clear3 clc ;

    4 a = 0 ;

    5 b = 7 3 . 3

    6 A = 1 ;

    7 B = 2 0 . 8 8 ;

    8 V s = 6 6 ;

    9 V r = 6 6 ;

    10 L o a d = 7 5 ;

    11 p = poly ( [1 4 62 4 4 00 1 ] , Qr , c ) ;12 r = roots ( p ) ;

    13 Q r = - 4 0 . 70 1 5 38 ;14 C = - Q r + ( 7 5* . 6/ . 8) ;

    15 S m a x = ( V r ^ 2 ) * ( 1 - c o s d ( b ) ) / B ;

    16 mprintf ( The p h as e m o d i f i e r c a p a c i t y =%. 2 f MV Ar\n ,C ) ;

    17 mprintf ( Maximum power tr a n s m i t t ed ,Pmax =%.2 f MW ,S m a x ) ;

    50

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    52/120

    Chapter 11

    NEUTRAL GROUNDING

    Scilab code Exa 11.1 To find the inductance and KVA rating of the arcsuppressor coil in the system

    1 / / To f i n d t he i n d uc t a nc e and KVA r a t i n g o f t he a r cs u pp r e s so r c o i l i n t h e s y s t e m

    2 clear

    3 clc ;

    4 C 1 = 2 * % p i * ( 1 0 ^ - 9 ) / ( 3 6 * % p i * log ( ( 4 * 4 * 8 ) ^ ( 1 / 3 )

    / ( 1 0 * ( 1 0 ^ - 3 ) ) ) ) ;5 C = C 1 * 1 9 2 * ( 1 0 ^ 9 ) ; // c a p a c i t an c e p er p ha se ( m ic ro

    f a r a d )6 L = ( 1 0 ) ^ 6 / ( 3 * 3 1 4 * 3 1 4 * C ) ;

    7 V = 1 3 2 ; / / v o l t a g e ( kV )8 M V A = V * V / ( 3 * 3 1 4 * L ) ;

    9 mprintf ( i n d u c t a n c e , L=%. 2 f H\n , L ) ;10 mprintf ( MVA r a t i n g o f s u p p r e s s o r c o i l =%. 3 f MVA

    p er c o i l , M V A ) ;

    Scilab code Exa 11.2 Determine the reactance to neutralize the capaci-tance of i 100 percent of the length of line ii 90 percent of the length of lineiii 80 percent of the length of line

    51

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    53/120

    1 // D et er m in e t he r e ac t a nc e t o n e u t r a l i z e t he

    c a p ac i t an c e o f ( i ) 100% o f t he l e ng t h o f l i n e ( i i )90% o f t he l e ng t h o f l i n e ( i i i ) 8 0% o f t he l e ng t ho f l i n e

    2 clear

    3 clc ;

    4 w L = 1 / ( 3 * 3 1 4 * ( 1 0 ) ^ - 6 ) ;

    5 mprintf ( ( i ) i n d u c t i v e r e ac t a nc e f o r 100 p e rc e n t o f t h e l e n g t h o f l i n e =%. 1 f ohms\n , w L ) ;

    6 w L = 1 0 ^ 6 / ( 3 * 3 1 4 * . 9 ) ;

    7 mprintf ( ( i i ) i n d u c t i v e r e a c t a n ce f o r 90 p e r ce n t o f t h e l e n g t h o f l i n e =%. 1 f ohms\n , w L ) ;

    8 w L = 1 / ( 3 * 3 1 4 * ( 1 0 ) ^ - 6 ) / . 8 ;9 mprintf ( ( i i i ) i n d u c t i v e r e a c t a nc e f o r 80 p e r ce n t o f

    t h e l e n g t h o f l i n e =%. 1 f ohms\n , w L ) ;

    52

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    54/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    55/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    56/120

    8 Z n c = sqrt ( ( X l c / X c c ) ) ;

    9 Z n l = sqrt ( ( X l o / X c o ) ) ;10 mprintf ( N a t u r a l i m pe de n ce o f c a b l e =%. 2 f ohms \n ,Z n c ) ;

    11 mprintf ( N a t u r a l i m pe de n ce o f o v e rh e a d l i n e =%. 1 f ohms \n , Z n l ) ;

    12 E = 2 * Z n l * 1 5 / ( 3 5 3 + 2 7 ) ;

    13 mprintf ( v o l t a ge r i s e a t t he j u nc t i o n due t o s ur ge =% . 2 f kV \n , E ) ;

    Scilab code Exa 12.3 To find the surge voltages and currents transmittedinto branch line

    1 // To f i n d t he s u rg e v o l t a g e s and c u r r e n t st r an s mi t te d i n t o br an ch l i n e

    2 clear

    3 clc ;

    4 Z 1 = 6 0 0 ;

    5 Z 2 = 8 0 0 ;

    6 Z 3 = 2 0 0 ;

    7 E = 1 0 0 ;8 E 1 = 2 * E / ( Z 1 * ( ( 1 / Z 1 ) + ( 1 / Z 2 ) + ( 1 / Z 3 ) ) ) ;

    9 I z 2 = E 1 * 1 0 0 0 / Z 2 ;

    10 I z 3 = E 1 * 1 0 0 0 / Z 3 ;

    11 mprintf ( T r a n s m i t t ed v o l t a g e =%. 2 f kV \n , E 1 ) ;12 mprintf ( The t r a n s m i t t e d c u r r e n t i n l i n e Z2=%. 2 f

    amps \n , I z 2 ) ;13 mprintf ( The t r a n s m i t t e d c u r r e n t i n l i n e Z3=%. 1 f

    amps \n , I z 3 ) ;14 // // Answer don t match e x a c t l y due t o d i f f e r e n c e i n

    r o u n d i n g o f f o f d i g i t s i bet w ee n c a l c u l a t i o n s

    Scilab code Exa 12.4 Determine the maximum value of transmitted wave

    55

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    57/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    58/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    59/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    60/120

    Scilab code Exa 13.2 Find the symmetrical component of currents

    1 / / F i nd t h e s y m me t r ic a l co mp on ent o f c u r r e n t s2 clear

    3 clc ;

    4 I a = 5 0 0+ % i * 1 50 ; // L in e c u r r e n t i n p h a se a5 I b = 1 00 - % i * 6 00 ; // L in e c u r r e n t i n p h a se b6 I c = - 30 0+ % i * 6 00 ; // L i ne c u r r e n t i n p h a s e c7 L = ( c o s d ( 1 2 0) + % i * s i nd ( 1 2 0 ) ) ;

    8 I a o = ( I a + I b + I c ) / 3 ;

    9 I a 1 = ( I a + I b * L + ( L ^ 2 ) * I c ) / 3 ;

    10 I a2 = ( I a + ( L ^ 2) * I b + ( L* I c )) / 3;

    11 disp ( I a o , Ia o (amps)= ) ;12 disp ( I a 1 , Ia 1 (amps)= ) ;13 disp ( I a 2 , Ia 2 (amps)= ) ; // Answer i n t he book i s n ot

    c o r r e c t . wrong c a l c u l a t i o n i n t he book

    Scilab code Exa 13.3 Determine the fault current and line to line voltages

    1 // D e t e r m i n e t he f a u l t c u r r e n t and l i n e t o l i n e

    v o l t a g e s2 clear

    3 clc ;

    4 E a = 1 ;

    5 Z 1 = . 2 5 * % i ;

    6 Z 2 = . 3 5 * % i ;

    7 Z o = . 1 * % i ;

    8 I a 1 = E a / ( Z 1 + Z 2 + Z o ) ;

    9 L = - . 5 + % i * . 8 6 6 ;

    10 I a 2 = I a 1 ;

    11 I a o = I a 2 ;12 I a = I a 1 + I a 2 + I a o ;

    13 I b = 2 5 * 1 0 0 0 / ( ( sqrt ( 3 ) * 1 3 . 2 ) ) ;

    14 I f = I b * abs ( I a ) ;

    15 V a 1 = E a - ( I a 1 * Z 1 ) ;

    59

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    61/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    62/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    63/120

    2 clear

    3 clc ;4 E a = 1+ 0 * %i ;

    5 Z o = % i * . 1 ;

    6 Z 1 = % i * . 2 5 ;

    7 Z 2 = % i * . 3 5 ;

    8 I a 1 = E a / ( Z 1 + ( Z o * Z 2 / ( Z o + Z 2 ) ) ) ;

    9 V a 1 = E a - I a 1 * Z 1 ;

    10 V a 2 = V a 1 ;

    11 V a o = V a 2 ;

    12 I a 2 = - V a 2 / Z 2 ;

    13 I a o = - V a o / Z o ;

    14 I = I a 2 + I a o ;15 I f = 3 * I a o ; // f a u l t c u r r e n t16 I b = 1 0 9 3 ; // b as e c u r r e n t17 I f l = abs ( I f * I b ) ;

    18 disp ( I f l , F a u l t c u r r e n t ( amps ) = ) ; //Answer don tmatch d ue t o d i f f e r e n c e i n r o u n d i n g o f f o f d i g i t s

    19 V a = 3 * V a 1

    20 V b = 0 ;

    21 V c = 0 ;

    22 V a b = abs ( V a ) * 1 3 . 2 / sqrt ( 3 ) ;

    23 V a c = abs ( V a ) * 1 3 . 2 / sqrt ( 3 ) ;

    24 V b c = abs ( V b ) * 1 3 . 2 / sqrt ( 3 ) ;

    25 mprintf ( Vab=%. 3 f kV\n , V a b ) ;26 mprintf ( Vac=%. 3 f kV\n , V a c ) ;27 mprintf ( Vbc=%. 3 f kV\n , V b c ) ;

    Scilab code Exa 13.6 Determine the fault current when i LG ii LL iii LLGfault takes place at P

    1 / / D et er mi ne t h e f a u l t c u r r e n t when ( i ) LG ( i i ) LL (i i i )LLG f a u l t t ak es p l a c e a t P .

    2 clear

    3 clc ;

    62

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    64/120

    4 V b l = 1 3 . 8 * 1 1 5 / 1 3 . 2 ; // b a s e v o l t a g e on t h e l i n e s i d e

    o f t r a n s f o r m e r ( kV )5 V b m = 1 2 0 * 1 3 . 2 / 1 1 5 ; // b as e v o l t a g e on t he motor s i d eo f t r a n s f o r m e r ( kV )

    6 X t = 1 0 * ( ( 1 3 . 2 / 1 3 . 8 ) ^ 2 ) * 3 0 / 3 5 ; // p e rc e n t r e ac t a nc e o f t r a n s f o r m e r

    7 X m = 2 0 * ( ( 1 2 . 5 / 1 3 . 8 ) ^ 2 ) * 3 0 / 2 0 ; // p e rc e n t r e ac t a nc e o f motor

    8 X l = 8 0 * 3 0 * 1 0 0 / ( 1 2 0 * 1 2 0 ) ; // p e rc e n t r e a ct a n ce o f l i n e9 X n = 2 * 3 * 3 0 * 1 0 0 / ( 1 3 . 8 * 1 3 . 8 ) ; // n e u t r a l r e ac t a nc e

    10 X z = 2 0 0 * 3 0 * 1 0 0 / ( 1 2 0 * 1 2 0 ) ;

    11 Z n = % i * . 1 4 6 ; / / n e g a t i v e s e q ue n c e i mp ed en ce

    12 Z o = . 0 6 7 6 7 ; / / z e r o s e q u en c e i mp ed en ce13 Z = % i * . 3 5 9 6 ; / / t o t a l i m pe d en c e14 I a 1 = 1 / Z ;

    15 I a 2 = I a 1 ;

    16 I a o = I a 2 ;

    17 I f 1 = 3 * I a 1 ;

    18 I b = 3 0 * 1 0 0 0 / ( sqrt ( 3 ) * 1 3 . 8 ) ;

    19 I b l = 3 0 * 1 0 0 0 / ( sqrt ( 3 ) * 1 2 0 ) ;

    20 I f c = I b l * abs ( I f 1 ) ;

    21 Z 1 = % i * . 1 4 6 ;

    22 Z 2 = Z 1 ;

    23 I A 1 = 1 / ( Z 1 + Z 2 )

    24 I A 2 = - I A 1

    25 L = ( c o s d ( 1 2 0) + % i * s i nd ( 1 2 0 ) ) ;

    26 I A o = 0 ;

    27 I B = ( L ^2 ) * IA 1 + L * I A2 ;

    28 I C = - I B ;

    29 IF = abs ( I B ) * I b l ;

    30 Z o = % i * . 0 6 7 6 7 ;

    31 i a 1 = 1 / ( Z 1 + ( Z o * Z 2 / ( Z o + Z 2 ) ) ) ;

    32 i a 2 = i a 1 * Z o / ( Z 2 + Z o ) ;

    33 i a o = % i * 3 . 5 5 3 ;34 I f 2 = 3 * i a o ;

    35 I F 2 = abs ( I f 2 * I b l ) ;

    36 mprintf ( F a u l t C u rr e nt ( i ) LG f a u l t , I f =%. 0 f amps\n , I f c ) ;

    63

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    65/120

    37 mprintf ( ( i i )LL f a u l t , I f =%. 1 f amps\n , I F ) ;

    38 mprintf ( ( i i i )LLG , I f =%. 0 f amps\n , I F 2 ) ;

    Scilab code Exa 13.8 Determine the percent increase of busbar voltage

    1 / / De t e r mi ne t he p e rc e n t i n c r e a s e o f b us ba r v o l t a g e2 clear

    3 clc ;

    4 v x = 3 ; // p er c e nt r e a c ta n ce o f t h e s e r i e s e l em en t

    5 s i n r = . 6 ;6 V = v x * s i n r ;

    7 mprintf ( P e r c en t d ro p o f v o l t s =%. 1 f p e r c e n t \n , V ) ;

    Scilab code Exa 13.9 Determine the short circuit capacity of the breaker

    1 / / De t e r mi n e t he s h or t c i r c u i t c a p a ci t y o f t heb r e a k e r

    2 clear3 clc ;

    4 S b = 8 ; // Base MVA5 Z e q = ( % i * . 1 5 ) * ( % i * . 3 1 5 ) / ( % i * . 4 6 5 ) ;

    6 S c c = abs ( S b / Z e q ) ;

    7 mprintf ( s h o r t c i r c u i t c a p a c i t y =%. 2 f MVA\n , S c c ) ;

    Scilab code Exa 13.10 To determine the short circuit capacity of each sta-

    tion

    1 / / To d e te rm in e t h e s h o r t c i r c u i t c a p a ci t y o f e a c hs t a t i o n

    2 clear

    64

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    66/120

    3 clc ;

    4 X = 1 2 0 0 * 1 0 0 / 8 0 0 ; // p e rc e n t r e a ct a n ce o f o t he rg e n e r a t i n g s t a t i o n5 X c = . 5 * 1 2 0 0 / ( 1 1 * 1 1 ) ;

    6 S c = 1 2 0 0 * 1 0 0 / 8 6 . 5 9 ; // s h o rt c i r c u i t MVA o f t he bus7 X f = 1 1 9 . 8 4 ; // e q u i v a l e n t f a u l t i mp ed en ce b etw een F

    and n e u t r a l b us8 M V A = 1 2 0 0 * 1 0 0 / X f ;

    9 mprintf ( s h o rt c i r c u i t c a p ac i t y o f e a ch s t a t i o n=%. 0 f MVA\n , M V A ) ;

    Scilab code Exa 13.11 Determine the Fault MVA

    1 / / D e t er m i ne t h e F a u l t MVA2 clear

    3 clc ;

    4 S b = 1 0 0 ; // ba se power (MVA)5 S C = S b / . 1 4 ;

    6 mprintf ( S . C . MVA =%. 2 f MVA\n , S C ) ;

    Scilab code Exa 13.12 To Determine the subtransient current in the al-ternator motor and the fault

    1 / / To De t er m ine t he s u b t r a n si e n t c u r r e n t i n t hea l t e r n a t o r , motor and t he f a u l t

    2 clear

    3 clc ;

    4 I b = 5 0 * 1 0 0 0 / ( sqrt ( 3 ) * 1 3 . 2 ) ; / / b a se c u r r e n t ( amps . )

    5 V f = 1 2 . 5 / 1 3 . 5 ; // t he P r e f a u l t V o lt a ge ( p . u )6 X f = ( % i * . 3 ) * ( % i * . 2 ) / ( % i * . 5 ) ; / / F a u l t i m p e d e n c e ( p . u )7 I f = . 9 4 6 9 / ( X f ) ; / / F a u l t c u r r e n t ( p . u )8 I f l = 3 0 * 1 0 0 0 / ( ( sqrt ( 3 ) * 1 2 . 5 * . 8 ) ) ; / / f u l l l o a d c u r r e n t

    (amps)

    65

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    67/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    68/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    69/120

    27 V a b = . 2 5 6 4 - V b ;

    28 V b c = V b - V c ;29 V c a = V c - . 2 5 6 4 ;

    30 V A 1 = E a - I A 1 * ( % i * . 0 5 ) ;

    31 V A 2 = - I A 2 * ( % i * . 0 5 ) ;

    32 V A = V A 1 + V A 2 ;

    33 V B = (( ( - .5 - % i * .8 66 ) * V A1 ) + (( - . 5 + % i * .8 6 6) * V A2 ) ) ;

    34 V C= V A1 * ( -. 5 + %i * . 86 6) + V A2 * ( -. 5 - %i * . 86 6) ;

    35 V A B = V A - V B ;

    36 V B C = V B - V C ;

    37 V C A = V C - V A ;

    38 / / An swe rs don t match due t o d i f f e r e n c e i n r o un d in g

    o f f o f d i g i t s39 disp ( I a , f a u l t c u r r e n t s , I a= ) ;40 disp ( I b , Ib= ) ;41 disp ( I c , Ic = ) ; / / C a l c u l a t i o n i n bo ok i s wrong .42 disp ( I A , IA= ) ;43 disp ( I B , IB ) ;44 disp ( I C , IC ) ;45 disp ( V o l ta g es a t f a u l t p o in t ) ;46 disp ( V a b , Vab( p . u )= ) ;47 disp ( V b c , Vbc( p . u )= ) ;48 disp ( V c a ,

    Vca ( p . u )=) ;

    49 disp ( V A B , VAB= ) ;50 disp ( V B C , VBC=) ;51 disp ( V C A , VCA= ) ;

    Scilab code Exa 13.15 To determine the i pre fault current in line a iithe subtransient current in pu iii the subtransient current in each phase ofgenerator in pu

    1 / / To d e t er m i ne t h e ( i ) p re f a u l t c ur re nt i n l i n e a( i i ) t he s u b t r a n s i e n t c u r r e nt i n p . u ( i i i ) t he

    s u b t r a ns i e n t c u r r e nt i n e a ch p ha se o f g e n er a t o ri n p . u

    68

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    70/120

    2 clear

    3 clc ;4 I a 1 = - .8 - %i * 2 .6 + . 8 - %i * . 4;

    5 I a 2 = - % i * 3 ;

    6 I a o = - % i * 3 ;

    7 A = - .8 - %i * 2. 6 + .8 + %i * 2;

    8 a = . 8 ;

    9 b = . 6 ;

    10 I p f =a + %i * b;

    11 I s f c = 3 * I a 1 ;

    12 i A 1 = .8 - % i * . 4;

    13 i A 2 = - % i * 1 ;

    14 i A o = 0 ;15 I A 1 = % i * i A 1 ;

    16 I A 2 = - % i * i A 2 ;

    17 I A = IA 1 + I A2 ;

    18 L = c o sd ( 1 2 0 ) + % i * s in d ( 1 2 0 ) ;

    19 I B = ( L ^2 ) * IA 1 + I A2 * L ;

    20 I C = ( L ^2 ) * IA 2 + I A1 * L ;

    21 disp ( I p f , ( i ) p r e f a u l t c u r r e n t i n l i n e a= ) ;22 disp ( I s f c , ( i i ) t h e s u b t r a n si e n t f a u l t c u r r e n t i n p .

    u=) ;23 disp ( I A ,

    IA=) ;

    24 disp ( I B , IB= ) ;25 disp ( I C , IC=) ;

    Scilab code Exa 13.16 Determine the shorrt circuit MVA of the trans-former

    1 / / D et er mi ne t he s h o r r t c i r c u i t MVA o f t he

    t r a n s f o r m e r2 clear3 clc ;

    4 S . C . M V A = . 5 / . 0 5 ;

    5 mprintf ( S .C .MVA=%. 0 f MVA , S . C . M V A ) ;

    69

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    71/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    72/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    73/120

    Chapter 14

    PROTECTIVE RELAYS

    Scilab code Exa 14.1 To determine the time of operation of relay

    1 / / To d e te rm in e t h e t i m e o f o p er a ti o n o f r e l a y .2 clear

    3 clc ;

    4 I f = 4 0 0 0 ; // f a u l t c u r r e n t5 I = 5 * 1 . 2 5 ; // o p er a t i ng c u r r e n t o f r e l a y6 C T = 4 0 0 / 5 ; // CT r a t i o

    7 P S M = I f / ( I * C T ) ; // p l u g s e t t i n g m u l t i p l i e r8 mprintf ( PSM=%. 3 f\n , P S M ) ;9 mprintf ( o p e r a t i n g t i me f o r PSM=8 i s 3 . 2 s e c . \ n ) ;

    10 mprintf ( a c t u a l o p e r a t i n g t im e = 1 . 9 2 s e c . ) ;

    Scilab code Exa 14.2 To determine the phase shifting network to be used

    1 / / To d et er mi ne t he p ha se s h i f t i n g n et wo rk t o be

    used .2 clear

    3 clc ;

    4 Z = 1 0 0 0 *( c o sd ( 6 0 ) + % i * s i nd ( 6 0 ) ) ; / / i m p e d e n c e

    72

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    74/120

    5 X = t a n d ( 5 0 ) * 1 0 0 0 * c o s d ( 6 0 ) ;

    6 X l = 1 0 0 0 * s i n d ( 6 0 ) ;7 X c = X l - X ;

    8 C = 1 0 0 0 0 0 0 / ( 3 1 4 * X c ) ;

    9 / / An swe rs don t match due t o d i f f e r e n c e i n r o un d in go f f o f d i g i t s

    10 disp (X , X= ) ;11 disp ( X c , Xc= ) ;12 disp (C , C ( m i c r o f a r a d s )= ) ;

    Scilab code Exa 14.3 To provide time current grading

    1 //To p r o v i d e t im e c u r r e nt g r a di n g .2 clear

    3 clc ;

    4 I s e c 1 = 4 0 0 0 / 4 0 ; / / s e c o n d a r y c u r r e n t ( amps )5 P S M = 1 0 0 / 5 ; // PSM i f 1 00% s e t t i n g i s u se d6 I s e c 2 = 4 0 0 0 / 4 0 ;

    7 P S M 2 = 1 0 0 / 6 . 2 5 ; //PSM i f s e t t i n g u se d i s 1 25%8 T M S b = . 7 2 / 2 . 5 ;

    9 P S M 1 = 5 0 0 0 / ( 6 . 2 5 * 4 0 ) ;10 t o = 2 . 2 ;

    11 t b = t o * T M S b ;

    12 P S M a = 5 0 0 0 / ( 6 . 2 5 * 8 0 ) ;

    13 T M S = 1 . 1 3 8 / 3 ;

    14 P S M a 1 = 6 0 0 0 / ( 6 . 2 5 * 8 0 ) ;

    15 t a = ( 2 . 6 * . 3 7 9 ) ;

    16 mprintf ( A c tu al o p e r a t i n g t im e o f r e a l y a t b=%. 3 f s e c . \n , t b ) ;

    17 mprintf ( A c tu al o p e r a t i n g t im e o f r e a l y a t a=%. 3 f

    s e c . \n , t a ) ;

    73

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    75/120

    Scilab code Exa 14.4 To determine the proportion of the winding which

    remains unprotected against earth fault

    1 / / To d e te rm i ne t he p r o p o r ti o n o f t he w in di ng wh ichr em ai ns u np r o t ec t e d a g a i n s t e a rt h f a u l t .

    2 clear

    3 clc ;

    4 V p h = 6 6 0 0 / ( sqrt ( 3 ) ) ;

    5 I f u l l = 5 0 0 0 / ( sqrt ( 3 ) * 6 . 6 ) ;

    6 I b = I f u l l * . 2 5 ;

    7 x = I b * 8 0 0 / V p h ;

    8 mprintf ( p e r c e n t o f t h e w in di n g r e ma i ns u n p r o t ec t e d=

    %.2 f \n , x ) ;

    Scilab code Exa 14.5 To determine i percent winding which remains un-protected ii min value of earthing resistance required to protect 80 percentof winding

    1 / / To d e t e r m i n e ( i ) % w i nd i n g w hi ch r e m a in su n pr o t ec t ed ( i i ) min . v a lu e o f e a r t h i n g r e s i s t a n c e

    r e q ui r e d t o p r o t ec t 80% o f w in di ng2 clear

    3 clc ;

    4 I p h = 1 0 0 0 0 / sqrt ( 3 ) ; // p ha se v o l t a g e o f a l t e r n a t o r (V)5 x = 1 . 8 * 1 0 0 * 1 0 * 1 0 0 0 / ( 5 * I p h ) ;

    6 mprintf ( ( i ) p e r c e n t w in d in g w hi ch r em a in sun pr ot e c t e d=%. 2 f \n , x ) ;

    7 I p = I p h * . 2 ;

    8 R = 1 . 8 * 1 0 0 0 / ( 5 * I p ) ;

    9 mprintf ( ( i i ) minimum v a l ue o f e a r t h i n g r e s i s t a n c e

    r e q u i r e d t o p r o t e c t 80 p e r ce n t o f w in di ng =%. 4 f ohms \n ,R )

    74

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    76/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    77/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    78/120

    2 clear

    3 clc ;4 I c = 5 * . 2 5 ; // o p e r a t i n g c u r r e n t ( amp )5 V s e c = 5 / 1 . 2 5 ; // s e c on d a r y v o l t a g e (V)6 B m = 1 . 4 ;

    7 f = 5 0 ;

    8 N = 5 0 ;

    9 V = 1 5 * V s e c ;

    10 A = 6 0 / ( 4 . 4 4 * B m * f * N ) ;

    11 mprintf ( t he k ne e p oi nt must b e s l i g h t l y h i g h ert han =%. 3 f V\n , V ) ;

    12 mprintf ( a r ea o f c r o s s s e c t i o n=%. 6 f m 2\n , A ) ;

    Scilab code Exa 14.11 To determine the VA output of CT

    1 / / To d e t er m i ne t h e VA o u t pu t o f CT .2 clear

    3 clc ;

    4 o . p = 5 * 5 * ( . 1 +. 1 ) + 5;

    5 mprintf ( VA out pu t of CT =%. 0 f VA\n , o . p ) ;

    77

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    79/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    80/120

    1 / / To d e t e r m in e t h e r a t e o f r i s e o f r e s t r i k i n g

    v o l t a g e2 clear3 clc ;

    4 V n l = 1 3 2 * sqrt ( 2 ) / sqrt ( 3 ) ; // p eak v al ue o f peak t on e u t r a l v o l t a g e ( kV )

    5 V r 1 = V n l * . 9 5 ; // r e c o v e r y v o l t a g e ( kV )6 V r = 1 0 2 . 4 * . 9 1 6 ; // a c t i v e r e c o ve r y v o l t a g e ( kV )7 V r m a x = 2 * V r ;

    8 f n = 1 6 * ( 1 0 ^ 3 ) ;

    9 t = 1 / ( 2 * f n ) ;

    10 R R R V = V r m a x * ( 1 0 ^ - 6 ) / t ;

    11 mprintf ( r a t e o f r i s e o f r e s t r i k i n g v o l t a g e , RRRV=%. 0 f kV / m i c rose c , R R R V ) ;

    Scilab code Exa 15.3 To Determine the average rate of rise of restrikingvoltage

    1 // To D et er m ine t he a v e ra ge r a t e o f r i s e o f r e s t r i k i n g v o l t a g e

    2 clear3 clc ;

    4 V m = 1 3 2 * sqrt ( 2 ) / sqrt ( 3 ) ;

    5 K 1 = . 9 ;

    6 K 2 = 1 . 5

    7 K = K 1 * K 2 ;

    8 s i n q = . 9 2 ;

    9 V r = K * V m * s i n q ;

    10 f n = 1 6 * ( 1 0 ^ 3 ) ;

    11 R R R V = 2 * V r * ( 1 0 ^ - 6 ) * f n * 2 ;

    12 mprintf ( a ve r a ge r a t e o f r i s e o f r e s t r i k i n g v ol ta ge ,RRRV=%. 3 f kV/ mi cr os e c\n , R R R V ) ;

    79

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    81/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    82/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    83/120

    Chapter 17

    POWER SYSTEM

    SYNCHRONOUS STABILITY

    Scilab code Exa 17.1 To determine the acceleration Also determine thechange in torque angle and rpmat the end of 15 cycles

    1 / / To d et er mi ne t he a c c e l e r a t i o n . A ls o d et er mi net h e c ha ng e i n t o r q ue a n g l e and r . p . mat t h e en d o f

    15 c y c l e s2 clear

    3 clc ;

    4 H = 9 ;

    5 G = 2 0 ; // mach ine Ra ti ng (MVA)6 K E = H * G ;

    7 mprintf ( ( a )K .E s t o r e d i n t he r o t o r =%. 0 f MJ\n , K E ) ;8 P i = 2 5 0 0 0 * . 7 3 5 ;

    9 P G = 1 5 0 0 0 ;

    10 P a = ( P i - P G ) / ( 1 0 0 0 ) ;

    11 f = 5 0 ;

    12 M = G * H / ( % p i * f ) ;13 a = P a / M ;

    14 mprintf ( ( b ) The a c c e l e r a t i n g p ow er =%. 3 f MW\n , P a ) ;15 mprintf ( A c c e l e r a t i o n =%. 3 f r a d / s e c 2\n , a ) ;16 t = 1 5 / 5 0 ;

    82

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    84/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    85/120

    Scilab code Exa 17.3 To calculate the maximum value of d during theswinging of the rotor around its new equilibrium position

    1 / /To c a l c u l a t e t h e maximum v a l u e o f d d u r i ng t h es w i ng i n g o f t he r o t o r ar ound i t s new e q u i l i b r i u mp o s i t i o n

    2 clc

    3 clear

    4 a = . 2 5 ; // s i nd o =.255 d o = a s i n d ( a ) ; //6 b = . 5 // s i nd c =. 57 d c = a s i n d ( b ) ;

    8 c = c o s d ( d o ) + . 5 * d o * % p i / 1 8 0 ;

    9 d m = d c ;

    10 e = 1 ;

    11 while ( e > . 0 0 0 1 )

    12 d m = d m + . 1 ;

    13 e = abs ( c - ( ( ( . 5 * d m * % p i ) / 1 8 0 ) + c o s d ( d m ) ) ) ;

    14 end

    15 printf ( dm a p p r ox i m a te l y f ou nd t o be %d d e g r e e , d m ) ;

    Scilab code Exa 17.4 To calculate the critical clearing angle for the con-dition described

    1 // To c a l c u l a t e t he c r i t i c a l c l e a r i n g a n gl e f o r t hec o n d i t i o n d e s c r i b e d .

    2 clear

    3 clc ;4 s i n d o = . 5 ;

    5 d 0 = a s i n d ( s i n d o ) * % p i / 1 8 0 ;

    6 r 1 = . 2 ;

    7 r 2 = . 7 5 ;

    84

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    86/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    87/120

    13 r 1 = P m a x 1 / P m a x o ;

    14 r 2 = P m a x 2 / P m a x o ;15 P s = 1 ;

    16 s i n d o = P s / P m a x o ;

    17 d o = a s i n d ( s i n d o ) ;

    18 d 0 = a s i n d ( s i n d o ) * % p i / 1 8 0 ;

    19 s i n d m = 1 / P m a x 2 ;

    20 c o s d m = c o s d ( a s i n d ( s i n d m ) ) ;

    21 D m = % p i * ( 1 8 0 - ( a s i n d ( s i n d m ) ) ) / 1 8 0 ;

    22 D c = ( ( ( s i n d o * ( D m - d 0 ) ) - ( r 2 * c o s d m ) ) - ( r 1 * c o s d ( d o ) ) ) / ( r 2 -

    r 1 ) ;

    23 d c = a c o s d ( D c ) ; // c r i t i c a l an gl e

    24 mprintf ( The c r i t i c a l c l e a r i n g a n g l e i s g i v e n by= %. 1 f , d c ) ;

    Scilab code Exa 17.6 determine the critical clearing angle

    1 / / (A) d e t er m i ne t h e c r i t i c a l c l e a r i n g a n g l e2 clear

    3 clc ;

    4 P m = %i * . 12 + % i * .0 35 + ( ( %i * . 25 * % i * .3 ) / %i * . 55 ) ;5 P m 1 = 0 ;

    6 P m 2 = 1 . 1 * 1 / . 4 0 5 ;

    7 r 1 = 0 ;

    8 r 2 = 2 . 7 1 6 / 3 . 7 7 5 ;

    9 d 0 = ( a s i n d ( 1 / 3 . 7 7 5 ) ) ;

    10 d M = ( 1 8 0 - a s i n d ( 1 / 2 . 7 1 6 ) ) ;

    11 d o = d 0 * % p i / 1 8 0 ;

    12 d m = d M * % p i / 1 8 0 ;

    13 d c = a c o s d ( ( ( ( d m - d o ) * s i n d ( d 0 ) ) - ( r 1 * c o s d ( d 0 ) ) + ( r 2 * c o s d (

    d M ) ) ) / ( r 2 - r 1 ) ) ;14 mprintf ( dc=%. 2 f , d c ) ;

    86

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    88/120

    Scilab code Exa 17.7 To determine the centre and radius for the pull out

    curve ans also minimum output vars when the output powers are i 0 ii 25puiii 5pu

    1 // To d e te rm in e t he c e n tr e and r a d i u s f o r t he p u l lo ut c u rv e a ns a l s o minimum o u tp u t v a r s when t h eo u t p u t p o w er s a r e ( i ) 0 ( i i ) . 2 5 p . u ( i i i ) . 5 p . u

    2 clear

    3 clc ;

    4 P c = 0 ;

    5 V = . 9 8 ;

    6 Qc=V ^2*((1/.4) -(1/1.1))/2;

    7 R = V ^ 2 * ( ( 1 / . 4 ) + ( 1 / 1 . 1 ) ) / 2 ;8 Q = - ( . 9 8 ^2 * (( 1 . 1 - . 4 ) / . 44 ) / 2 ) + ( . 9 8^ 2 ) * 1 . 5 / ( 2* . 4 4) ;

    9 mprintf ( ( i )Q=%. 2 f MVAr\n , abs ( Q ) * 1 0 0 ) ;10 P = . 2 5 ;

    11 Q 2 = - ( ( 1 . 6 37 ^ 2 ) - ( . 25 ^ 2 ) ) ^ . 5 + . 7 6 3 9 ;

    12 mprintf ( ( i i )Q=%. 4 f p . u\n , Q 2 ) ;13 Q 3 = - ( (1 . 6 37 ^ 2) - ( .5 ^ 2) ) ^ . 5 + . 7 6 39 ;

    14 mprintf ( ( i i i )Q=%. 4 f p . u , Q 3 ) ;

    Scilab code Exa 17.8 Compute the prefault faulted and post fault reducedY matrices

    1 / / Compute t he p r e f a u l t , f a u l t e d and p o st f a u l tr e d u c e d Y m a t r i c e s

    2 clear

    3 clc ;

    4 y = [ - %i * 5 0 %i * 5 ; 0 - %i * 5 %i * 5; % i *5 %i * 5 - %i * 10 ];

    5 Y AA = [ - %i * 5 0 ;0 - %i * 5 ];

    6 Y A B = [ % i * 5 ; % i * 5 ] ;7 Y B A = [ % i * 5 % i * 5 ];

    8 Y B B = [ % i * 1 0 ] ;

    9 Y = Y A A - Y A B * ( inv ( Y B B ) ) * Y B A ;

    10 Y fu ll = [ - %i * 5 0 % i *5 ;0 - %i * 7 .5 % i * 2. 5; % i * 5 % i * 2. 5 - %i

    87

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    89/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    90/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    91/120

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    92/120

    91

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    93/120

    Chapter 18

    LOAD FLOWS

    Scilab code Exa 18.1 Determine the voltages at the end of first iterationusing gauss seidal method

    1 // D et er mi ne t he v o l t a g e s a t t he end o f f i r s ti t e r a t i o n u si ng g au ss s e i d a l method

    2 clear

    3 clc ;

    4 Y = [ 3 - % i * 12 - 2+ % i * 8 - 1+ % i * 4 0 ; - 2+ % i * 8 3 .6 6 6 - % i * 1 4 . 66 4

    - .6 6 6+ % i * 2 . 6 6 64 - 1+ % i * 4 ; - 1+ % i * 4 - .6 6 6+ % i * 2 . 6 6 643 .6 6 6 - % i * 1 4 . 66 4 - 2+ % i * 8 ; 0 - 1+ % i * 4 - 2+ % i * 8 3 - % i

    *12];

    5 P 2 = - . 5 ;

    6 P 3 = - . 4 ;

    7 P 4 = - . 3 ;

    8 Q 4 = - . 1 ;

    9 Q 3 = - . 3 ;

    10 Q 2 = - . 2 ;

    11 V 2 = 1 ;

    12 V 3 = 1 ;13 V 4 = 1 ;

    14 V 1 0 = 1 . 0 6 ;

    15 V 3 0 = 1 ;

    16 V 4 0 = 1 ;

    92

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    94/120

    17 V 2 1 = ( ( ( P 2 - % i * Q 2 ) / V 2 ) - Y ( 2 , 1 ) * V 1 0 - Y ( 2 , 3 ) * V 3 0 - Y ( 2 , 4 ) *

    V 4 0 ) / ( Y ( 2 , 2 ) ) ;18 V 2 1 a c c = 1 + 1 . 6 * ( V 2 1 - 1 ) ;

    19 disp (V21acc , V21acc=) ;20 V 3 1 = ( ( ( P 3 - % i * Q 3 ) / V 3 ) - Y ( 3 , 1 ) * V 1 0 - Y ( 3 , 2 ) * V 2 1 a cc - Y ( 3 , 4 )

    * V 4 0 ) / ( Y ( 3 , 3 ) ) ;

    21 V 3 1 a c c = 1 + 1 . 6 * ( V 3 1 - 1 ) ;

    22 disp (V31acc , V31acc=) ;23 V 4 1 = ( ( ( P 4 - % i * Q 4 ) / V 4 ) - Y ( 4 , 2 ) * V 2 1 a c c - Y ( 4 , 3 ) * V 3 1 a c c ) / ( Y

    ( 4 , 4 ) ) ;

    24 V 4 1 a c c = 1 + 1 . 6 * ( V 4 1 - 1 ) ;

    25 disp (V41acc , V41acc=) ;

    Scilab code Exa 18.2 Determine the voltages starting with a flat voltageprofile

    1 // D et e r mi ne t he v o l t a g e s s t a r t i n g w i th a f l a tv o l t a ge p r o f i l e .

    2 clear

    3 clc ;

    45 Y = [ 3 - % i * 12 - 2+ % i * 8 - 1+ % i * 4 0 ; - 2+ % i * 8 3 .6 6 6 - % i * 1 4 . 66 4

    - .6 6 6+ % i * 2 . 6 6 64 - 1+ % i * 4 ; - 1+ % i * 4 - .6 6 6+ % i * 2 . 6 6 64

    3 .6 6 6 - % i * 1 4 . 66 4 - 2+ % i * 8 ; 0 - 1+ % i * 4 - 2+ % i * 8 3 - % i

    *12];

    6 P 2 = . 5 ;

    7 P 3 = - . 4 ;

    8 P 4 = - . 3 ;

    9 Q 4 = - . 1 ;

    10 Q 3 = - . 3 ;

    11 V 3 = 1 ;12 V 4 = 1 ;

    13 V 1 = 1 . 0 6 ;

    14 V 2 = 1 . 0 4 ;

    15 V 3 0 = 1 ;

    93

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    95/120

    16 V 4 0 = 1 ;

    17 Q 2 = - imag ( [ V 2 * [ Y ( 2 , 1 ) * V 1 + Y ( 2 , 2 ) * V 2 + Y ( 2 , 3 ) * V 3 + Y ( 2 , 4 ) *V 4 ] ] ) ;

    18 V 2 1 = ( ( ( P 2 - % i * Q 2 ) / V 2 ) - Y ( 2 , 1 ) * V 1 - Y ( 2 , 3 ) * V 3 0 - Y ( 2 , 4 ) * V 4 0

    ) / ( Y ( 2 , 2 ) ) ;

    19 d = a t a n d ( 0 . 0 2 9 1 4 7 3 / 1 . 0 4 7 2 8 6 8 ) ;

    20 V 2 1 = 1 . 0 4 * ( c o s d ( d ) + % i * s i n d ( d ) ) ;

    21 disp ( V 2 1 , V21= ) ;22 V 3 1 = ( ( ( P 3 - % i * Q 3 ) / V 3 ) - Y ( 3 , 1 ) * V 1 - Y ( 3 , 2 ) * V 2 1 - Y ( 3 , 4 ) * V 4 0

    ) / ( Y ( 3 , 3 ) ) ;

    23 disp ( V 3 1 , V31= ) ;24 V 4 1 = ( ( ( P 4 - % i * Q 4 ) / V 4 ) - Y ( 4 , 2 ) * V 2 1 - Y ( 4 , 3 ) * V 3 1 ) / ( Y ( 4 , 4 ) )

    ;25 disp ( V 4 1 , V41= ) ;

    Scilab code Exa 18.3 Solve the prevous problem for for voltages at theend of first iteration

    1 / / S o lv e t he p re vo us pr obl em f o r f o r v o l t a g e s a t t heend o f f i r s t i t e r a t i o n . f o r .2

  • 7/25/2019 Electrical Power Systems_C. L. Wadhwa.pdf

    96/120

    14 V 2 = 1 ;

    15 V 3 0 = 1 ;16 V 4 0 = 1 ;

    17 Q 2 = . 2 ;

    18 V 3 = 1 ;

    19 V 2 1 = ( ( ( P 2 - % i * Q 2 ) / V 2 ) - Y ( 2 , 1 ) * V 1 - Y ( 2 , 3 ) * V 3 0 - Y ( 2 , 4 ) * V 4 0

    ) / ( Y ( 2 , 2 ) ) ;

    20 V 3 1 = ( ( ( P 3 - % i * Q 3 ) / V 3 ) - Y ( 3 , 1 ) * V 1 - Y ( 3 , 2 ) * V 2 1 - Y ( 3 , 4 ) * V 4 0

    ) / ( Y ( 3 , 3 ) ) ;

    21 V 4 1 = ( ( ( P 4 - % i * Q 4 ) / V 4 ) - Y ( 4 , 2 ) * V 2 1 - Y ( 4 , 3 ) * V 3 1 ) / ( Y ( 4 , 4 ) )

    ;

    22 disp ( V 2 1 , V21= ) ;

    23 disp ( V 3 1 , V31= ) ;24 disp ( V 4 1 , V41= ) ;

    Scilab code Exa 18.4 Determine the set of load flow equations at the endof first iteration by using Newton Raphson method

    1 // D et e r mi ne t he s e t o f l oa d f l o w e q ua t i on s a t t heend o f f i r s t i t e r a t i o n by u s i n g Newton Raphson

    metho d .2 clear

    3 clc ;

    4 Y = [ 6. 2 5 - % i * 1 8 . 75 - 1. 25 + % i * 3 . 75 - 5+ % i * 1 5 ; - 1 . 25 + % i

    * 3 .7 5 2 . 91 6 - % i * 8 . 7 5 - 1 .6 66 + % i * 5 ; - 5+ % i * 1 5 - 1 .6 6 6+

    % i * 5 6 .6 6 6 - % i * 2 0 ];

    5 V 1 = 1 . 0 6 ;

    6 G 1 1 = 6 . 2 5 ;

    7 G 1 2 = - 1 . 2 5 ;

    8 G 2 1 = G 1 2 ;

    9 G 1 3 = - 5 ;10 G 3 1 = G 1 3 ;

    11 G 2 2 = 2 . 9 1 6 ;

    12 G


Recommended