+ All Categories
Home > Documents > Electrochemical Energy Conversion and Storage: … updated slides - Ellis-Moore... · Develop and...

Electrochemical Energy Conversion and Storage: … updated slides - Ellis-Moore... · Develop and...

Date post: 24-Mar-2018
Category:
Upload: lekien
View: 216 times
Download: 1 times
Share this document with a friend
18
Electrochemical Energy Conversion and Storage: Materials and Systems
Transcript

Electrochemical Energy Conversion and Storage:Materials and Systems

Research Team

• Junbo Hou, Ph.D. (Research Associate) • Scott Forbey (Ph.D. Student, S14)• Kshitish Patankar (Ph.D. Student, S12)• Jessica Wright (Ph.D. Student, S14)• Jeremy Beach (Ph.D. Student, continuing)• Spencer Ahrenholz (Ph.D. Student continuing)• Karthik Radhakrishnan (Ph.D. Student, continuing)• Zhou Ye (Ph.D. Student, continuing)

Principal InvestigatorsMichael Ellis, Ph.D. Robert Moore, Ph.D. David Dillard, Ph.D.Scott Case, Ph.D. Bahareh Behkam, Ph.D. Amanda Morris, Ph. D.Douglas Nelson, Ph.D.

Dr. Michael Ellis and student examine a fuel cell in the ICTAS Sustainable Energy Laboratory.

Research focus:Develop and evaluate novel materials and devices for electrochemical energy conversion and storage.BackgroundElectricity can be generated from a variety of resources including renewables.  To expand the use of electricity, new technologies are needed to convert fuels to electricity and to store electricity in lightweight, compact, durable devices.

Objectives• Obtain equipment to fabricate  novel 

materials and devices and to characterize physical and electrochemical properties of polymers and porous materials 

• Develop experimental techniques and models to predict material and device performance and durability 

Multiblock Copolymers with Controlled Hydrophobicity for PEM Fuel Cells

Technical Highlights

Increased hydrophobicity TM > DM > Bis A enhances the internal structure of the membrane and thus improves FC performance.

More Power

Refined Phase Separation

Effect of Morphological Manipulation on PEMFC Performance

Thermal annealing near Tα significantly improves the order within the ionic domains, which consequently improves PEMFC performance.

Technical Highlights

Much Greater Power Density with Improved Membrane Morphology!

Transport in FC Membranes: Angle-Dependent Quadrupolar 2H NMR of Oriented Nafion®

Water molecules diffuse and collide with the oriented nanometer-scale channel walls, on the ps timescale, reflecting a preferential orientation of the O-D bonds (quadrupole splitting, ΔνQ).

Technical Highlights

Nafion found to contain elongated (rod-like) aggregates that can be oriented in preferred directions.

Uniaxial extention (stretching) yields a highly oriented structure that affects the movement of water molecules.

Structural Alignment During Uniaxial Extension

Li, J.; Park, J.K.; Moore, R.B.; Madsen, L.A. “Linear Coupling of Alignment with Transport in a Polymer Electrolyte Membrane,” Nature Materials 2011, 10, 507‐511. 

Uniaxial extension simply causes a change in the orientation of existing ionic aggregates without a perturbation in size, shape, spatial distribution, or connectivity of the nano-scale hydrophillicdomains.

Technical Highlights

Lithium Ion Battery Research:Nano-Structured Electrodes and Separators for Enhanced Capacity• Flexible and Entirely Nanostructured Lithium Ion Battery

– Crosslinked PEO Separator– Carbon Nanofiber Anode– Carbon LiMn2O4 Composite Nanofiber Cathode

• All materials produced by scalable method of electrospinning

Current performance of lithium batteries are inadequate for meeting the emerging consumer market demands such as:

• Fast charge and discharge rates (More Power)• High specific capacities (More Storage)• Large power densities (More Efficient)

Technical Highlights

ElectrospinningProcess

Coin Cell fabrication and testing made possible with AEP-supported equipment

NanostructuredCrosslinked PEO Separator

Technical Highlights

Remarkable Conductivity!

Mechanically Robust and Active in the Transport of Li+ Ions

Fibrous Framework Preserved in Electrolyte-Swollen State

Nanostructured Electrodes

Carbon Powder Anode with PVDF Binder on Al

LiFePO4 Powder Cathode with PVDF Binder on Cu

Carbon Nanofiber Anode LiMn2O4 Nanofibers (Cathode Active Material)

Anode Comparison Cathode Comparison

Battery Electrodes

Commercial/Conventional Nanofibrous

Micron Scale Nano Scale

Binder Self‐Supporting

SA < 50 m2/g 50 ‐ 1200 m2/g

Non‐Continuous Electrical Pathways Continuous Electrical Pathways

Metallic Collector Required No Metallic Collector Required

Technical Highlights

Much Higher Active Surface Area = Increased Battery Capacity!

Fully Nano-Structured Li+-Ion Battery Technical Highlights

ICTAS Sustainable Energy LaboratoryEllis, Moore, Dillard, CaseResearch in this lab is aimed at addressing current and future energy challenges facing global society. With a focus on sustainability, basic and applied research is being conducted to achieve breakthroughs in materials for efficient automotive andstationary fuel cells using renewable energy sources. Researchers are also engaged in emerging areas ranging from materials for energy conversion and storage, photovoltaic technologies, biomass conversion, and energy harvesting.

Instrumentation/Equipment Provided by…

Spray Coater AEP

Nitrogen Generator AEP

Surface Area Analyzer ICTAS/AEP

Quadrapole Mass Spectrometer ICTAS/AEP

Desktop X‐ray Diffractometer ICTAS/AEP

Inert atmosphere Glovebox ICTAS/AEP

Multi‐channel, High Voltage, Power Supply for Electrospinning

ICTAS/AEP

Solar Simulator AEP/ICTAS/CEHMS

Dynamic Mechanical Analyzer Dillard/AEP

Differential Scanning Calorimeter Dillard/Riffle

Thermogravimetric Analyzer Dillard

Fuel Cell Test Stands Ellis/SCHEV

Potentiostats AEP/SCHEV

Controlled Atmosphere Furnance ICTAS

Thermomechanical Analyzer ICTAS

Microscale Combustion Calorimeter  ICTAS

AEP Energy Material Characterization Laboratory

ICTAS Sustainable Energy LaboratoryLeveraged investments from AEP and Ford to implement a 

Vehicle‐scale Battery Test Facility.Inert‐atmosphere Glove Box for fabricating 

innovative battery and solar materials.

ICTAS Sustainable Energy Laboratory

Desktop X‐ray Diffractometer used to characterize crystalline electrode materials.

Electrochemical Analysis Equipment for Battery and Fuel Cell Materials Testing.

Publications (cont.)5. J. B. Hou, M. Yang, M. W. Ellis, R. B. Moore and B. L. Yi, "Lithium Oxides 

Precipitation in Nonaqueous Li‐Air Batteries," Physical Chemistry Chemical Physics, Vol. 14, No. 39, pp. 13487‐13501, 2012, http://dx.doi.org/10.1039/c2cp42768k.

6. J. L. Lamp, J. S. Guest, S. Naha, K. A. Radavich, N. G. Love, M. W. Ellis and I. K. Puri, "Flame Synthesis of Carbon Nanostructures on Stainless Steel Anodes for Use in Microbial Fuel Cells," Journal of Power Sources, Vol. 196, No. 14, pp. 5829‐5834, 2011, http://dx.doi.org/10.1016/j.jpowsour.2011.02.077.

7. J. Li, J. K. Park, R. B. Moore and L. A. Madsen, "Linear Coupling of Alignment with Transport in a Polymer Electrolyte Membrane," Nature Materials, Vol. 10, No., pp. 507‐511, 2011.

8. Y. Q. Li, D. A. Dillard, Y. H. Lai, S. W. Case, M. W. Ellis, M. K. Budinski and C. S. Gittleman, "Experimental Measurement of Stress and Strain in Nafion Membrane During Hydration Cycles," Journal of the Electrochemical Society, Vol. 159, No. 2, pp. B173‐B184, 2012, http://dx.doi.org/10.1149/2.065202jes.

9. K. A. Patankar, D. A. Dillard, S. W. Case, M. W. Ellis, Y. H. Lai and C. S. Gittleman, "Linear Hygrothermal Viscoelastic Characterization of Nafion Nre 211 Proton Exchange Membrane," Fuel Cells, Vol. 12, No. 5, pp. 787‐799, 2012, http://dx.doi.org/10.1002/fuce.201100134.

10. B. Ramos‐Alvarado, J. D. Sole, A. Hernandez‐Guerrero and M. W. Ellis, "Experimental Characterization of the Water Transport Properties of Pem Fuel Cells Diffusion Media," Journal of Power Sources, Vol. 218, No., pp. 221‐232, 2012, http://dx.doi.org/10.1016/j.jpowsour.2012.05.069.

Highlights• Developed membrane durability characterization 

techniques and analytical tools that are used by industry and widely cited.

• Developed novel fabrication techniques for lithium battery electrolytes and electrodes (VTIP disclosure)

• Secured research project funding from GM, Ford, National Science Foundation, Virginia Innovation Partnership

Results

Publications (selected publications) 1. J. Hou, J. Graetz, R. B. Moore and M. W. Ellis, "Fundamental Electrochemical 

Analysis of Reactions in Lithium Air Batteries," Chapter in Rechargeable Lithium Batteries: From Fundamentals to Applications, Woodhead Publishing, 2014.

2. J. B. Hou, M. W. Ellis and R. B. Moore, "Electrochemical Detection of Sodium Borohydride in Alkaline Media by Gold Electrode," Electrochemical and Solid State Letters, Vol. 15, No. 4, pp. B39‐B43, 2012, http://dx.doi.org/10.1149/2.004204esl.

3. J. B. Hou, Y. Y. Shao, M. W. Ellis, R. B. Moore and B. L. Yi, "Graphene‐Based Electrochemical Energy Conversion and Storage: Fuel Cells, Supercapacitors and Lithium Ion Batteries," Physical Chemistry Chemical Physics, Vol. 13, No. 34, pp. 15384‐15402, 2011, http://dx.doi.org/10.1039/c1cp21915d.

4. J. B. Hou, M. Yang, M. W. Ellis and R. B. Moore, "Direct Borohydride Oxidation at Carbon Supported Pt‐Sn Binary Catalyst," Journal of the Electrochemical Society, Vol. 159, No. 8, pp. F412‐F418, 2012, http://dx.doi.org/10.1149/2.043208jes.

Students GraduatedKshitish Patankar, Ph.D. Spring 2012 Scott Forbey, Ph.D., Spring 2014Jessica Wright, Ph.D. Spring 2014 Katherine Finaly, Ph.D., Spring 2013Ashley Gordon, M.S., Spring 2012

Complete Publication List1. Hou, J., Shao, Y., Ellis, M.W., Moore, R.B., Yi, B. Graphene‐based electrochemical energy conversion and storage: Fuel 

cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 13 (2011), 15384‐15402.2. Hou, J., Ellis, M.W., Moore, R.B. Electrochemical detection of sodium borohydride in alkaline media by gold electrode. 

Electrochemical and Solid‐State Letters, 2011, accepted.3. Hou, J., Ellis, M.W. Comparative study on electrochemical oxidation of sodium borohydride on carbon supported PtSn

and Pt. ECS Transactions, 41 (2011), 1729‐1735.4. Wang, J.; Hou, J.; Brunal, E.M.; Moore, R.B.; Nain, A.S. “Aligned Assembly of Nano and Microscale Polystyrene Tubes 

with Controlled Morphology,” Polymer 2014, in press.5. Chen, B.; Haring, A.J.; Beach, J.A.; Li, M.; Doucette, G.S.; Morris, A.J.; Moore, R.B.; Priya, S. “Visible Light Induced 

Photocatalytic Activity of Fe3+/Ti3+ Co‐Doped TiO2 Nanostructures,” RSC Adv. 2014, 4, 18033‐18037.6. Rowlett, J.R.; Chen, Y.; Shaver, A.T.; Fahs, G.B.; Sundell, B.J.; Li, Q.; Kim, Y.S.; Zelenay, P.; Moore, R.B.; Mecham, S.; 

McGrath, J.E. “Multiblock Copolymers Based Upon Increased Hydrophobicity Bisphenol A Moieties for Proton Exchange Membranes,” J. Electrochem. Soc. 2014, 161, F535‐F543.

7. Klein, J.E.; Singh, H.K.; Divoux, G.M.; Case, S.W.; Dillard, D.A.; Dillard, J.G.; Moore, R.B.; Parsons, J.B. “Assessing the Tearing Energy of a Hydrocarbon Elastomeric Seal Material for Fuel Cell Applications,” Fuel Cells 2014, in press.

8. Shin, D. W.; Lee, S.Y.; Lee, C.H.; Lee, K.‐S.; Park, C.H.; McGrath, J.E.; Zhang, M.; Moore, R. B.; Lingwood, M.D.; Madsen, L.A. “Sulfonated Poly (arylene sulfide sulfone nitrile) Multiblock Copolymers with Ordered Morphology for Proton Exchange Membranes,” Macromolecules 2013, 46, 7797‐7804.

Complete Publication List (cont.)9. Rowlett, J.R.; Chen, Y.; Shaver, A.T.; Lane, O.; Mittelsteadt, C.; Xu, H.; Zhang, M.; Moore, R. B.; Mecham, S.; McGrath, 

J.E. “Multiblock poly (arylene ether nitrile) disulfonated poly (arylene ether sulfone) copolymers for proton exchange membranes: Part 1 synthesis and characterization,” Polymer 2013, 54, 6305‐6313.

10. Chen, Y.; Rowlett, J. R.; Lee, C. H.; Lane, O. R.; VanHouten, D. J.; Zhang, M.; Moore, R. B.; McGrath, J. E. “Synthesis and Characterization of Multiblock Partially Fluorinated Hydrophobic Poly(arylene ether sulfone)‐Hydrophilic Disulfonated Poly(arylene ether sulfone) Copolymers for Proton Exchange Membranes,” Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, 2301‐2310.

11. Hou, J.; Yang, M.; Ellis, M.W.; Moore, R.B. “Direct Borohydride Oxidation at Carbon Supported Pt‐Sn Binary Catalyst,” J. Electrochem. Soc. 2012, 159, F482‐F418.

12. Hou, J.; Yang, M.; Ellis, M.W.; Moore, R.B. “Lithium Oxides Precipitation in Nonaqueous Li‐Air Batteries,” Phys. Chem. Chem. Phys. 2012, 14, 13487‐13501.

13. Hou, J.; Ellis, M.W.; Moore, R.B. “Electrochemical Detection of Sodium Borohydride in Alkaline Media by Gold Electrode,” Electrochem. Solid‐State Lett. 2012, 15, B39‐B43.

14. Osborn, A.M.; Moore, R.B. “Morphology of Proton Exchange Membranes,” In Polymer Science: A Comprehensive Reference, Matyjaszewski, K; Moller, M., Eds., 2012, Volume 10, pp. 721‐766, Elsevier BV, Amsterdam.

15. Klein, J.E.; Divoux, G.M.; Singh, H.K.; Case, S.W.; Dillard, D.A.; Dillard, J.G.; Kim, W.; Moore, R.B.; Parsons, J.B. “Assessing Durability of Elastomeric Seals for Fuel Cell Applications,” Experimental Mechanics 2011, 5, 175‐181.

16. Divoux, G.M.; Finlay, K.A.; Park, J.K.; Song, J.‐M.; Yan, B.; Zhang, M.; Dillard, D.A.; Moore, R.B. “Morphological Factors Affecting the Behavior of Water in Proton Exchange Membrane Materials,” ECS Trans 2011, 41, 87‐100.

Complete Publication List (cont.)17. Park, J.K.; Li, J.; Divoux, G.M.; Madsen, L.A.; Moore, R.B. “Oriented Morphology and Anisotropic Transport in 

Uniaxially Stretched Perfluorosulfonate Ionomer Membranes,” Macromolecules 2011, 44, 5701‐5710.18. Li, J.; Park, J.K.; Moore, R.B.; Madsen, L.A. “Linear Coupling of Alignment with Transport in a Polymer Electrolyte 

Membrane,” Nature Materials 2011, 10, 507‐511.19. Elliott, J.A.; Wu, D.; Paddison, S.J.; Moore, R.B. “A Unified Morphological Description of Nafion Membranes from 

SAXS and Mesoscale Simulations,” Soft Matter 2011, 7, 6820‐6827.20. Forbey, S.J.; Moore, R.B. “Crosslinked Electrospun Poly (ethylene oxide) Fiber Mats for Structured Polymer‐Gel 

Electrolytes,” ACS Abstracts 2013.21. Katherine A Finlay, Mingqiang Zhang, Matthew D Green, David A Dillard, Robert B. Moore, Scott W Case, Michael W 

Ellis, Yongqiang Li, Timothy J Fuller, Lijun Zou, Craig S Gittleman, Yeh‐Hung Lai. “Impact of Post‐Processing Treatment on Perfluorocyclobutane/Polyvinylidine Difluoride (PFCB/PVDF) Blended Fuel Cell Proton Exchange Membranes,” Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2012, 53(1), 234‐235.

22. Katherine A Finlay, David A Dillard, Robert B. Moore, Scott W Case, Michael W Ellis, Yongqiang Li, Timothy J Fuller, S.M. Mackinnon, Craig S Gittleman, Yeh‐Hung Lai. “Perfluorocyclobutane/Polyvinylidine Diflouride (PFCB/PVDF) Blends for Use as Fuel Cell Proton Exchange Membranes,” 2010, Polym. Mat. Sci. Eng. (Am. Chem. Soc., Div. Polym. Mat. Sci. Eng.), 240.

23. Angela M. Osborn, Robert B. Moore, David A. Dillard, Scott W. Case, Michael W. Ellis, Timothy J. Fuller*, Sean M. MacKinnon, Craig S. Gittleman, and Yeh‐Hung Lai “Investigation of Morphology and Phase Stability in Perfluorocyclobutane/PVDF Blend Membranes,” Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2010, 51(1), 55‐56.


Recommended