+ All Categories
Home > Documents > End-Point Detection for CMP Using the AE...

End-Point Detection for CMP Using the AE...

Date post: 26-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
12
4/17/2002 1 End-Point Detection for CMP Using the AE Sensor SFR Workshop & Review April 17, 2002 Edward Hwang, David Dornfeld Berkeley, CA 2002 GOAL: Integrate initial chemical models into basic CMP model. Validate predicted pattern development
Transcript
  • 4/17/2002

    1

    End-Point Detection for CMP Using the AE Sensor

    SFR Workshop & ReviewApril 17, 2002

    Edward Hwang, David DornfeldBerkeley, CA

    2002 GOAL: Integrate initial chemical models into basic CMP model. Validate predicted pattern development

  • 4/17/2002

    2

    Motivation for End-Point Detection (EPD)

    In-situ end-point detection of CMP offers many manufacturing advantages

    • Improved Process Yields

    • Reduced Product Variability

    • Closer Conformance to Target Requirements

    • Higher Throughput

    But, difficult to implement due to the complicated nature of theCMP process

  • 4/17/2002

    3

    Existing EPD Approaches

    Thermal

    ElectrochemicalOptical Motor Current

    Motor Current

    Microphone Optical

    Friction

  • 4/17/2002

    4

    Experimental Setup

    COF

    AESignal

    Conditioning

    Signal Conditioning

    A/D (20KHz)

    A/D (2MHz)

    CETR Tool / DAQ System

  • 4/17/2002

    5

    Experimental Setup

    Cu(1,500Å)/Ta(250Å)/Oxide(5,000Å)Alumina based 5003 with 2.5% of H2O2

    IC1000 Polyurethane

    Oxide(2,000Å)/Nitride(1,000Å)DI Water(pH=11.5)

    Fixed Abrasive

    Copper CMP STI CMP

  • 4/17/2002

    6

    AE Sensor – Major AE Sources

    Tang et al, 1997

    • Two or Three Body Abrasion

    • Interaction Among the Abrasive Particles,Wafer, and Pad

  • 4/17/2002

    7

    AE Data for Cu CMP

    0 100 200 300 400 500 600 700 800 900 10000.0160

    0.0165

    0.0170

    0.0175

    0.0180

    0.0185

    Time(sec)

    AE Signals(V)

    Cu Ta Ox

    EA B CD

    A B C D E

    Cu Ta Ox

    487kg/mm2Oxide

    112 kg/mm2Ta

    115 kg/mm2Cu

    Knoop Hardness

  • 4/17/2002

    8

    AE Data / Friction Data for Cu CMP

    A B C D ECu Ta Ox

    0 100 200 300 400 500 600 700 800 9000.0160

    0.0165

    0.0170

    0.0175

    0.0180

    0.0185

    0.35

    0.40

    0.45

    0.50

    0.55

    AE Signals(V) COF

    Time(sec)

    CuCu TaTa OxOx

    A B C DE

  • 4/17/2002

    9

    AE Data for STI CMP

    Ox

    Nitride

    0 20 40 60 80 100 120 140 160 1800.006

    0.008

    0.010

    0.012

    0.014

    0.016

    0.018

    Time(sec)

    AE Signals(V)

    A B

    CD

    Ox Nitride

    A B C D

    2100 kg/mm2Nitride

    487 kg/mm2Oxide

    Knoop Hardness

  • 4/17/2002

    10

    AE Data / Friction Data for STI CMP

    Ox Nitride

    A B C D

    0 20 40 60 80 100 120 140 160 1800.006

    0.008

    0.010

    0.012

    0.014

    0.016

    0.018

    0.30

    0.35

    0.40

    0.45

    0.50

    AE Signals(V) COF

    Time(sec)

    A B C D

    OxOx NitrideNitride

  • 4/17/2002

    11

    Current and Future Developments

    • EPD motivations and challenges• Summary of Existing Approaches of EPD• AE RMS is proportional to Hardness• Possibility of using AE as an EPD method

    • EPD on Patterned Wafers• Analytical Model for the Relationship Between AE Signals

    and Hardness• Development of More Sophisticated Signal Processing System

    for EPD of CMP

  • 4/17/2002

    12

    2002 and 2003 Goals

    • Integrate initial chemical models into basic CMP model. Validate predicted pattern development.

    • Develop comprehensive chemical and mechanical model. Perform experimental and metrological validation


Recommended