+ All Categories
Home > Documents > Electronics and Trigger developments for the Diffractive Physics Proposal at 220m from LHC-ATLAS

Electronics and Trigger developments for the Diffractive Physics Proposal at 220m from LHC-ATLAS

Date post: 31-Dec-2015
Category:
Upload: jessamine-frye
View: 32 times
Download: 1 times
Share this document with a friend
Description:
Electronics and Trigger developments for the Diffractive Physics Proposal at 220m from LHC-ATLAS. By P. Le Dû. pledu@cea .fr. J.F. Genat 1 , O. Kepka 2 , P. Le Dû, Ch. Royon For the RP220 collaboration. 1 CNRS/IN2P3 2 DAPNIA.SPP and Institute of Physics, Prague, Czech Republic. - PowerPoint PPT Presentation
Popular Tags:
28
1-Nov-07 1-Nov-07 Hwaii 2007 -N43-4 Hwaii 2007 -N43-4 1 Electronics and Trigger developments for the Diffractive Physics Proposal at 220m from LHC-ATLAS By P. Le Dû pledu@cea.fr J.F. Genat 1 , O. Kepka 2 , P. Le Dû, Ch. Royon For the RP220 collaboration 1 CNRS/IN2P3 2 DAPNIA.SPP and Institute of Physics, Prague, Czech Republic
Transcript

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 11

Electronics and Trigger developments for the Diffractive Physics Proposal at 220m from

LHC-ATLAS

By P. Le Dû[email protected]

J.F. Genat1, O. Kepka2 , P. Le Dû, Ch. RoyonFor the RP220 collaboration

1 CNRS/IN2P32 DAPNIA.SPP and Institute of Physics, Prague, Czech Republic

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 22

Goals of this presentation

Present the feasibility study, R&D and issues for Present the feasibility study, R&D and issues for the development of detectors to measure protons the development of detectors to measure protons at 220 m from the IP, within low at 220 m from the IP, within low optics at the optics at the LHCLHC

Work associated or/and in collaboration with Work associated or/and in collaboration with – FP420 for the position detector (3D)FP420 for the position detector (3D)

See N18-4 and N20-4See N18-4 and N20-4– UChicago/ANL/FNAL/Saclay/Photonis(Burle) for the ultra UChicago/ANL/FNAL/Saclay/Photonis(Burle) for the ultra

fast timing detector (MCP)fast timing detector (MCP)N06-6 and N18-1 N06-6 and N18-1

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 33

Diffractive physicsDiffractive physicsMain physics aim pp Main physics aim pp pp+ X + + X + pp

Exclusive Higgs Exclusive Higgs Signal over background: Signal over background: ∼∼ 1 if Mass resolution < 1Gev 1 if Mass resolution < 1GevNew physics :SUSY search, New physics :SUSY search, Diffractive top, stop pair productionDiffractive top, stop pair productionQCD studiesQCD studiesPhoton induced interactionsPhoton induced interactions

Objective : reconstruct the M with a precision better than 1 GevObjective : reconstruct the M with a precision better than 1 GevKinematics variable is Kinematics variable is

= fractional momentum losses of the outgoing protons

H

b-jet

b-jet

p p

M2= = = 1 2 S

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 44

High Luminosity 10High Luminosity 103333 to 10 to 103434

Additional signal and flag at the L1 ATLAS TriggerAdditional signal and flag at the L1 ATLAS Trigger

Natural follow-up of the ATLAS luminosity project at 240 m to Natural follow-up of the ATLAS luminosity project at 240 m to measure total cross section measure total cross section

Complementary to the FP420Complementary to the FP420

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

RP220 vs. other projects

ATLAS

RP220

FP420

Luminosity Monitors(Low Luminosity)

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 55

Trigger topologiesTrigger topologies

PLtrack

PR track

PL. AND PR track with ζ cutEt JET 1 AND 2 > 40 GevJET Rapidity correlation ?Dijet ENERGY /TOTAL > 0,9

RP 220

RP 220

JET 1

JET 2

PL Track

PL track with ζ cutEt JET 1 AND 2 > 40 GevJET 1 Rapidity CutDijet ENERGY /TOTAL > 0,9

RP 220

FP420

JET 1

JET 2

RP220 only

RP220 + FP420

1 KHz @ 1033

20-30 KHz @ 1034

1,6 KHz @ 1033

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 66

Basics Requirements and Basics Requirements and ChallengesChallenges

Measure Measure of each outgoing proton of each outgoing proton– Position and direction with a precision of 10 Position and direction with a precision of 10 – Time of Flight (TOF) of the 2 outgoing protons with a Time of Flight (TOF) of the 2 outgoing protons with a

resolution of < 5 picoseconds resolution of < 5 picoseconds

General system issuesGeneral system issues– Mechanics and overall stabilityMechanics and overall stability

integration with precision beam position monitor to reach 0(10) m

– Radiation for detectors at 220 meters (cryostat region)Radiation for detectors at 220 meters (cryostat region)– Detectors to operate very close to the beam (10 Detectors to operate very close to the beam (10 --> 1 --> 1

mm) mm) – Trigger/selection issuesTrigger/selection issues

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 77

Accumulated dose estimation @ 220 m Accumulated dose estimation @ 220 m (XRP3)(XRP3)

N. Mokhov, LHC Report 633

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 88

Position DetectorsPosition Detectors

Position detectorsPosition detectors– Need to approach beam to the mm

level and stabilty of 10 m – Should Achieve 10 m position

resolution – Use EDGELESS Silicon detectors

Roman pot techniqueFor compact detectors

TOTEM

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 99

Timing detectorsTiming detectors

Measure the Time Of Flight of each diffracted protonMeasure the Time Of Flight of each diffracted protonPrecision of few PicosecondsPrecision of few Picoseconds– 1 mm on the vertex (select the right event among 35)1 mm on the vertex (select the right event among 35)

Technology --> Micro Channel Plate (MCP)Technology --> Micro Channel Plate (MCP)

moving beampipe (HERA)

beam

LHC beampipe

Alignment wire

WPS sensors

bracket

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1010

Roman Pots locationRoman Pots location

RP

IP

220m 220m

RPRP RP

RP RP RP RP

Roman Pot Station

{{

Roman Pot Unit

Each RP station consists of two Roman Pot Units separated by 8

m, centered at 220m from IP1

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1111

Roman Pots LayoutRoman Pots Layout

IP 220m

8m

BeamOptics

3cm

SiliconDetectors

One Horizontal pot

Two Vertical pots

Elastic events for calibration

and alignment

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1212

LayoutLayout

SIDE

DOWN

U Y VX X

3D pixels

MCP-PMT

LightGuide

Radiator8 x 8 Pixels

MCP UP

Roman Pot ARoman Pot B

2 x 21 planes of Si detectors

Size : 2,5 x 2,5 cm2

Timing detector Movable Beam Pipe

MCP

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1313

Position detectors specific requirementsPosition detectors specific requirements

Objective : Achieve 10 m position resolution–Two staggered 50 m pitch strips read in digital :– 25 / 12 = 7.2 m resolution– Or larger pitch analog using centroids–Trigger data available within a few 100 ns

Candidates: Baseline:Baseline: “3D” Pixels detectors (S. Parker) “3D” Pixels detectors (S. Parker) - NEW : Under development for RP420- NEW : Under development for RP420

Stanford, VTT, SintefStanford, VTT, Sintef- - Backup:Backup: Edgeless Silicon strips Experienced technology Edgeless Silicon strips Experienced technology

Canberra, HamamatsuCanberra, Hamamatsu

Semi-3D detector (VTT, Finland)

3D (Stanford)

50m strips (Canberra)

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1414

3D Detector3D DetectorBenefits compared to standard Si strips detectors)

- Collection time x 10 2 ns - Low voltage depletion /10 10V - Radiation hardness x50 1015 p/cm2 - Edgeless using plasma etching /10 5m - Same charge as planar 25 ke-/300

Drawbacks - Thickness: Needs a bump-bonded chip

(could be thinned to 50m)

- Production yield Presently 80% (7.2 x 8 mm2 detectors)

- Readout speed Slow as is: 2-6 s,

- No ‘fast’ trigger data

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1515

FE13 Readout chip FE13 Readout chip (ATLAS b-layer upgrade)(ATLAS b-layer upgrade)

2880 channels50 x 400 50 x 400 m2 pixels m2 pixels 7.2 x 8 mm7.2 x 8 mm22

Binary & Time Over ThresholdBinary & Time Over ThresholdSelf triggeringTime over ThresholdAdjustable thresholdCMOS 250nm IBMReadout 2-6 Readout 2-6 s @ 40 MHzs @ 40 MHz

Readout chip

8mm

7.2mm

IZM + Bonn

Baseline for FP420Need to be modified for extracting theFast Trigger information

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1616

Fast (asynchronous) pixels digital Fast (asynchronous) pixels digital readoutreadout

Jean-François Genat, RP220 meeting, Oct 17-19th 2007 Krakow, Poland

- Fast ORs of columns (sufficient for the RP220 trigger) Fast readout of every hit column Fast address building takes a few ns in total (130nm CMOS)- Can be sent to the fast logic in the “alcove” at every BCO

X1

Y1---Y1nX2

Y21---Y2m----Xp

Yp---Ypq

Trigger data10-bit words

- Data transfer: 10 hits (disable noisy pixels) = 20 (10) words = 200 (100) bits 20ns (10) @ 10 Gb/s

512pixels

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1717

Alternative Read Out solutionAlternative Read Out solution

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Pixels connected as stripsPixels connected as strips

Standard ABCD strips readout Standard ABCD strips readout

Capacitance is higher, but does not impact small Capacitance is higher, but does not impact small detectorsdetectors

Need to extract the Fast OR signal for trigger

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1818

Micro Channel Plate PMT Micro Channel Plate PMT OperationOperation

Faceplate

Photocathode

Dual MCP

Anode

Gain ~ 106

Photoelectron V ~ 200V

V ~ 200V

V ~ 2000V

photon

MCP-OUT Pulse

Burle- Photonis MCP2” x 2” sensitive area

A 2” x 2” MCP

actual thickness ~3/4”

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 1919

Major advance for generating the signalMajor advance for generating the signalIncoming

rel. particle Use Cherenkov light fastCustom Anode with Equal Time Transmission Lines + Capacitative. Return

e.g. Burle (Photonis) 85022 with mods

Collect charge here differential Input to 200 GHz TDC chip

10 m pores

Development of MCP’s with 6-10 micron pore diameters

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2020

Simulation Simulation RF Transmission LinesRF Transmission LinesSumming smaller anode Summing smaller anode pads into 1by 1pads into 1by 1 readout readout pixels pixels An equal time sum make An equal time sum make transmission lines equal transmission lines equal propagation timespropagation timesWork on leading edge Work on leading edge ringing not a problem for ringing not a problem for this fine segmentationthis fine segmentation

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Ability to simulate electronics and systems to predict design performance

Oscillator with predicted jitters << 100 femtosec

860 fs860 fs

20 Pe

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2121

-8,00E-02

-7,00E-02

-6,00E-02

-5,00E-02

-4,00E-02

-3,00E-02

-2,00E-02

-1,00E-02

0,00E+00

1,00E-02

0,00E+00 5,00E-08 1,00E-07 1,50E-07 2,00E-07 2,50E-07 3,00E-07 3,50E-07 4,00E-07

Temps / s

Tension / V (50 Ohms)

Read Out :Direction to reach 1(few) Read Out :Direction to reach 1(few) psec (1)psec (1)Picking the time Picking the time

– Multithreshold discriminatorMultithreshold discriminator

1

4

2

3

MCP

Extrapolated time

Multi-threshold time resolution with actual MCP pulses (2d order fit)

050

100150200250300350400

1 3 5 7 9 11 13 15

Number of thresholds

Sigma (picoseconds)

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2222

Direction to reach 1 psec (2)Direction to reach 1 psec (2)Time Stretcher SchemeTime Stretcher Scheme

IssuesIssues– Power consumption (250 mWatts/ch)Power consumption (250 mWatts/ch)– Ramp Ramp zerozero crossing induces important Jitter crossing induces important Jitter

MCP

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

DAQ

Chip

200 MHzTDC

(FPGA)

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Fukung Tang et al (UC-ANL).

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Synoptic

1

4

2

3

Resolution: a few ps

“Slow” TDCkIBM 8 HP Chip

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2323

Direction to reach 1(few) psec (3)Direction to reach 1(few) psec (3)

Alternative to Time stretcherAlternative to Time stretcher– Replace the TDC ---> ADCReplace the TDC ---> ADC

t

DC level to ADC

Digitized

t

ADC

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2424

Best results with 2 TOF counters in Best results with 2 TOF counters in tandemtandem

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

From J. Va’vra (SLAC)

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2525

Diffractive TriggerDiffractive Trigger

ATLAS standard

Horizontal roman pots Horizontal roman pots (a la TOTEM)(a la TOTEM)

L1 CTPL1 CTP

+730 ns

Front end

ROD

ROD

- 216 m

LeftPretrigger

LR Trigger Logic• LP AND RP•TR - TL

HLT Trigger(ROB)

HLT Trigger(ROB)

2,5sec

+850 ns (air cable)

Max 75KHz

RightPretrigger

T

TR

T

2,0 sec

7 plans Si /Roman Pot positionmicrons time < 5 psec

Pipeline buffer

(6.4 sec)

xA - xB =0

xA

xD - xC =0

xB

2 Jets with Pt > 40 Gev/c

Refined Jet Pt cutVertice within millimeter time < 5 to 10 psec

jet

jet

- 224 m

xA xB

ATLAS detector

US15

1,0 sec

PASH

30 nov 2006ATLAS Standard

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2626

Timing and Data flowTiming and Data flow

Flight path733 ns

Processing

0 ns

Proton @ RP

Pretrigger Data available @ 220 m(Alcove)

1024 ns

Cable

1921 ns

Processing

Cable

Max 2500 ns

5120ns

RP Triigger Data @ ATLAS CTP

LVL1 ACCEPT (75 KHz)

RPs data @ ROD

BXing

RP ASIC & FPGASI ---> 4 Events x 2 Si Strips x 10 bit wordsMCP ---> 4 Events x 6 bit words per Xing= 104 bit/Bx Average Rate = 4,16 Gbit/sec (11ns through cable to Alcove)

ALCOVE CTA crate PRETRIGGERMatching 2RPs with overlap Si StripsAdd Timing information from relevant MCP PMT pixel (1 mm2))

80 bit/BX x 40 MHz = 3,2 Gb/s80 bit @ 10 GB/s - 880 transfert time

Detector response 11 nsABCD response 150 ns20 ms cable 80 nsPretrigger Processing 50 ns

588 ns

Data Production per Roman Pot to ROD4 events x(7 Si detectors x10 bit word stored in the pipeline)4 events x 1 MCP-PMT detector x (6 bit adress + 8 bit fine timing) Total per LV1 Accet = 336 bit Total x 75 KHz =25 Mb/s

2x 1100 ns + 7.4 K bit @ 4x 5 Gb/s= 2620 ns

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2727

Implementation block diagramImplementation block diagram

LHC CLK

IP//

LocalLogic

DetectorASIC

Pretrigger logicRead Out

Control & Monitoring

CTA crate

Shielded Alcove

Picosecond CLK 160 MHzTrigger DATA 4,16 Gb/sRO DATA 670 kb/s

20 mCables

ATLAS LVL1CTP

ATLAS ROD(LVL2 & DAQ)

US 15

Reference clock(Atomic)

RP Left Trigger

1Cable

160 MHz CLK (fiber)

LHC CLK

2 x 3,2 Gb/s

L1 ACCEPT

RP RightTrigger

75 KHz

DATA

25 Mb/s

4 fiberss

FPGA

X XX XX X

FPGA

X XX XX X

FPGA

MBP RP B RP A

1-Nov-071-Nov-07 Hwaii 2007 -N43-4Hwaii 2007 -N43-4 2828

ConclusionsConclusions

A challenging ‘small’ experiment A challenging ‘small’ experiment

Need to use State of the art technologiesNeed to use State of the art technologies

Tracking Silicon hodoscopes with 10 Tracking Silicon hodoscopes with 10 m precisionm precision

Ultra fast timing with few Psec TOF resolutionUltra fast timing with few Psec TOF resolution

Input signals forTrigger @ L1 in ATLASInput signals forTrigger @ L1 in ATLAS

System aspect non obvious (stability, radiation …) System aspect non obvious (stability, radiation …)

Thanks a lot for your attention!

But the Physics results might be outstanding !


Recommended