+ All Categories
Home > Documents > ELECTROMAGNETIC WAVES - Alert...

ELECTROMAGNETIC WAVES - Alert...

Date post: 27-Mar-2018
Category:
Upload: nguyendiep
View: 226 times
Download: 1 times
Share this document with a friend
68
ELECTROMAGNETIC WAVES and particulate materials J. Carlos Santamarina Georgia Institute of Technology Aussois 2012
Transcript

ELECTROMAGNETIC WAVES and particulate materials

J. Carlos Santamarina Georgia Institute of Technology

Aussois 2012

References:

Santamarina, J.C., in collaboration with Klein, K. and Fam, M. (2001). Soils and Waves, J. Wiley and Sons,

Chichester, UK, 488 pages.

Klein, K. and Santamarina, J. C. (2003b). "Electrical Conductivity In Soils: Underlying Phenomena." Journal of

Environmental & Engineering Geophysics, Vol. 8, No. 4, pp. 263-273.

Klein, K. and Santamarina, J. C. (1997). "Methods for Broad-Band Dielectric Permittivity Measurements (Soil-

Water Mixtures, 5 Hz to 1.3 GHz)." ASTM Geotechnical Testing Journal, Vol. 20, No. 2, pp. 168-178.

Santamarina, J. C. and Fam, M. (1997b). "Dielectric Permittivity of Soils Mixed with Organic and Inorganic

Fluids (0.02 GHz to 1.30 GHz)." Journal of Environmental & Engineering Geophysics, Vol. 2, No. 1, pp. 37-52.

Santamarina, J. C. and Fam, M. (1995). "Changes in Dielectric Permittivity and Shear Wave Velocity During

Concentration Diffusion." Canadian Geotechnical Journal, Vol. 32, No. 4, pp. 647-659.

Some pdfs (these and related papers) available at http://pmrl.ce.gatech.edu under "Publications"

Soils: An Electrical View

Fluids - Water

Mass

Bulk stiffness

Capillary forces

Seepage rate

Dipole

Hydration and double layers

O2-

H+ H+ 109o

0

30

60 90

120

150

180

210

240 270

300

330

L=1.25r

0

30

60 90

120

150

180

210

240 270

300

330

L=10r

Cl-

Cl-

Cl-

Cl-

C4+

Electrical View of Soils

Precipitated salt

mineral

dry soil water

pore fluid

wet soil

double layer

Wet clay

Laponite

1200 H2O

24 Na+

N. Skipper (UCL)

Electromagnetic Waves

Maxwell’s Equations

free

v

surf vol

d dvE s freev

1E

surf

H d 0s 0H

loop surf

dd H d

dtE l s

dt

dHE

loop surf surf

dd d d

dtH l J s E s

dt

dEEH

Gauss' Law of Electricity

Gauss' Law of Magnetism

Faraday's Law of Induction

Ampere-Maxwell's Law

Conductivity 0

Permittivity εo ε* = ε’ - j ε”

Permeability o = ’ - j ”

Electromagnetic Parameters

Free

space Materials

Wave Equation

22

2t t

E EE

x (j t x)

y oE E e e

Consider solution of the form (fluctuates in y - propagates in x)

Then 2j j

in real

materials

x (j t x)

y oE E e eif

dH

dtEFaraday

then j t * x

z o y

* *H j E e j E

x y

z

ph2

VIm( j ) Im j

Phase Velocity

In free space

o o 0

8

ph o

o o

1 mV c 3 10s

In non-ferromagnetic dielectric

o ' 0

oph

o

cV

'

Attenuation

In free space

o o 00

In non-ferromagnetic material

o ' j "

2Re j Re j

o 2

o

'

11 tan 1

c 2

Frequency

[Hz]

Wave Wave

length

[m]

1022 10-14

1021 Gamma rays 10-13

1020 10-12

1019 10-11

1018 X rays 10-10

1017 10-9

1016 Ultraviolet 10-8

1015 10-7

1014 Visible * 10-6

1013 Infrared 10-5

1012 10-4

1011 Microwaves 10-3

1010 10-2

GHz 109 10-1

108 1

107 101

MHz 106 102

105 Radio waves 103

104 104

KHz 103 105

102 106

101 107

Electromagnetic

Spectrum

freev

1E

0H

dt

dHE

dt

dEEH

and God said:

and there was light…!

Light-surface interaction

(Atlanta Airport)

and blue butterflies?

van Gogh - La Nuit Etoilee

Fresnel’s Ellipse

Reflection

St. Peter - Rome

Scatter

Electromagnetic

Material Properties

Conductivity

Permittivity ε* = ε’ - j ε”

Permeability = ’ - j ”

Electromagnetic Parameters

Ohmic conduction losses

Polarization losses ε”ω

Magnetization losses ”ω

Note: Losses

"tan

'Non-Ferromagnetic

Conductivity charges & mobility

Electrical Conductivity of the Pore Fluid

0

10

20

30

40

0 2 4 6 8 10 12

concentration [mol/L]

conductivity [S

/m]

NaOH

NaCl

CaCl2

At low concentration (P. Annan): ]L/mg[TDS15.0]m/mS[fl

Archie’s Law?

elsoil n

Electrical Conductivity

Surface conduction

Pore fluid

Wet Soil sgelsoilSn1n

0.001

0.01

0.1

1

0.4 0.5 0.6 0.7 0.8 0.9 1

porosity, n

mix

ture

con

du

ctiv

ity

, m

ix [

S/m

]

c = 0.1 mol/L

c = 10-5 mol/L

Electrical Conductivity of Soils

Archie

sflsoil Sn1n

flsoil n

Summary

10-6 10-3 100

10-3

100

Controlled by

eln

Ss

clays

sands

soil

[

S/m

]

el [S/m]

el= soil

de-ionized

water

fresh

water

sea

water

Controlled by (1-n) gSs

Summary: Electrical Conductivity

10-6 10-3 100

10-3

100

Controlled by n el

clays

sands

so

il

[S

/m]

el [S/m]

el= soil

de-ionized

water

fresh

water

sea

water

Controlled by (1-n) 2 g λSs

Ss

Permittivity Polarizability

Single phase

Electronic

(resonance)

t =10 - 16

s (Ultraviolet)

Ionic

(resonance)

t =10

- 13 s

(Infrared)

Orientational

(relaxation)

t = 9 × 10 - 12

s (Microwave – water)

Direction of Applied Field

Polarization spectrum

1 10 100 1 103

1 104

1 105

1 106

1 107

1 108

1 109

1 1010

1 1011

1 1012

1 1013

1 1014

1 1015

1 1016

1 1017

1 1018

50

0

50

100

150

200

frequency [Hz]

"

'

spatial

orientational

ionic electronic

polarization

losses

conduction

losses

1 102 10

4 10

6 10

8 10

10 10

12 10

14 10

16 10

18

200

150

100

50

0

Water-Ion Interaction

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

'

ionic concentration [mol/L]

CaCl2

NaCl

KCl

LiCl FeCl3

f = 1.3 GHz

Double layer effects

Stern layer

(Infrared)

Bound water (relaxation) (Radio frequency)

Double layer (deionized)

Double layer (electrolyte)

Double layer - Normal particle interactions

(surface conduction)

Direction of Applied Field

Two-phase media - Spatial polarization

(no relaxation) Maxwell relaxation

Wagner relaxation

Direction of Applied Field

Semi-permeable membrane

Polarizations

single phase material mixture

log(frequency/Hz)

-3 0 3 6 9 12 15

0

-3

-6

-9

-12

-15

visible

range

electronic

resonance

ionic

reson.

molecular

orient.

relax

scatter

grain

bound.

micro-space

polarization

double layer

macrospace

polarization

(interfacial polarization - relaxation)

log(size/m)

Summary: Relative Permittivity

water 78

ice ~3

most organic fluids 2-6

air, gasses ~1

minerals 5-10

2' ' '1 1soil m wn n S nS

' 2 33.03 9.3 146.0 76.7soil v v v Topp et al. 1980

CRIM

' ' '

m1 1soil wn n S nS Linear mixture

Summary: Single materials

water 78.5

methanol 32.6

most organic fluids 2 - 6

quartz 4.2 - 5

calcite 7.7 - 8.5

most minerals 6 – 10

Free Water - Consolidation

Orientational Pol.

25

30

35

40

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

local volumetric water content

1.3 GHz

0.20 GHz

DeLoor

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.48 0.51 0.54 0.57 0.6 0.63

local volumetric water content

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

stre

ss [k

Pa]

'

"eff

(b)

(a)

stress

(Table 11.9)

Volumetric Water Content

Perm

itti

vit

y

'

Summary: Soils

2vv 7.186.8740.1'

3v

2vv 7.760.1463.903.3'

2vv 0.164.413.3'

2vv 0.168.2314.3'

2vvv 16003928.449.340'

2

v9.7n6.16.2'

VOLUMETRIC WATER CONTENT

Summary

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100volumetric water content [%]

real

rel

ativ

e per

mitt

ivity

[ ]

Kaolinite

Bentonite

Mixed clays

Sands and silts

Topp et al. (1980)

Selig and Mansukhani (1975)

Wang (1980)

Wensink (1993)

Based on CRI - S=100%

Permeability Magnetizability

[Photo: U.S. Environmental Protection Agency]

Kingston Fossil Plant (12/22/2008)

XRD: Mill Creek Hopper

Magnetically separated fraction:

hematite Fe2O3 (weakly magnetic), magnetite Fe3O4 and maghemite Fe2O3 (both strongly magnetic).

Magnetization

Electron orbits orbit alignment Diamagnetism

Electron spin unpaired Paramagnetism

Alignment within domains move domain walls Ferromagnetism

domain 1 domain 2 wall

Permeability iron fillings in kaolinite – f = 10 kHz

' rel

volume fraction of iron filings

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 1

1.5

2

2.5

3

μ’rel= 1 + 4 vFe+ 7 vFe

μ’rel= 1 + 3 vFe

Maxwell

Wagner

Permeability iron in kaolinite – f = 10 kHz

0

0.1

0.2

0.3

0.4

0.5

102 103 104 105 106 107

Series1

Series2

Series3

Series4

Series5

Series6

Series7

1

1.2

1.4

1.6

1.8

2

2.2

(a) (b) (c) (d) (e) (f) (g)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

frequency [Hz]

frequency [Hz]

" rel

' rel

102 103 104 105 106 107

Summary

Fe1 3v

2

Fe Fe1 4v 7v

Single materials

water, quartz, kaolinite (diamagnetic)

~0.9999

montmorillonite, illite, granite, hematite (paramagnetic)

1.00002-1.0005

nickel, iron (ferromagnetic)

> 300

Predictive relations

spherical ferromagnetic inclusions

for vFe<0.2

Kaolinite with iron filings (at 10 kHz)

for vFe<0.3

o'/

Measurement

Testing

f

Quasi-DC Wave propagation Standing

wave

fres

R, C, L Complex

Reflectivity

V

α

Quasi-static

VR

i

Vj L

i

V 1j

i C

Resistor (R) Inductor (L) Capacitor (C)

CjR

1

1

i

V*Z

C

1LjR

i

V*Z

Circuit Elements - Impedance

Laboratory measurements

SG V1

V2

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

2 4 6 8

Resistance [k ]

Dep

th [

cm

]

X-Ray

Varved Clay

Laboratory: Electrical Needle

Rfix

VN

VS

SG

Photograph X-Ray

Lab-scale

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

2 4 6 8

Resistance [k ]

Dep

th [

cm

]

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

2 4 6 8

Resistance [k ]

Dep

th [

cm

]

Needle probe measurements GC. Cho

1 2

3

16

15

14

13

12

11

10

9

8

7

6

5

4

1 2

3

16

15

14

13

12

11

10

9

8

7

6

5

4

Numerical and Experimental Study

high conductivity anomaly

JY Lee

see also Fotti et al.

WAVE PROPAGATION

Laboratory measurements

TDR Probe – Honeycombs

Coarse

aggregate (honeycomb)

Fresh

concrete

Fresh

concrete

Time (10-9 sec) -2 0 2 4 6 8 10 12 14 16 18 20 22 24

Reflection at the probe tip

Pen

etr

ati

on

dep

th [

cm

]

5

20

25

30

10

15

Cone in TDR-mode MS Cha

Field Devices

Typical Data

Syscal Kid Switch 24

Resistivity range: 0.001 to 10,000 Ohm meter

Depth less than 70m

Typical pulse duration: ~0.5s to 2s.

Resistivity measurement / imaging

(images from http://www.terraplus.com)

EM38 Ground Conductivity Instrument

Very shallow (~<1m)

Conductivity range: 100, 1000mS/m

Frequency 14.6kHz

Geonics (Mississauga): http://web.idirect.com/~geonics/index.html

Images from the Terraplus (Colorado) site: http://www.terraplus.com

EM 34 - Ground Conductivity Instrument

Shallow (<60 m)

Intercoil spacing and operating frequency: 10m at

6.4kHz, 20m at 1.6kHz, 40m at 0.4kHz

Conductivity Ranges 10, 100, 1000 mS/m

EM devices (conductivity)

Sensors and Software (Mississauga)

Borehole Antennas

(50, 100, 200 MHz)

Pulse EKKO 100 antenna

frequencies; 12.5, 25, 50, 100, and

200 MHz (also borehole)

Pulse EKKO 1000

antenna frequencies; 110,

225, 450, 900, 1200 MHz

Ground Penetrating Radar (permittivity … conductivity and permeability)

GPR - 2D & 3D

www.sensoft.ca

GPR on Ice

www.sensoft.ca

www.sensoft.ca

GPR: Saltwater Intrusion

Summary: EM-waves

typically non-ferromagnetic

caution otherwise (e.g., some mine waste, fly ash)

ionic concentration … and mobility

fresh water: clay surface conduction

Simple measurement: ERT, Needle Probe (invasive)

free water orientation (microwave frequency)

GPR TDR probe (invasive)

V V when el and

Sd Sd when el

Use volumetric water content consolidation

advect./diffus. fluid fronts salt water intrusion

freezing fronts hydrates

spatial variability buried anomalies


Recommended