+ All Categories
Home > Documents > Emergent gauge fields and topological order in the 3D XY...

Emergent gauge fields and topological order in the 3D XY...

Date post: 29-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
34
Emergent gauge fields and topological order in the 3D XY model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Jerusalem Winter School, January 3, 2019
Transcript
Page 1: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Emergent gauge fields and topological order

in the 3D XY model

HARVARD

Talk online: sachdev.physics.harvard.edu

Subir Sachdev

Jerusalem Winter School,January 3, 2019

Page 2: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

1. Review: XY model in 2 and 3 dimensions

2. Topological order in the XY model in 3 dimensions

Page 3: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

1. Review: XY model in 2 and 3 dimensions

2. Topological order in the XY model in 3 dimensions

Page 4: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Non-zero T (classical) phase transitions of superfluids, magnets with `easy-plane’ spins, …..in D spatial dimensions

T=0 (quantum) phase transitions of bosons at integer filling between superfluid and insulator in D-1 spatial dimensions

ZXY =Y

i

Z 2⇡

0

d✓i

2⇡exp (�HXY )

HXY = �J

X

hiji

cos(✓i � ✓j)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 5: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

T Tc

h ii = 0 6= 0 h ii = 0

LRO

Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hiddenpatterns of symmetry were discovered. For example, there are magnetic mate-rials where the moments form a chequerboard pattern where the neighbouringmoments are anti-parallel, see Fig. 1. In spite of not having any net magneti-zation, such antiferromagnets are nevertheless ordered states, and the patternof microscopic spins can be revealed by neutron scattering. The antiferro-magnetic order can again be understood in terms of the associated symmetrybreaking.

In a mathematical description of ferromagnetism, the important variable isthe magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spinon site i. In an ordered phase, the average value of all the spins is different fromzero, h~mii 6= 0. The magnetization is an example of an order parameter, whichis a quantity that has a non-zero average in the ordered phase. In a crystal itis natural to think of the sites as just the atomic positions, but more generallyone can define “block spins” which are averages of spins on many neighbouringatoms. The “renormalization group” techniques used to understand the theoryof such aggregate spins are crucial for understanding phase transitions, andresulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, thatdescribes both ferro- and antiferromagnets. The Hamiltonian is

HF = �JX

hiji

~Si · ~Sj � µX

i

~B · ~Si (1)

2

SRO

⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

Wilson-Fisher theory(Nobel Prize, 1982)

In dimension D = 3, in the low T phase, the symmetry ✓i !✓i + c is “spontaneously broken”. There is (o↵-diagonal) long-

range order (LRO) characterized by ( i ⌘ ei✓i)

lim|ri�rj |!1

⌦ i

⇤j

↵= | 0|2 6= 0 .

We break the symmetry by choosing an overall phase so that

h ii = 0 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 6: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

KT theory(Nobel Prize, 2016)

Kosterlitz-Thouless theory in D=2

In spatial dimension D = 2, the symmetry ✓i ! ✓i + c is

preserved at all non-zero T . There is no LRO, and

h ii = 0 for all T > 0.

Nevertheless, there is a phase transition at T = TKT ,

where the nature of the correlations changes

lim|ri�rj |!1

⌦ i

⇤j

↵⇠

8<

:

|ri � rj |�↵, for T < TKT , (QLRO)

exp(�|ri � rj |/⇠), for T > TKT , (SRO)

.

The low T phase also has topological order associated

with the suppression of vortices.<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 7: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

T TKT

QLROTopological order SRO

Figure 3: To the left a single vortex configuration, and to the right a vortex-

antivortex pair. The angle ✓ is shown as the direction of the arrows, and the cores of

the vortex and antivortex are shaded in red and blue respectively. Note how the arrows

rotate as you follow a contour around a vortex. (Figure by Thomas Kvorning.)

by the Hamiltonian,

HXY = �JX

hiji

cos(✓i � ✓j) (3)

where hiji again denotes nearest neighbours and the angular variables, 0 ✓i < 2⇡ can denote either the direction of an XY-spin or the phase of asuperfluid. We shall discuss this model in some detail below.

Although the GL and BCS theories were very successful in describing manyaspects of superconductors, as were the theories developed by Lev Landau(Nobel Prize 1962), Nikolay Bogoliubov, Richard Feynman, Lars Onsager andothers for the Bose superfluids, not everything fit neatly into the Landauparadigm of order parameters and spontaneous symmetry breaking. Problemsoccur in low-dimensional systems, such as thin films or thin wires. Here, thethermal fluctuations become much more important and often prevent orderingeven at zero temperature [39]. The exact result of interest here is due toWegner, who showed that there cannot be any spontaneous symmetry breakingin the XY-model at finite temperature [53].

So far we have discussed phenomena that can be understood using classicalconcepts, at least as long as one accepts that superfluids are characterisedby a complex phase. There are however important macroscopic phenomenathat cannot be explained without using quantum mechanics. To find theground state of a quantum many-body problem is usually very difficult, butthere are some important examples where solutions to simplified problems givedeep physical insights. Electromagnetic response in crystalline materials is an

6

Vortices suppressed

Vortices proliferate

Kosterlitz-Thouless theory in D=2In spatial dimension d = 2, the symmetry ✓i ! ✓i + c is

preserved at all non-zero T . There is no LRO, and

h ii = 0 for all T > 0.

Nevertheless, there is a phase transition at T = TKT ,

where the nature of the correlations changes

lim|ri�rj |!1

⌦ i

⇤j

↵⇠

8<

:

|ri � rj |�↵, for T < TKT , (QLRO)

exp(�|ri � rj |/⇠), for T > TKT , (SRO)

.

The low T phase also has topological order associated

with the suppression of vortices.

KT theory(Nobel Prize, 2016)

Page 8: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

1. Classical XY model in 2 and 3 dimensions

2. Topological order in the classical XY model in 3 dimensions

Page 9: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

J Jc

h ii = 0 6= 0

LRO

Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hiddenpatterns of symmetry were discovered. For example, there are magnetic mate-rials where the moments form a chequerboard pattern where the neighbouringmoments are anti-parallel, see Fig. 1. In spite of not having any net magneti-zation, such antiferromagnets are nevertheless ordered states, and the patternof microscopic spins can be revealed by neutron scattering. The antiferro-magnetic order can again be understood in terms of the associated symmetrybreaking.

In a mathematical description of ferromagnetism, the important variable isthe magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spinon site i. In an ordered phase, the average value of all the spins is different fromzero, h~mii 6= 0. The magnetization is an example of an order parameter, whichis a quantity that has a non-zero average in the ordered phase. In a crystal itis natural to think of the sites as just the atomic positions, but more generallyone can define “block spins” which are averages of spins on many neighbouringatoms. The “renormalization group” techniques used to understand the theoryof such aggregate spins are crucial for understanding phase transitions, andresulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, thatdescribes both ferro- and antiferromagnets. The Hamiltonian is

HF = �JX

hiji

~Si · ~Sj � µX

i

~B · ~Si (1)

2

Can we modify the XY model Hamiltonian to obtain a phase with

“topological order” in D=3 ?

SRO

h ii = 0⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

Page 10: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

J Jc

h ii = 0 6= 0

LRO

Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hiddenpatterns of symmetry were discovered. For example, there are magnetic mate-rials where the moments form a chequerboard pattern where the neighbouringmoments are anti-parallel, see Fig. 1. In spite of not having any net magneti-zation, such antiferromagnets are nevertheless ordered states, and the patternof microscopic spins can be revealed by neutron scattering. The antiferro-magnetic order can again be understood in terms of the associated symmetrybreaking.

In a mathematical description of ferromagnetism, the important variable isthe magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spinon site i. In an ordered phase, the average value of all the spins is different fromzero, h~mii 6= 0. The magnetization is an example of an order parameter, whichis a quantity that has a non-zero average in the ordered phase. In a crystal itis natural to think of the sites as just the atomic positions, but more generallyone can define “block spins” which are averages of spins on many neighbouringatoms. The “renormalization group” techniques used to understand the theoryof such aggregate spins are crucial for understanding phase transitions, andresulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, thatdescribes both ferro- and antiferromagnets. The Hamiltonian is

HF = �JX

hiji

~Si · ~Sj � µX

i

~B · ~Si (1)

2

Kh ii = 0

SRONo topological

order

SROTopological

order

h ii = 0⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

Page 11: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

SRONo topological

order

J Jc

h ii = 0 6= 0

LRO

Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hiddenpatterns of symmetry were discovered. For example, there are magnetic mate-rials where the moments form a chequerboard pattern where the neighbouringmoments are anti-parallel, see Fig. 1. In spite of not having any net magneti-zation, such antiferromagnets are nevertheless ordered states, and the patternof microscopic spins can be revealed by neutron scattering. The antiferro-magnetic order can again be understood in terms of the associated symmetrybreaking.

In a mathematical description of ferromagnetism, the important variable isthe magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spinon site i. In an ordered phase, the average value of all the spins is different fromzero, h~mii 6= 0. The magnetization is an example of an order parameter, whichis a quantity that has a non-zero average in the ordered phase. In a crystal itis natural to think of the sites as just the atomic positions, but more generallyone can define “block spins” which are averages of spins on many neighbouringatoms. The “renormalization group” techniques used to understand the theoryof such aggregate spins are crucial for understanding phase transitions, andresulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, thatdescribes both ferro- and antiferromagnets. The Hamiltonian is

HF = �JX

hiji

~Si · ~Sj � µX

i

~B · ~Si (1)

2

K

SRONo topological

order

h ii = 0 SROTopological

order

h ii = 0

⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

⌦ i

⇤j

↵⇠ exp(�|ri � rj |/⇠)

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

All (±2⇡, ±4⇡ . . .)vortices proliferate

Page 12: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Add terms which suppress single but not double vortices…..

eZXY =Y

i

Z 2⇡

0

d✓i

2⇡exp

⇣� eHXY [✓]

eHXY [✓] = �J

X

hiji

cos(✓i � ✓j)

+X

ijk`

Kijk` cos(✓i + ✓j � ✓k � ✓`) + . . . . . .

All allowed terms are invariant under a global U(1)symmetry (✓i ! ✓i + c) and periodic in all the ✓i

(✓i ! ✓i + 2⇡ni, ni integers)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 13: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

We rewrite eZXY using the decomposition

i = Hi�2i

whereHi ⌘ e

i#i and �i ⌘ ei'i

The idea is that single vortices in will appear as single vorticesin H, while double vortices in will appear as single vortices in �.

This decomposition now demands that any action be invariantunder the U(1) gauge transformations

#i ! #i + 2↵i , 'i ! 'i � ↵i

To obtain simple e↵ective actions, we also introduce a U(1) gaugefield Aiµ (µ = 1, 2, 3) which transforms as

Aiµ ! Aiµ +�µ↵i<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 14: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

We now write down a U(1) gauge theory, ZU(1) consistent the U(1) gauge

invariance and the global symmetry

ZU(1) =

Y

i

Z 2⇡

0

d#i

2⇡

d'i

2⇡

Y

µ

dAiµ

2⇡exp (�HU [#,', Aµ])

HU [#,', Aµ] = �J1

X

i,µ

cos(�µ#i � 2Aiµ)

�J2

X

i,µ

cos(�µ'i +Aiµ)

�K

X

⇤cos(✏µ⌫��⌫Ai�)

Our claim is that this is the same theory as eZXY ; in particular

Y

i,µ

Z 2⇡

0

dAiµ

2⇡exp (�HU [#,', Aµ]) ⇡ exp(� eHXY [#+ 2'])

This result follows from gauge invariance and the global U(1) symmetry, and

can be explicitly established by performing the integrals over Aiµ order-by-

order in K.<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 15: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Villain mapping:

eJ cos(✓) )1X

n=�1e(J/2)(✓�2⇡n)2

= #

1X

p=�1ep

2/(2J)+ip✓

Villain action:

LV =p21iµ2J1

+ ip1iµ(�µ#i � 2Aiµ) +p22iµ2J2

+ ip2iµ(�µ'i +Aiµ)

+m2

2K+ im|µ✏µ⌫��⌫Ai�

Here i labels sites on the direct lattice, and | labels sites on the dual lattice. Now we

integrate over Aiµ and obtain p2iµ = 2p1iµ + ✏µ⌫��⌫m|�. So

LV = p21iµ

✓1

2J1+

2

J2

◆+ ip1iµ�µ✓i �

2

J2m|µ✏µ⌫��⌫p1i� +

(✏µ⌫��⌫m|�)2

2J2+

m2|µ

2K

Note that the expression now only depends upon the gauge-invariant ✓i = #i + 2'i, and

the first two terms generate the nearest-neighbor XY term with

1

J=

1

J1+

4

J2

The others generate interactions around a plaquette similar to Kijk`. This can be seen in

an expansion in K: at small K we sum over m|µ = ±1 only to obtain the leading terms

of order e�1/K. This term involves (✏µ⌫��⌫p1i�)2 and couples ✓i around a plaquette.

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 16: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

First we examine the phase diagram by taking anaive continuum limit of HU , and studying theresulting mean-field theory

L = |(@µ � 2iAµ � iaextµ )H|2 + s1|H|2 + u1|H|4

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4

+K(✏µ⌫�@⌫A�)2 + Lmonopoles

We have included a fixed external field aextµ which

couples to the current of the global U(1) charge.The monopoles play a crucial role, similar to thoseof vortices in the 2D XY model, and they willstrongly modify the mean-field phase diagram.

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 17: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Mean field phase diagram

s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

s2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 18: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Mean field phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

All (±2⇡, ±4⇡ . . .)vortices proliferate

s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 19: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Mean field phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SROTopological order

All (±2⇡, ±4⇡ . . .)vortices proliferate

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 20: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Mean field phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

All (±2⇡, ±4⇡ . . .)vortices proliferate

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SROTopological order

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

SROEmergent gapless “photon”

All (±2⇡, ±4⇡ . . .)vortices proliferate

s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 21: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

The emergent “photon” phase is unstable to the

proliferation of monopoles. The monopoles form a

Coulomb plasma with 1/r interactions in 3D, very

similar to the Coulomb plasma of vortices with

ln(r) interactions in 2D. However, unlike 2D, in 3D

there is never a state where monopoles are bound

to antimonopoles. The 1/r interactions are alwaysDebye screened, and the monopoles are e↵ectively

free. This proliferation of monopoles implies that

there is no emergent gapless photon.<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 22: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Mean field phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

All (±2⇡, ±4⇡ . . .)vortices proliferate

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SROTopological order

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

SROEmergent gapless “photon”

All (±2⇡, ±4⇡ . . .)vortices proliferate

s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 23: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

All (±2⇡, ±4⇡ . . .)vortices proliferate

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SROTopological order

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

SRO

All (±2⇡, ±4⇡ . . .)vortices proliferate

Crossover s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 24: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of topological phase

The topological phase is in the regime s1 < 0 and s2 > 0 in the field theory

L = |(@µ � 2iAµ � iaextµ )H|2 + s1|H|2 + u1|H|4

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)2 + Lmonopoles

Perform a boson-boson (i.e. particle-vortex) duality on the boson H, while(temporarily) treating Aµ as a background field. This leads to a theory ofa dual boson (vortex) coupled to a dual emergent gauge field Bµ

Ldual = |(@µ � iBµ) |2 + es1| |2 + eu1| |4 +i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµ@⌫a

ext�

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)2 + Lmonopoles

Note that when s1 < 0, then es1 > 0: so both the and � bosons aremassive. Also, a monopole changes U(1) flux by 2⇡ and this correspondsto inserting two bosons (each is a vortex carrying ⇡ flux); therefore

Lmonopoles = �� 2 +

⇤2�<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 25: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of topological phase

The topological phase is in the regime s1 < 0 and s2 > 0 in the field theory

L = |(@µ � 2iAµ � iaextµ )H|2 + s1|H|2 + u1|H|4

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)2 + Lmonopoles

Perform a boson-boson (i.e. particle-vortex) duality on the boson H, while(temporarily) treating Aµ as a background field. This leads to a theory ofa dual boson (vortex) coupled to a dual emergent gauge field Bµ

Ldual = |(@µ � iBµ) |2 + es1| |2 + eu1| |4 +i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµ@⌫a

ext�

+ |(@µ + iAµ)�|2 + s2|�|2 + u2|�|4 +K(✏µ⌫�@⌫A�)2 + Lmonopoles

Note that when s1 < 0, then es1 > 0: so both the and � bosons aremassive. Also, a monopole changes U(1) flux by 2⇡ and this correspondsto inserting two bosons (each is a vortex carrying ⇡ flux); therefore

Lmonopoles = �� 2 +

⇤2�<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 26: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 27: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 28: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 29: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 30: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 31: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase

• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 32: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase

• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 33: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Structure of the topological phase

• The topological phase is described by a TQFT:

LTQFT =i

⇡✏µ⌫�Bµ@⌫A� +

i

2⇡✏µ⌫�Bµa

ext�

• The gapped complex boson � carries unit Aµ charge, and global U(1)charges ±1/2.

• The gapped real boson carries unit Bµ charge.

• The � and particles are mutual semions.

• The bound state of � and is a fermion, which also has mutualsemionic statistics with individual � and particles.

• This topological order is the same as that of the ‘toric code’, the �are e particles, and the are m particles, and �- bound state is the✏ particle. There is 4-fold ground state degeneracy on a large torus.

• The topological phase can also be identified with the deconfined phaseof an emergent Z2 gauge theory. The � particle has a Z2 electriccharge, the particle carries Z2 magnetic flux, and �- bound stateis a fermionic dyon.

• The topological phase also describes Anderson’s ‘RVB’ for spin S =1 antiferromagnets, identified here as a ‘Z2 spin liquid’. The S =1/2 case is similar, but not identical. An important di↵erence is thepresence of an ’t-Hooft anomaly between translations and the globalU(1) symmetry, which prevents the existence of a trivial SRO phase.

• The transition between the topological phase and SRO phase is de-scribed by a Ising* theory for alone. (The * implies that criticalpoint CFT only includes operators invariant under ! � .) Ignor-ing the massive � near the critical point, and integrating Aµ to HiggsBµ, we obtain the Ising Wilson-Fisher field theory

LI = |@µ |2 + es1| |2 + eu1| |4 + �� 2 + ⇤2�

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 34: Emergent gauge fields and topological order in the 3D XY modelqpt.physics.harvard.edu/talks/jerusalem19c.pdf · 2019-01-06 · J J c h i i = 0 6=0 LRO Figure 1: Schematic picture

Phase diagrams2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi = 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

hHi 6= 0, h�i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LRO

SRONo topological

order

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

All (±2⇡, ±4⇡ . . .)vortices proliferate

h i 6= 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

h i = 0<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SROTopological order

Only even (±4⇡, ±8⇡ . . .)vortices proliferate

SRO

All (±2⇡, ±4⇡ . . .)vortices proliferate

Crossover s1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>


Recommended