+ All Categories
Home > Documents > Electromagnetic Fields and Waves HW2 Solution - Iskander

Electromagnetic Fields and Waves HW2 Solution - Iskander

Date post: 18-Nov-2014
Category:
Upload: amacombe
View: 1,351 times
Download: 3 times
Share this document with a friend
6
t2 CHAPTER 1. VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN INTEGRAL FORM En, = = , Qo ^, ,"'^ ao .*x lo-e 'lA4' -n' i :;=l:!-i; :;;;= t(o.soz., +0.535a, +0.267a.) {x l0-'x 14x l0- \ 5155.7a, +3439.3a.. + 1716.4a, 1.18 +Q Eu' = 4tt.E# 1rq'a", )ulo-e t . --- \ =, o"'",.[O.gOSa +0.302a. +O.3OZa-l !X44xl0-4 \-- ' Y zl 9 = 3702.3a " + 1235.5a, + 1235.5a, E,o,ot = 8858'oa' + 467 4'8a, + 295 l'9a' Assume at p(-x,O,O),Eo= 0, as shown in the figure' -2Q pA0B s^-= *9- u.(-u,) AP 4ne,(x - a)" E,o,ot=Enn*Eun =#.tA# * *fu)"r=o -1 2 (a- x)' (a+ x)" 2(a- x)2 -(a+ x)z =g 2a2 +2x2 - 4ax - a' - x' -Zax =0 x'-6ax+a2 =o 6t"lT64 x=-.4 2 *= 4offi'(".)= 4rfr:v ",
Transcript
Page 1: Electromagnetic Fields and Waves HW2 Solution - Iskander

t2 CHAPTER 1. VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN INTEGRAL FORM

En, =

=

, Qo ^, ,"'^

ao .*x lo-e 'lA4' -n'

i :;=l:!-i; :;;;= t(o.soz., +0.535a, +0.267a.){x l0-'x 14x l0- \

5155.7a, +3439.3a.. + 1716.4a,

1.18

+Q

Eu' = 4tt.E# 1rq'a",)ulo-e t . --- \

=, o"'",.[O.gOSa +0.302a. +O.3OZa-l!X44xl0-4 \-- ' Y zl9

= 3702.3a "

+ 1235.5a, + 1235.5a,

E,o,ot = 8858'oa' + 467 4'8a, + 295 l'9a'

Assume at p(-x,O,O),Eo= 0, as shown in the figure'

-2Q

pA0B

s^-= *9- u.(-u,)AP 4ne,(x - a)"

E,o,ot=Enn*Eun =#.tA# * *fu)"r=o-1 2

(a- x)' (a+ x)"

2(a- x)2 -(a+ x)z =g

2a2 +2x2 - 4ax - a' - x' -Zax =0

x'-6ax+a2 =o

6t"lT64x=-.42

*= 4offi'(".)= 4rfr:v ",

Page 2: Electromagnetic Fields and Waves HW2 Solution - Iskander

IJ

1.19

xt = 5'83a

xz = 0.17 a where _r, is invalid

.'. There is a point (-5.83a,0,0) where E = 0.

After two balls are separated, they have the same charges:

Q,+42

anx{xl}-e xd2Q,..' ltr'l=

1.20

Qe

En = Err*Er4

l0-e

Q,=i;;7 ^'

Unit vector:

= T-------.9ix l0 '.1,

4 x 10-e

'-Txlv'z;'r' =o

Al a-+2aunr, =

m= l# = 0.4472a, + 0.8944a,

Bq AT, _AB=

--:=lnr,l lur,l

a,+2a.,-3a_ -2a +2a""r,

t , '' '

lBTrl= -ffif = -0J07a, + 0.707a,

o;Mu*'

10-e /

5', r' \0.++tza,+ o.seaaa,)

0.805a + 1.6Ia

Page 3: Electromagnetic Fields and Waves HW2 Solution - Iskander

l1

t.26 (a)

This integral can be broken up into five different parts:

ly az = fi' -r(,' + r)sin@ pdQ + pp'z,o,Qa,

*f " ,o1r' +r)cosQdp * Jo ,,-o(r'

+t)psinld| * l\p'r"orva,

=-fl's,rnvaE* prrar* J'"

ze pap- ft:r:sinQdQ* l\pi,ra,

(b)

(c)

=-25(-co'dll"*"(t)11,.^(t)|i,,-26p.(-cosa)1i,,*"'(t)lu,

= _25+ p2

f - f5 , l'5 "r:

I,: o' = )1, "'

01" + r) cos @dp = J ;ro,

- p'l'o "

= 2s - p:,

lr az * [t . a-t = (p3 - zs) + (zs - p'") = oJ. Jcl

.'. The iield F is conservative.

Page 4: Electromagnetic Fields and Waves HW2 Solution - Iskander

r.27

ro rufu ryrA^wE,LLJ tsQUA,l,loNS IN INTEGRAL FORM

(2,8)

--y-x3

(1,1)

w = I: ^"on

= nl,u'nd( = rll,is, - 6x'z)ax * l,?r, - oaor]

fc2 p8= nll,it,' - 6x'z)dx * f,irr - 4y,\dy]I

= n[t ' -z*')l' + r' -tr','li]- 3sq =3s x 10-6(,/)

. f- fr 1o51.28 A = J,On

= J,ur* * J,urdr = 4u,

1.29f ' \ - rt/2

J"(tin@, + pcosfar+tanpa,).av = Ji*t*, pd@,

= fi r"rwo= p2 =e

| .30 w = n I", . aV . fnrsintegral can be broken up inro rwo parts.

I.3l Flux =$Il1r,e,6.a,| ' "

F(r,O,Q) = rsin0a. +ao+aQ

ds, = 1'2 sinqd@Oa,

.'. Flux t, = [:'^l'" -{, siney, sin 0d0dQ = 2nr3 l"'' ,rn, ede = t- 13 = nz

.t e=o.t o=o Jo 2 2

w = ,Lf:ucosgsinda, 'u,ar+ flr'sin@a,

.arrsinqdp]

= ,lf;" o' - [i '^ *r]= qrs + 4 - 8t = +q111 J

Page 5: Electromagnetic Fields and Waves HW2 Solution - Iskander

t9

dsz = rsin9dMrae

.'. Flux t,= f*rf,=rt.rsintdQdr = frorf{a, =,

"' Total nux 6F 'd5=I-"ola

1.32 B=xax+yay+zaz

ds= dxdya,

fn a, = | 7d*dy = | +a*ay = 4.2tt. 22 = t6rJ, J, J-

1.33 B = ZlN"+ xar+ z2xa,

(a)

(3,2,4)

v(3,-l,0) (3,2,0)

X

ds = dzdya,

f fa fz '14 'r2

f na'=l"l zydydz=+l +l =t2J .rz=orr) - -r 2 lo 2 l_,

(b)

Page 6: Electromagnetic Fields and Waves HW2 Solution - Iskander

20 CHAPTER l. VECTOR ANALYSIS AND MAXWELL'S EQUATTONS IN INTEGRAL FORM

ds= dxdya,

.. Jn

. as = [ z'*a*dt = tzsra*at

{x = OcosQ

ldxdy = pd@p

. . Jn ^ = f,=,f;,25

p2 cos@oo, = n+li,sinpll" = s

1.34 Select as a Gaussian surface a cylinder which has radius = p and length = /.

(a) p<a

Since all the charge is on the surface of the cylinder, no charges are enclosed by theGaussian surface.

$"t," ds= Q=o

.'. E-0atPca

(b) a<p<b

In this region, only the charge from the inner cylinder will be enclosed by the Gaussiansurface.

f lI 12'Total charge Q= | pds = | arl p,. pdO =2tc(.ap,

J"" Jo Jo"

lfPtl2o{r,E. ds= le,,EopdOar= | | e"ErpdQdz=2n!.e,EopJ"" J'"' Jz=oJa=0"'

2nho ao.'.8 - =5, a<o<bo 2n!.e.p e,p

(c) p> b

There will be charge contributed by both cylinders.

o=lp"ar,+lp.ar,J"- "l ' Js^ -z -

= , ,f,=,f*fdwz - , ,f ,=,f*,uo*, = (a - b) p "

' 2ttl


Recommended