+ All Categories
Home > Documents > Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures ›...

Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures ›...

Date post: 07-Jun-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
43
1 © 2012, K.S. Suslick Electron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR) I. Origins of EPR: Zeeman Interaction II. Experimental considerations, Spectral presentation III. Anisotropy and Spin-Orbit Coupling Components IV. Hyperfine and Superhyperfine Splittings V. Uses & Applications A. Inorganic Spin Distribution B. d-orbital splittings & EX Energies C. Bioinorganic examples D. Spin Labelling © 2012, K.S. Suslick Survey of Spectroscopic Techniques cm -1 10 8 10 7 10 5 10 4 10 3 10 2 10 1 0.1 0.01 0.001 thz mag moment of nuclei
Transcript
Page 1: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

1

© 2012, K.S. Suslick

Electron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

I. Origins of EPR: Zeeman Interaction

II. Experimental considerations, Spectral presentation

III. Anisotropy and Spin-Orbit Coupling Components

IV. Hyperfine and Superhyperfine Splittings

V. Uses & ApplicationsA. Inorganic Spin DistributionB. d-orbital splittings & EX EnergiesC. Bioinorganic examplesD. Spin Labelling

© 2012, K.S. Suslick

Survey of Spectroscopic Techniquescm-1 108 107 105 104 103 102 10 1 0.1 0.01 0.001

thz

mag momentof nuclei

Page 2: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

2

© 2012, K.S. Suslick

E R

Paramagnetic

Most substances do not contain paramagnetic speciesand are hence EPR silent

DisadvantageFewer accessible systems

Advantages1) Easier to tell the source of EPR.

2) Introduction of “spin labels”

N

O

H2NOH

N

O

S S

O

O

+ Protein-SH

N

O

SS

Protein

© 2012, K.S. Suslick

EPR Pros & Cons

What EPR can tell us:

• What types of paramagnetic species are present

• What is the local structure/symmetry of these species

• What is the nature of the wavefunc0on containing the unpaired spin (i.e., where are the unpaired spins localized ).

• For organic radicals, sub-µM; for TM complexes, mM to 10 µM;300 µL volume. i.e., 10-1000 X more sensitive than NMR

Major disadvantages:

• Typically requires odd integer spins (i.e., S = 1/2, 3/2, 5/2, 7/2, etc…)

• Resolution is not as good as in NMR (broad features)

• Often requires very low temps for good resolution (10 K typical)

Page 3: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

3

© 2012, K.S. Suslick

The Spin Hamiltonian

“sp

in H

amilt

on

ian

”kinetic energy, e─ - nuclear attraction, e─ - e─

repulsion, nucl.-nucl. replusion, ligand field

Nuclear Zeeman (NMR)

Electronic Zeeman (EPR)

Zero Field Splitting (ZFS) from spin-orbit coupling of angular mom.

Hyperfine Coupling of e─ & nuclear moments (NMR & EPR)

© 2012, K.S. Suslick

1. An unpaired electron has a magnetic moment: µe→

Zeeman Interactions: Energy Splittings

2. In an applied magnetic field, H0, along the z directionclassically,

3. For one free electron:

B = Bohr magneton= 9.27×10−24 J/T

define: -eħ = ge

cf. EI = - mIħH0 (nucleus)

Page 4: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

4

© 2012, K.S. Suslick

Zeeman Interactions: Energy Splittings

B = Bohr magneton= 9.27×10−24 J/T

4. For one free electron, the selection rule:

∆ ms = ± 1 electric dipole forbidden, mag dipole allowed only.

5. Energy difference: gβ(+½)H - gβ(-½)H = gβH = h

© 2012, K.S. Suslick

Zeeman Interactions: Energy Splittings for 1 e-

Page 5: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

5

© 2012, K.S. Suslick

Zeeman Interactions: Energy Splittings

Microwave frequency is fixed by the generator (“Klystron”),so the magnetic field (H or B) is “scanned” until resonance found:

© 2012, K.S. Suslick

Zeeman Interactions: Energy Splittings

Microwave frequency is fixed by the generator (“Klystron”),so the magnetic field (H or B) is “scanned” until resonance found:

Page 6: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

6

© 2012, K.S. Suslick

The g-value

Ezee = - μe H0 = geemSH0

ge

In the case of a free electron inspace, the e- is the only sourceof magnetism in the sample:

When unpaired electron couples to

1) Empty orbital (e.g., d1), g < ge

2) Occupied orbital (e.g., d9), g > ge

Generally 1.3 < g < 9

In the case of an e- in a molecule, SOC (spin-orbit coupling constant ) adds or subtracts orbital angular momentum to that of free electronand we lump that into “gobs” or “g”:

Ezee = - (μe + aλ) H0

= gobsemSH0

© 2012, K.S. Suslick

• For most organic radicals, g ≈ ge

• For transition metals, large deviations from ge possible

• g can be measure to high accuracy (±0.0001)

• g is the “chemical shift” equivalent of EPR

• g depends on structure of radical, excitation energies, strengths of spin-orbit couplings

Note for later: g is anisotropic and not a scalar but a tensor.

)(

)(

)(

)( 48.71407145.0

gauss

GHz

T

GHz

HHH

hg

Energy of the Zeeman transition (and hence the “g-value”) is determined at a fixed microwave frequency with H0 being scanned. The “g-value”is a unique property of the molecule as a whole and independent of any electron – nuclear spin interactions.

The g-value

Page 7: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

7

© 2012, K.S. Suslick

What is the origin of g‐values different from 2.0?

Deviations from g = 2.0 due primarily to Spin‐Orbit Coupling. SOC constant, ζ, is metal‐ion dependent: can be small (150 cm‐1; Ti3+) or large (830 cm‐1; Cu2+).

An electron acquires orbital motion so to favorably experience the magnetic field of a nucleus, hence lowering its overall energy.

Specifically, an electron in an orbital (e.g., xy), can, via SOC, gain orbital angularmomentum via mixing with other orbital trajectories defined by rotationaloperators. Hence, an electron in xy can gain xz character via rotation about X, where such a rotation has a barrier, Δx.

For an electron that rotates into an empty orbital, the "current" created by the rotating electron leads to a magnetic field that opposes the applied magnetic fieldB0. This requires a larger applied field to achieve resonance, and hence a loweringof g.

For an electron that rotates into an occupied orbital, the sense of the current created by the rotating electron leads to a magnetic field that aligns with the applied magnetic field B0. This requires a smaller applied field to achieve resonance, and hence a raising of g.

© 2012, K.S. Suslick

What is the origin of g‐values different from 2.0?

For an electron that rotates into an empty orbital, the "current" created by the rotating electron leads to a magnetic field that opposes the applied magnetic field B0. This requires a larger applied field to achieve resonance, and hence alowering of g.

Mo(CN)8 3‐

Page 8: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

8

© 2012, K.S. Suslick

EPR Spectra

Problems in observing EPR transitions:

H0

So, one must be careful to avoid “power saturation”: i.e., driving the populations into exactly equal fractions by driving transitions faster than spin relaxationand therefore losing all net change in magnetization.

© 2012, K.S. Suslick

EPR Spectra

Problems in observing EPR transitions:

2. Zeeman transitions are magnetic dipole coupled only:ms = ±1 therefore only small transition probability.

3. Transitions are often broad relative to energy of transition.Line broadening from site inhomogeneity,

leads to Gaussian shapes.

Page 9: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

9

© 2012, K.S. Suslick

EPR Spectra

Solution to observing EPR transitions:

To enhance S/N and locate broad signals, EPR spectrometers use modulation detection 1st Derivative spectra: Signal Ampl / mag field

Instrumentally, the mag field is modulated using coils aligned with mag field (Helmholtz coils) to oscillate H0 a bit (0.01 to 20 G) at ~100 kHz. Detection is then phase locked to that frequency.

© 2012, K.S. Suslick

EPR Spectra typically given as 1st Derivative

Page 10: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

10

© 2012, K.S. Suslick

EPR Spectra typically given as 1st Derivative

Absorption Derivative

increasing g decreasing g

© 2012, K.S. Suslick

EPR QM

“sp

in H

amilt

on

ian

kinetic energy, e─ - nuclear attraction, e─ - e─

repulsion, nucl.-nucl. replusion, ligand field

Nuclear Zeeman (NMR)

Electronic Zeeman (EPR)

Zero Field Splitting (ZFS) from spin-orbit coupling of angular mom.

Hyperfine Coupling of e─ & nuclear moments (NMR & EPR)

Page 11: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

11

© 2012, K.S. Suslick

g-value Anisotropy

© 2012, K.S. Suslick

Anisotropic Interactions always complicate things(solids, frozen solutions, membranes etc.)

• with the applied field

• with surrounding magnetic nuclei

• among electron spins (if more than one, obviously)

Recall: Description of physical quantities

Isotropic: scalars Directional: vectors Interactions between vectorial quantities: tensors

g-value Anisotropy

Page 12: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

12

© 2012, K.S. Suslick

g is Anisotropic and Varies with Direction

''' xxg ''' yxg''' zxg

''' xyg ''' yyg ''' zyg

''' xzg ''' yzg''' zzg

where jiij gg ''

Diagonalisexxg

yyg

zzg

0 0

0 0

0 0

xg

yg

zg

Principal values

Anisotropy:

Asymmetry:

isozz ggg

ggg xxzz

)(

© 2012, K.S. Suslick

For an arbitrary orientation of a crystal in a magnetic field

2/122

222

222

)cos

sinsin

cossin(

zz

yy

xx

g

g

gg

In spherical coordinates:

Page 13: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

13

© 2012, K.S. Suslick

Electronic Zeeman Hamiltonian (g is actually a tensor)

g-value Anisotropy

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 14: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

14

© 2012, K.S. Suslick

In a frozen solution, an ensemble of all possible orientations of the metal site with respect to mag field vector.

A “powder spectrum” is then observed:

2g

3g

Powder absorbancespectrum

1st derivative

1g

rhombic Powder absorbancespectrum

1st derivative

axial(tetragonal)

g-value Anisotropy

© 2012, K.S. Suslick

yyxx ggg

Often the g tensor has axial symmetry

Then:zzgg

2/12222 )cossin( ggg ║┴

And:

Page 15: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

15

© 2012, K.S. Suslick

Axial g-value Anisotropy

Absorption Derivative

Axial hyperfine (later): often a|| >> a┴ ~ 0

© 2012, K.S. Suslick

Axial g-value Anisotropy

Page 16: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

16

© 2012, K.S. Suslick

Zero Field Splitting

Zero Field Splitting (also a tensor)

© 2012, K.S. Suslick

Zero Field Splitting (ZFS) vs. Zeeman Splitting

Kramer’sDoublets

Kramer’s Doublets: Effective half-integer spin states (S = 5/2, 3/2, 1/2, etc.) that are split under an applied magnetic field to the ±Ms microstates (Zeeman Splitting).

Example: A 4T1 state is split under axial zero-field splitting into three sets of Kramer’s doublets (S = 5/2, 3/2, and 1/2), which are separated by Zeeman splitting to the ±3/2 and ±1/2 microstates.

axial rhombicityZeeman

ZeemanSplittings

Page 17: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

17

© 2012, K.S. Suslick

Zero Field Splitting

© 2012, K.S. Suslick

ZFS from Ligand Field Distortions

Page 18: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

18

© 2012, K.S. Suslick

Uses & Applications of EPR

FeIII, d5

© 2012, K.S. Suslick

Allowed Transitions for N nuclei with spins Ii

For k sets of equivalent nucleiwith ni nuclei per setwith Ii nuclear spin per nuclei,

Total number of Hyperfine lines:

“Hyperfine” (HF) and “Superhyperfine” (SHF) are both due tocoupling between electron/paramagnetic spin and nuclear spins:

Hyperfine refers to interaction of a metal nucleuswith “its own” unpaired electron spin density.

Superhyperfine refers to interaction of unpaired electron spin densitywith ligand nuclei.

k

kiihf InN

1

)12(

Page 19: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

19

© 2012, K.S. Suslick

Hyperfine Interactions

= interaction of paramagnetic spins with nuclear spins

ElectronicZeeman

Splittings

Hyperfine (e- spin-nuclear spin)Splittings

For an isotropic coupling between electron &

nucleus I = ½

© 2012, K.S. Suslick

S S

SS

S

S

I

I

S I

I

aiso/4

aiso/4

aiso/4

aiso/4

Isotropic Coupling between e- & nucleus I = ½

I

I

Recall:

Page 20: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

20

© 2012, K.S. Suslick

ElectronicZeeman

Splittings

Hyperfine (e- spin-nuclear spin)Splittings

Hyperfine Interactions

a = hyperfinecouplingconstant

© 2012, K.S. Suslick

Hyperfine with More than One Nucleus

SISI

Sb Sb

1 spin ½ nucleus

SI1I2 SI1I2

2 eq. spin ½ nuclei

SI1I2 SI1I2

SI1I2 SI1I2

SI1I2 SI1I2

isoISI amm )(

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

SI1I2I3 SI1I2I3

3 eq. spin ½ nuclei

Page 21: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

21

© 2012, K.S. Suslick

Allowed Transitions for N nuclei with spins Ii

k

kiihf InN

1

)12(

For k sets of equivalent nucleiwith ni nuclei per setwith Ii nuclear spin per nuclei,

Total number of Hyperfine lines:

e.g., benzene radical anion

1 set of 6 H (I=1/2)

Nhf = 2*6*½ +1 = 7 lines

© 2012, K.S. Suslick

Allowed Transitions for N nuclei with spins Ii

k

kiihf InN

1

)12(

For k sets of equivalent nucleiwith ni nuclei per setwith Ii nuclear spin per nuclei,

Total number of Hyperfine lines:

e.g., [BH3●]— 1set of 3 H (I=1/2)and 1 set of 1 11B (I=3/2)

Nhf = (2*3*½ +1)*(2*1*3/2+1) = 16 lines

EPR spectrum of [BH3●]— in solution.

The stick diagram marks the resonancesfor the 11B(I=3/2) and the three protons.

(The remaining very weak resonances aredue to the radicals containing 10B (I=3).)

Page 22: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

22

© 2012, K.S. Suslick

Oxidation of a Chromium(III) porphyrin to CrVPorph(isotropic in solution)

S(Cr5+) = ½ I(14N) = 1

I(52Cr) = 0 (84% abundant)

Nhf = (2*4*1+1) = 9 lines

but also

I(53Cr) = 3/2 (9.6% abundant) (2*1*3/2+1) = 4 sets of 9 lines, weak

Allowed Transitions for N nuclei with spins Ii

© 2012, K.S. Suslick

Two Spin Nuclei: Li+(13CO2─)

I(13C) = ½, I(7Li) = 3/2

12C

A(13C)>>A(7Li): Spin density mainly on 13C

Page 23: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

23

© 2012, K.S. Suslick

Origins of Hyperfine Coupling

© 2012, K.S. Suslick

But Hyperfine can (is) also anisotropic

dipolariso AAA

Fermi contact Interaction Density of unpaired electronat nucleus (s-orbital characterin semi-occupied MO (SOMO).

ISOTROPIC,“Through-bond”

Dipolar Interaction p,d,f orbital character

in SOMO.Averages out in soln.

ANISOTROPIC“Through Space”

Page 24: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

24

© 2012, K.S. Suslick

A Model Cu2+ systemAxial symmetry

I(65Cu) = 3/2 d9, S=1/2

gg║ ┴

Axial hyperfine: often a|| >> a┴ ~ 0

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 25: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

25

© 2012, K.S. Suslick

HFS for Identification of Metal

© 2012, K.S. Suslick

Uses & Applications of EPR: Metal Identification

Page 26: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

26

© 2012, K.S. Suslick

HFS for Identification of Metal

© 2012, K.S. Suslick

HFS for Identification of Metal

Page 27: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

27

© 2012, K.S. Suslick

HFS for Identification of Metal

© 2012, K.S. Suslick

I = 3/2

HFS for Identification of Metal

Page 28: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

28

© 2012, K.S. Suslick

HFS for Identification of Metal

© 2012, K.S. Suslick

HFS for Identification of Metal

Page 29: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

29

© 2012, K.S. Suslick

Identification of Ligands: “Superhyperfine”

© 2012, K.S. Suslick

Identification of Ligands

Page 30: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

30

© 2012, K.S. Suslick

Transition Metal EPR

• Complicated by the fact that transition metal systems might have several unpaired electrons and several approximately degenerate orbitals

• 3d elements important: only moderate spin-orbit coupling

• Ability to distinguish between high spin and low spin complexes (in ligand fields): coordination number and geometry accessible via EPR

• Difficult to observe EPR on systems w/ integer S systems

• Most common:

Ti3+(d1)S=1/2

Fe3+(d5) S=5/2 (high spin) often high anisotropy, S=1/2 (low spin)

Cu2+(d9) S=1/2 I=3/2 for 63Cu and 65Cu

Co2+(d7) S= 3/2 (high spin) S=1/2 (low spin)

© 2012, K.S. Suslick

ZFS in EPR

Page 31: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

31

© 2012, K.S. Suslick

ZFS in EPR

© 2012, K.S. Suslick

Uses & Applications of EPR: Heme Proteins

Easy to tell L.S. Fe(III) from H.S. Fe(III)

Page 32: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

32

© 2012, K.S. Suslick

powder spectrum for a rhombic g-tensor

xxg yygzzg

Low spin Fe3+ in cytochrome P450

Powder spectrum

1st derivative s3

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 33: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

Slide 63

s3 There are many Cytochrome P450 enzymes, and they catalyse oxidation of various organic substrates (e.g. medicines) in living organisms. At the centre of these enzymes is a haem centre (iron porphyrin), bonded to the protein through an Fe-S bond to a cysteine side-chain. In the resting state of the enzyme, the iron centre is in the +III oxidation state. Successive one-electron reduction, binding of dioxygen, one-electron reduction, addition of two protons, and loss of water, leads to formal transfer of an oxygen atom to the iron atom. The resulting key intermediate, referred to as "Compound I", formallyhas an iron atom in the +V oxidation state (in fact, part of this charge is delocalised on the porphyrin ring and the oxygen atom, so that the iron is better described as being in the +IV or even +III oxidation state).stuart, 2/22/2006

Page 34: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

33

© 2012, K.S. Suslick

Uses & Applications of EPR

Blumberg and Peisach’s plot of a large family of low spin hemes showing howdata cluster into five domains. The first four (C, B, H, O) have similar rhombicdistorHons but increasing axial fieldstrength. These assigned with histidine (axial 5th site) but 6th  ligand is methionineC, neutral histidine H, anionic histidine B, and oxide O. The fifth family (P) are the P450 heme enzymes, with cysteine andwater as the axial ligands.

The Blumberg analysis tends to work best when V/Δ is quite large. These are knownas “Truth Tables”.

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 35: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

34

© 2012, K.S. Suslick

Uses & Applications of EPR

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 36: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

35

© 2012, K.S. Suslick

Uses & Applications of EPR

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 37: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

36

© 2012, K.S. Suslick

Uses & Applications of EPRg values

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 38: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

37

© 2012, K.S. Suslick

Uses & Applications of EPR

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 39: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

38

© 2012, K.S. Suslick

Uses & Applications of EPR

Each nucleus experiences the hyperfine fieldof only one electron.

Each (spin 1/2) nucleus then gives rise to two resonanceconditions depending on whether the electron hyperfine

field opposes or augments the applied field.

A strong radiofrequency (NMR) field induces NMR transitions which are observed as a change in the

intensity of an electron resonance condition.

Electron Nuclear Double Resonance (ENDOR)

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 40: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

39

© 2012, K.S. Suslick

Uses & Applications of EPR

© 2012, K.S. Suslick

Uses & Applications of EPR

Page 41: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

40

© 2012, K.S. Suslick

ENDOR

© 2012, K.S. Suslick

aE Is 4

1

2

1

2

12

aE Is 4

1

2

1

2

13

aE Is 4

1

2

1

2

11

aE Is 4

1

2

1

2

14

Recall:

1

2

3

4

Thermal Equil.

1

1

11

IS|

IS|

IS|

IS|

EPR 1-3saturated.

1

1

11

sat

The ENDOR experiment (simplified)

aI 2

1

NMR transition(3-4) at

Page 42: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

41

© 2012, K.S. Suslick

ENDOR

Relative populations are given by Boltzmann at thermal equilibrium (I<<S, hence populations of 1 & 2, 3 & 4 assumed identical)

Irradiate 1-3 transition (saturate at high power): that will give same populations in 1 & 3.

Irradiate system with RF (NMR) and sweep frequency while continually saturating EPR transition; observe the intensity of its absorption

When RF frequency matches |I-a/2|, transition 3-4 will be induced, restoring some population difference between levels 1&3

More EPR absorption now possible: that is ENDOR signal

Equally, when RF frequency matches |I + a/2| (1-4 transition), this time a pumping from 1-4 occurs (as 4 has the higher population) and a population difference between 1&3 is again achieved and EPR transition enhance – the second ENDOR signal

In practice, need to consider spin lattice relaxation processes

© 2012, K.S. Suslick

Toluene Solvent

Hyperfinecouplings not

resolved

EPR

1H ENDOR

Two wide doublets which give the hyperfine couplings to protons in the C8H8 and C5H5 rings directly.

Orientation Selection

Page 43: Electron Paramagnetic Resonance (EPR) = Electron …xuv.scs.illinois.edu › 516 › lectures › chem516.12.pdfElectron Paramagnetic Resonance (EPR) = Electron Spin Resonance (ESR)

42

© 2012, K.S. Suslick

Electron Nuclear Double Resonance

© 2012, K.S. Suslick

Tetracene cations in sulphuric acid

EPR spectrum

ENDOR 1H (3 types of protons)


Recommended