+ All Categories
Home > Documents > Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars

Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars

Date post: 30-Dec-2015
Category:
Upload: finn-mack
View: 34 times
Download: 1 times
Share this document with a friend
Description:
Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars. Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT Association, Norway Mary McCready SRI International, USA Christine Amory-Mazaudier - PowerPoint PPT Presentation
Popular Tags:
67
Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT Association, Norway Mary McCready SRI International, USA Christine Amory-Mazaudier Centre for the Study of Earth and Planets Environments, CNRS, France Shoichiro Fukao Research Institute for Sustainable Humanosphere, Kyoto University, Japan Michael Sulzer Arecibo Observatory, National Astronomy & Ionosphere Center, Puerto Rico
Transcript

Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars

Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA

Tony van Eyken EISCAT Association, Norway

Mary McCready SRI International, USA

Christine Amory-Mazaudier Centre for the Study of Earth and Planets Environments, CNRS, France

Shoichiro Fukao Research Institute for Sustainable Humanosphere, Kyoto University, Japan

Michael Sulzer Arecibo Observatory, National Astronomy & Ionosphere Center, Puerto Rico

Outline

ISR long-term database Modeling technique Results: local models

A case study: Annual variations Comparisons with IRI Applications

Regional Models ISR Convection Model Model Availability Future Projects

World Incoherent Scatter Radars

MADRIGAL: Long-term ISR Database

www.openmadrigal.org

Madrigal

•The European Chain:EISCAT Svalbard Radar (1997-), in polar cap, the highest latitude EISCAT Tromsø UHF radar (1984-) and VHF radar (1990-), St. Santin Radar (1973-1986)

• East America ChainSondrestrom Radar (1990-)Millstone Hill Radar (1970-)Arecibo Radar (1966-)

• East AsiaMU Radar (1986-2003)

Existing Long-term Data

Binning and Fitting technique

Data are binned according to local time and month

Piece-wise linear height profile is used for initial data binning with 17-19 height nodes.

Solar activity dependency is determined by a leaset-squares fit to a linear function to F107.

Median filter (3 months x 3 hours) is applied to the fitting coefficients.

Analytic representations of bin-fit results

Seasonal variations: harmonics with 12, 6 and 3 month components

Local time variations: harmonics with 24, 12, 6 and 3 hour components

Height variations: cubic B-spline with 17 breaks and gradient controls at upper and lower boundaries.

Height Profile

Height Profile Basis Function

Data Distribution

Results:Midday Ne

Svalbard

Millstone

AreciboShigariki

Curve Color Code

Winter

Spring

Summer

Autumn

St. Santin

Tromso

Sondrestrom

Results:Latitudinal and Longitudinal features

subauroral

midlatitude

highlatitude

Semiannual components, longitudinal differences

Strong semiannual components, asymmetry

Semiannual components starts to occur

Lower

midlatitude

O/N2 and SZA change

O/N2 (from MSIS) O/N2 x cos (SZA)

SZA = solar zenith angle

Ti

At Millstone, highest Ti occurs in May.

Yearly variations: Millstone

Yearly variations in midday Ti at 350 km: Millstone

Circles: DataDashed: Model

Percentage difference

Data - Model difference

F107

Comparisons with IRI: diurnal

Are MU StS MH Tro Son Sva

Ne

Ti

Te

Ne NeNe Ne Ne Ne

Ti TiTi Ti Ti Ti

Te TeTe Te Te Te

Median solar activity conditions with F107=135 or Rz=88

Comparisons with IRI: profile

Are MU StS MH Tro Son Sva

Ne

Ti

Te

Ne NeNe Ne Ne Ne

Ti TiTi Ti Ti Ti

Te TeTe Te Te Te

Median solar activity conditions with F107=135 or Rz=88

Model Applications: Tn and [O]

Using a simplified energy equations for ions

(widely used in the ISR community for the neutral parameter deduction)

ISR Convection Model

Regional Ionospheric Models: Millstone Areas

Millstone Regional Ionospheric Model covers geodetic latitudes 35-55 degrees.

ISR Convection Model: data

A Combined Dataset from Millstone and Sondrestrom ISRs Observations

ISR Convection Model: IMF Bz controls

ISR Model Availability

Virtual Incoherent Scatter Radars Web interface FTP

http://madrigal.haystack.mit.edu/models

ORhttp://www.openmadrigal.org

Virtual ISRs – current day

Virtual ISRs – current time

Future Projects

Regional ionospheric models for Eastern America longitudes European longitudes

A New Space Weather Project

Multiple incoherent scatter radar long-term database study of upper atmosphere climatology and variability

1. to generate databases of thermospheric Tn, [O], winds for multiple ISRs;

2. to develop local and regional models of the thermospheric parameters;

3. to create variability models of the ionospheric as well as thermospheric parameters;

4. to study latitudinal/longitudinal features of the ionosphere and thermosphere.

Arecibo: Ne diurnal

Arecibo: Te diurnal

Arecibo: Ti diurnal

MU: Ne diurnal

Millstone: Ne diurnal

Millstone: Ti diurnal

Millstone: Te diurnal

St. Santin: Ne diurnal

St. Santin: Ti diurnal

St. Santin: Te diurnal

Tromso: Ne diurnal

Tromso: Ti diurnal

Tromso: Te diurnal

Sondrestrom: Ne diurnal

Sondrestrom: Ti diurnal

Sondrestrom: Te diurnal

Svalbard: Ne Diurnal

Svalbard: Ti Diurnal

Svalbard: Te Diurnal

Arecibo: Ne profile

Arecibo: Ti profile

Arecibo: Te profile

MU: Ne profile

Millstone: Ne profile

Millstone: Ti profile

Millstone: Te profile

St Santin: Ne profile

St Santin: Ti profile

St Santin: Te profile

Tromso: Ne profile

Tromso: Ti profile

Tromso: Te profile

Sondrestrom: Ne profile

Sondrestrom: Ti profile

Sondrestrom: Te profile

Svalbard: Ne profile

Svalbard: Ti profile

Svalbard: Te profile


Recommended