+ All Categories
Home > Documents > elementary25-4

elementary25-4

Date post: 03-Mar-2018
Category:
Upload: carlos-pinedo
View: 221 times
Download: 0 times
Share this document with a friend

of 6

Transcript
  • 7/26/2019 elementary25-4

    1/6

    ELEMENTARY PROBLEMSANDSOLUTIONS

    Edited by

    A.

    P.

    HILLMAN

    Please send

    all

    communications regarding

    ELEMENTARY PROBLEMS

    AN D

    SOLUTIONS

    to Dr. A. P. HILLMAN;709 SOLANO DR., S.E.;

    ALBUQUERQUE,

    NM 87108. Each solu-

    tion or problem should be on a separate sheet (or sheets)

    .

    Preference will be

    given to those typed with double spacing in the format used below. Solutions

    should be received within four months of the publication date.

    DEFINITIONS

    The Fibonacci numbers F

    n

    and the

    Lucas numbers L

    n

    satisfy

    F

    n +

    2=

    F

    n

    +

    1 +

    F

    n>

    F

    o = >

    F

    l =

    1

    and

    L

    n

    + 2

    =

    L

    n

    + 1

    +

    L

    n>

    L

    Q

    = 2

    '

    L

    l

    =

    l

    PROBLEMS PROPOSED

    SN

    THIS ISSUE

    B-604

    Proposed by Heinz-Jurgen Seiffert, Berlin, Germany

    Let c

    be a

    fixed number

    and

    u

    n

    + 2

    =

    cu

    n+ 1

    +

    u

    n

    for

    n

    in

    N ={0,

    1

    9

    2,

    ...}.

    Show that there exists

    a

    number hsuch that

    U

    n+ k

    =

    hU

    n+ 3

    hu

    n+ l

    +

    U

    n

    f o r

    n

    i n

    N

    B-605

    Proposed

    by

    Herta

    T.

    Freitag, Roanoke,

    VA

    Let

    n

    S(n)

    =

    L

    2n

    2i

    _

    1

    .

    i = l

    Determine

    the

    positive integers

    n, if

    any,

    for

    which S(n)

    is

    prime.

    B~606

    Proposed by L. Kuipers, Sierre, Switzerland

    Simplify

    the

    expression

    2

    +i

    + 2

    ,L

    M1

    -

    25F

    2

    +

    L

    2

    1

    .

    n + l n -1

    n

    + 1 n n- 1

    B-607

    Proposed

    by

    Charles

    R.

    Wall, Trident Technical College, Charleston,

    SC

    Let

    =

    0

    \k)

    F

    k

    L

    n-k-

    Show that C

    n

    /2

    n

    is anintegerfornin{0,1, 2,...} .

    370

    [Nov.

  • 7/26/2019 elementary25-4

    2/6

    ELEMENTARY PROBLEMS AND SOLUTIONS

    B-608 Proposed by Plero Filipponi,

    Fond.

    U. Bordoni, Rome,, Italy

    For k = {2, 3

    9

    ...} and n in N ={0

    9

    1, 2

    9

    . . . } ,

    let

    ,c+ c -1

    denote the quadratic mean taken over kconsecutive Fibonacci numbers of which

    the first is F

    n

    . Find the smallest such k > 2for which

    S

    nak

    is an integer for

    all n in 71/.

    B-609 Proposed by Adina DiPorto & Piero Filipponi,

    Fond, U. Bordoni, Rome, Italy

    Find a closed form expression for

    k = i

    and show that S

    n

    En(-l)

    n

    (mod F

    n

    ).

    SOLUTIONS

    Nondivisors of the Ly.

    B 580

    Proposed by Valentina Bakinova, Rondou t Valley, NY

    What are the three smallest positive integers d such that no Lucas number

    L

    n

    is an integral multiple of dP.

    Solution by J. Suck, Essen, German y

    They are 5

    9

    8

    9

    10. Since

    l\L

    ns

    2\L

    QS

    3\L

    2S

    4| L

    3

    ,

    6|L

    6S

    l\L

    h

    ,

    9|L

    69

    it re-

    mains to show that 5\L

    n

    and 8J(L

    n

    for all n - 0

    9

    1, 2, ... . This follows from

    the fact that the Lucas sequence modulo 5 or 8 is periodic with period 2 , 1

    9

    3,

    4 or 2, 1, 3

    9

    4

    9

    7

    9

    3

    9

    2

    9

    5

    9

    7

    9

    4

    s

    3

    9

    7

    9

    respectively.

    Also solved by Paul S. Bruckman , L. A. G. Dresel, Piero Filipponi, Herta T.

    Freitag, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Lawrence Somer, and the

    proposer.

    Third Degree Representations for F

    B-581 Proposed by Antal Bege, University of Cluj, Roman ia

    Prove that, for every positive integer n

    9

    there are at least

    [n/2]

    ordered

    6-tuples

    (a, b

    5

    o

    5

    x

    9

    y

    3

    z) such that

    F

    n

    = ax

    2

    -\-by

    2

    - cz

    2

    and each of a, b

    9

    c

    3

    x

    s

    y

    3

    z is a Fibonacci number. Here [t] is the greatest

    integer in t .

    Solution by Paul S. Bruckman , Fair Oaks, CA

    1387]

    371

  • 7/26/2019 elementary25-4

    3/6

    ELEMENTARY PROBLEMSANDSOLUTIONS

    We first prove

    the

    following relations:

    TP

    =

    TP TP

    2

    . L . TP TP ^ TP jp 2

    . / 1\

    2 n

    r

    2s+l

    r

    n-s+l

    r

    2s n-s

    r

    2s -

    1

    n

    -

    s -

    1 '

    v J

    F = F F

    2

    + F F

    2

    - F F

    2

    .

    (2)

    L

    2n+1

    L

    2s + 2

    n~s+l

    L

    2s + l

    L

    n-s

    2s

    L

    n-s-l

    9

    v^ '

    v a l i d f o r a l l i n t e g e r s

    s

    a n d

    n.

    P r o o f o f (1 ) a nd ( 2 ) : We u s e t h e f o l l o w i n g r e l a t i o n s r e p e a t e d l y :

    F

    u

    F

    v = ^

    F

    2 v

    +

    u -

    (-V

    F

    2v-u

    -

    H-lfF

    u

    ), (3)

    w h i c h i s r e a d i l y p r o v e n f r om t h e B i n e t f o r m u l a s a n d i s g i v e n w i t h o u t

    p r o o f

    M u l t i p l y i n g t h e r i g h t m e m be r o f ( 1 ) b y 5 , w e a p p l y ( 3 ) t o t r a n s f o r m t h e

    r e s u l t a s f o l l o w s :

    (

    F

    2n

    +3

    +

    F

    2n

    -*s

    +

    i

    + 2 ( - D -

    8

    F

    2 8 + 1

    ) +

    (F

    2n

    -

    F

    2n

    _

    h8

    - 2(-l)

    n

    -

    s

    F

    Zs

    )

    ~ (

    F

    2n -

    3

    +

    F

    2n^s-1

    +

    2(-l) -

    S

    F

    2s

    _

    1

    )

    = (F - F + F ) + (F - F - F )

    K

    2n+3 2n-3 2n

    J v

    2n-ks+l 2n-hs 2n-hs-l

    J

    + 2(-l) -

    s

    (F

    2s

    -F

    2B

    - F

    2 s

    _

    x

    =

    ^

    3

    F

    2n

    + F

    z

    )

    + 0 + 0 = 5F

    2n

    .

    This proves(1).

    Likewise, multiplying theright memberof (2) by 5yields:

    (F - F

    +

    2(-l)

    n

    ~

    s

    F )

    +

    (F + F - 2(-l)

    n

    ~

    8

    F )

    KL

    2n + k

    L

    2n-hs ^ ^

    K L)

    2s + 2

    J

    ^

    y

    2n + l

    L

    2n -ks -1

    ^

    V

    x

    /

    L

    2s + l

    J

    - (F

    2

    n-2 ~

    F

    2i^-hs-2

    + 2 ( - l )

    F

    2s

    )

    =

    ^2n + h ~ &\n -2

    +

    F

    2n+l)

    ~

    (^2n -hs ~ ^'2n -hs

    - 1 ~

    ^2n -ks

    - 2 /

    + 2 ( - l ) -

    e

    ( F

    2 s + 2

    -

    F

    2s+l

    - F

    ls

    )

    =

    (L,F

    2n+1

    + F

    2n + 1

    )

    - 0 + 0 = 5F

    2n+1

    .

    T h i s p r o v e s ( 2 ) .

    We m ay c o m b i n e ( 1 ) a n d ( 2 ) i n t o t h e s i n g l e f o r m u l a :

    F = F F

    2

    + F F

    2

    - F F

    2

    , (4 )

    n

    x

    2s + l +o

    n

    m -s + 1 2s +o

    n

    m-s 2s -1 + o

    n

    m -s -1 '

    v

    ^ '

    w h e r e

    m-= mm,

    0 B

    E

    i . - i n / 2 . { J ; ^

    Weseethatthe6-tuples

    (a, b

    9

    e, x

    9

    y

    9

    z)

    ~ ^ 2S + 1+ o

    n

    > 2s + o

    n

    * 2s

    -1 + o

    n

    ' ^m-s+1*

    ^m-s

    9

    ^m-s-1'

    '

    '

    are solutionsof theproblem

    3

    ,as s isallowedtovary. For atleastthevalues

    s

    = 0, 1,

    ...

    9

    m

    - 1,

    different 6-tuples

    are

    produced

    in

    (5). Hence, there

    are

    at least

    m= [n/2]

    distinct 6-tuples solving

    the

    problem,

    Also solved by the proposer

    .

    372

    [Nov.

  • 7/26/2019 elementary25-4

    4/6

    ELEMENTARY PROBLEMS AND SOLUTIONS

    Zeckendorf Representations

    B-582

    Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy

    It is known that every positive integer

    N

    can be represented uniquely as a

    sum of distinct nonconsecutive positive Fibonacci numbers. Let f(N) be the

    number of Fibonacci addends in this representation, a= (1 +v5)/2,and [x] be

    the greatest integer in

    x

    Prove that

    f([aF

    2

    ]) = [(n + l)/2] for n =1, 2, ... .

    Solution by L. A. G. Dresel, University of Reading, England

    S i n c e

    F

    2

    - F

    2

    0

    = (F - F J (F + F ) = F L = F

    T

    r-2.

    v

    r

    v-z

    JK

    r v-2

    J

    v - \ v - \

    2 ( r - 1 )

    w e h a v e , s um m i ng f o r

    even

    v a l u e s

    v

    = 2 ,

    t =

    1

    9

    2

    5

    . . . , 777,

    F

    2m

    0 = F ^

    _

    2

    +

    F

    hm

    _

    6

    +

    e

    +

    F

    2 s

    a n d s u m m i n g f o r

    od d

    v a l u e s r = 2 t + l

    9

    t = 1 , 2 , . . . 5 / 7 ? ,

    n

    2m+l

    L r

    km ^

    r

    hm-h ^ ^

    r

    k

    9

    L e t

    a = h(l +

    A ) a n d & = % ( 1 - > / 5 ) , t h e n

    a F

    2 g

    = ( a

    2 s + 1

    - a Z ?

    2 s

    ) / / 5 =

    F

    2g + 1

    + (6 -

    a)b

    2s

    //5 = F

    2s + 1

    - b

    2s

    Applying the formula for F

    2

    , we obtain

    aF? = F

    u

    , + F

    u

    , + + F - O ^

    - 2

    + Z^

    6

    + '+

    2

    )

    2m

    km -

    1 4m

    - 5

    3

    and since 0 1)

    withtheusual convention0

    :

    = 1. Considerthefunction

    Fix, n) := S

    n

    ,

    s

    ~y

    .

    (2)

    s = 0

    S

    -

    Since0 ^ S

    n

    ,s ^ 2

    n

    n

    s

    , theabove series convergesfor allreal x. Using(1),

    one obtains

    H*.

    n)

    =

    t E O ^

    E (I) ^

    E )**

    = 0 k = 0

    XK/ S

    k=

    o

    V K /

    s

    = 0

    s

    - k = 0^

    K/

    or

    F(x,n) = (e* + l

    n

    , (3)

    which yields

    F(x

    9

    m+ n) = FGr, m)F(x, n). (4)

    374 [Nov.

  • 7/26/2019 elementary25-4

    6/6

    ELEMENTARY PROBLEMS

    AND

    SOLUTIONS

    Cauchy

    T

    s product leads to

    F(x, m)F(x, n) = Z L ~JT (

    s

    - k) I

    (5)

    From (2)

    9

    (4),

    and (5), and by comparing coefficients, one obtains the equation

    as stated in the proposal for the S

    n s

    defined in (1).

    Also solved by Paul S. Bruckman, Odoardo Brugla Plero Filipponi, L. A. G.

    Dresel, L. Kuipers, Fuchln He, J. Suck, Nicola Treitzenberg, Paul Tzermias,

    TadP. White, and the proposer.

    Combinatorial Interpretation of the

    B-585 Proposed by Constant in Gonciulea Nicolae Gonciulea, Trian College,

    Drobeta Turnu-Severin, Romania

    For each subset

    A of X = {I

    s

    2

    9 oe

    .

    9

    n}

    9

    let

    r(A)

    be the number of j such

    that {j,

    j

    + 1} c

    A.

    Show that

    A CX

    Solution by

    J.

    Suck, Essen, Germany

    Let us supplement the proposal by

    and 2

    rW

    = F .

    neJcX

    2n

    We now have a beautiful combinatorial interpretation of the Fibonacci sequence,

    The two identities help each other in the following induction proof*

    For

    n =

    1,

    A

    = 0 or

    X, r(A) =

    0.

    Thus

    9

    both identities hold here. Suppose

    they hold for k =1, . . . , n. Consider Y

    1

    ={1, . . .

    9

    n

    9

    n +1}. If {n

    9

    n +1} c

    Bc J

    9

    r

    (B) = r(B\{n + 1}) + 1. If n t Bc J

    9

    r(5) = r(S\{n + 1}). Thus

    9

    E 2

    r (B)

    = E

    2

    r ( i 4 )

    + 1

    + E

    2

    r C 4 )

    (

    t h e l a s t s u m i s

    l

    f o r

    n+ UB c y n e ^ c i ^cz\{n} th e st ep 1 -> 1 + 1)

    = 2

    ^ 2 n

    + F

    2(n-l) + l

    = F

    2n

    + F

    2n+1

    =

    ^2(n+ l)

    and

    2

    (B )

    = 2^

    (B)

    + 2 ^ ) =f

    20i+i

    +

    F2n+1

    =

    P Z ( B + 1 )

    x

    .

    j ?cy n+ ie s c y ^ c j

    Also solved by Paul S. Bruckman, L. A. G. Dresel, N* J. Kuenzi Bob Prielipp,

    Paul Tzermias, Tad P. White, and the proposer.

    1987]

    375


Recommended