+ All Categories
Home > Documents > ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Date post: 18-Jan-2016
Category:
Upload: randall-hall
View: 226 times
Download: 4 times
Share this document with a friend
30
ENE 325 ENE 325 Electromagnetic Electromagnetic Fields and Waves Fields and Waves Lecture 4 Lecture 4 Magnetostatics Magnetostatics
Transcript
Page 1: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

ENE 325ENE 325Electromagnetic Electromagnetic Fields and WavesFields and Waves

Lecture 4 Lecture 4 MagnetostaticsMagnetostatics

Page 2: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

IntroductionIntroduction (1)(1) source of the steady magnetic field may be a per

manent magnet, and electric field changing linear ly with time or a direct current.

a schematic view of a bar magnet showing the m agnetic field. Magnetic flux lines begin and termi

nate at the same location, more like circulation.

Page 3: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

IntroductionIntroduction (2)(2) Magnetic north and south poles are alwa

ys together.

N

S

N

S

N

S

N

S

N

S

N

S

Page 4: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

IntroductionIntroduction (3)(3) Oersted’s experiment shows th at current produ

ces magnetic fields that loop around the conducto r. The field grows weaker as one compass moves a

way from the source of the current.

Page 5: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

- Bi o Savart l aw- Bi o Savart l aw(1)(1) - The law of Bio Savart states that at any point P the magni

tude of the magnetic field intensity produced by the differ ential element is proportional to the product of the current

, the magnitude of the differential length, and the sine of t he angle lying between the filament and a line connecting the filament to the point P at which the filed is desired.

The magnitude of the magnetic field intensity is inversely proportional to the square of the distance from the differe

ntial element to the point P.

Page 6: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

- Bi o Savart l aw- Bi o Savart l aw(2)(2) The direction of the magnetic field intensity is n

ormal to the plane containing the differential fila ment and the line drawn from the filament to the point P.

- Bio Savart law is a method to determine the mag netic field intensity. It is an analogy to Coulomb’s

law of Electrostatics.

Page 7: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

- Bi o Savart l aw- Bi o Savart l aw(3)(3)

2 34 4rId L a Id L R

dHr r

������������������������������������������

��������������

from this picture:

1 121

2 2124

I d L adH

R

��������������

��������������

Total field A/m

24rId L a

Hr

����������������������������

Page 8: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulting fr Magnetic field intensity resulting fr om om an infinite length line of current an infinite length line of current

(1)(1)

Pick an observation point P located on axis.

The current

The vector from the source to the test point is

zId L Idza

��������������

R zRa za a

a unit vector

2 2

zR

za aa

z

Page 9: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulting fr Magnetic field intensity resulting fr om om an infinite length line of current an infinite length line of current

(2)(2)

then

From a table of Integral,

3/ 22 24

z zIdza za aH

z

��������������

3/ 22 2.

4

�������������� I a dzH

z

3/ 2 2 2 22 2

dx x

a x ax a

then

2 2 24

I a zH

z

�������������� /

2

I a

A m

Page 10: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a ring of current a ring of current (1)(1)

A ring is located on z = 0 plane with the radius a. The observation point is at z = h.

Page 11: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a ring of current a ring of current (2)(2)

Id L Iad a��������������

R zRa ha aa

2 2

zR

ha aaa

h a

A unit vector

Page 12: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a ring of current a ring of current (3)(3)

Consider a symmetry 2zId L R had a a d a

������������������������������������������

components are cancelled out due to symmetry of two segments on the opposite sides of the ring.

Therefore from

24rId L a

Hr

����������������������������

we have

2

3/ 22 20 4

zIad a ha aaH

h a

��������������

Page 13: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a ring of current a ring of current (4)(4)

then

2 2

3/ 22 2 0.

4

zIa aH d

h a

��������������

We finally get

2

3/ 22 22

��������������z

IaH a

h a

Page 14: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a rectangular loop of c a rectangular loop of c

urrenturrent (1)(1)

Find the magnetic field intensity at the origin. By symmetry, there will be equal magnetic field intensity at each half width (w/2).

Page 15: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a rectangular loop of c a rectangular loop of c

urrenturrent (2)(2)Consider 0 x w/2, y = -w/2

xId L Idxa

��������������

( / 2)R x yRa xa w a

A unit vector

2 2

( / 2)

( / 2)

x yR

xa w aa

x w

We have

3/ 22 2

( / 2)

4 ( / 2)

x x yIdxa xa w adH

x w

��������������

Page 16: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field intensity resulti Magnetic field intensity resulti ng from ng from a rectangular loop of c a rectangular loop of c

urrenturrent (3)(3)

3/ 22 2

( / 2)

4 ( / 2)

zIdx w a

x w

Then the total magnetic field at the origin is

/ 2

3 / 22 20

( / 2)8

4 ( / 2)

wzIdx w a

Hx w

��������������

Look up the table of integral, we find 3/ 2 2 2 22 2

dx x

a x ax a

then A/m. 2 2z

IH a

W

��������������

Page 17: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Bio-Savart law in different Bio-Savart law in different formsforms

We can express - Bio Savart law in terms of surface and volume current densities by re placing with and :

Id L��������������

KdS��������������

Jdv��������������

24rKdS a

Hr

����������������������������

where K = surface current density (A/m) I = K x width of the current sheet

and 24rJdv a

Hr

����������������������������

Page 18: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Ri ght handrul e Ri ght handrul e

The method to determine the result of cros s product (x).

F qv B ������������������������������������������

Page 19: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

AmpAmpéé re’s circuital law re’s circuital law

Analogy to Gauss’s law Use for magnetostatic’s problems with sufficient symme

try. Ampere’s circuital law – the integration of around any c

losed path is equal to the net current enclosed by that p ath.

To find , choose the proper Amperian path that is every where either tangential or normal to and over which is

constant.

encH dL I����������������������������

A

Page 20: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Use Ampere’s circuital law to d Use Ampere’s circuital law to d etermine etermine

from the infinite line of current from the infinite line of current . .H��������������

From encH dL I����������������������������

H H a��������������

dL d a ��������������

then 2

0.

���������������������������� encH dL H a d a I

�������������� IH a

2A/m.

Page 21: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magneti c fi el dof Magneti c fi el dof the the uni foruni for msheet of current msheet of current (1)(1)

xK Ka

��������������

Create path a-b-c-d and perform the integration along the path.

Page 22: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field of Magnetic field of the the uniform s uniform s heet of current heet of current (2)(2)

From encH dL I����������������������������

( ) ( ) ( ) ( ) ,y z y z xH w H h H w H h K w

divide the sheet into small line segments along x-axis, by symmetry Hz is cancelled.

y x2H K .

Because of the symmetry, the magnetic field intensity on one side of the current sheet is the negative of that on the other.

.xyK

H2

Page 23: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

where is a unit vector normal to the current sheet.

Magnetic field of Magnetic field of the the uniform s uniform s heet of current heet of current (3)(3)

.

Above the sheet,

y1 x1

H K2

(z > 0)

and y2 x1

H K2

(z < 0)

or we can write A/m n

1H K a

2

����������������������������

na

Page 24: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field inside the sol Magnetic field inside the sol enoid enoid

a

b c

d

x

y z

h

w

From encH dL I����������������������������

Page 25: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field inside the Magnetic field inside the toroid that has a circular cross toroid that has a circular cross section (1)section (1)

Page 26: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Magnetic field inside the Magnetic field inside the toroid that has a circular cross toroid that has a circular cross section (2)section (2) From encH dL I

����������������������������

Page 27: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

Ex1Ex1 Determine Determine at point P (0.01, at point P (0.01, 0, 0) m from two current filaments 0, 0) m from two current filaments as shown. as shown.

H��������������

Page 28: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

2Ex2Ex Determine for the coaxial c Determine for the coaxial c able that has a inner radius able that has a inner radius a a = 3 m = 3 m

m, m, bb 9= mm, and 9= mm, and cc 12= mm. Giv 12= mm. Giv en en II AA08 AA08

H��������������

a) at < a

Page 29: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

b) at a < < b

c) at b < < c

d) at > c

Page 30: ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.

33 Determine at point (10, 0, 0) Determine at point (10, 0, 0) mm resulted from three current sh mm resulted from three current sh

eets: eets: KK11

15 15 A/m at A/m at x x A AAA 6 A AAA 6 KK22

A A -3-3 A/m at A/m at xx A A A A AAA 9 A A A A AAA 9 KK

33 A A1 A A1

55 A/m at A/m at xx AAA12 AAA12

H��������������

ya

yaya


Recommended