+ All Categories
Home > Documents > Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T...

Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T...

Date post: 01-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
48
New Eni-MIT center brings high-tech tools to solar research Engineering fat-making bacteria: A road to plentiful biodiesel Tailored lighting: Reducing wasted watts ARPA-E clean energy awards: MIT leads again New design-build class weaes nature into rural Cambodian school Energy Futures MIT ENERGY INITIATIVE SPRING 2010 IN THIS ISSUE
Transcript
Page 1: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

New Eni-MIT center brings high-tech tools to solar research

Engineering fat-making bacteria:A road to plentiful biodiesel

Tailored lighting: Reducing wasted watts

ARPA-E clean energy awards: MIT leads again

New design-build class weaves nature into rural Cambodian school

Energy FuturesM I T E N E R G Y I N I T I A T I V E S P R I N G 2 0 1 0

I N T H I S I S S U E

Page 2: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,
Page 3: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

A L E T T E R F R O M T H E D I R E C T O R S

2 UpdateontheMITEnergyInitiative

R E S E A R C H R E P O R T S

4 NewEni-MITcenterbringshigh-techtoolstosolarresearch

6 Tailoredlighting:Reducingwastedwatts

9 Engineeringfat-makingbacteria:Aroadtoplentifulbiodiesel

12 Improvingthetransistor:Smalldevice,bigenergysavings

15 Smallspringscouldprovidebigpower

17 Urbanmetabolism:Helpingcitiesmakescarcebasicresourcesgofurther

R E S E A R C H N E W S

20 ARPA-Ecleanenergyawards:MITleadsagain

21 MITEIawardsfifthroundofseedgrantsforenergyresearch

22 Tsinghua/Cambridge/MITallianceawardsfirstresearchgrants

23 MITEIpressbriefingshowcasesenergyresearch

23 MoniznamedtoBlueRibbonCommissiononAmerica’sNuclearFuture

E D U C A T I O N

24 Newdesign-buildclassweavesnatureintoruralCambodianschool

27 TwomajorgiftsbolsterMITenergyminor

29 Summeropportunitiesforenergyprofessionals

30 EnergyFuturesWeek2010

C A M P U S E N E R G Y A C T I V I T I E S

31 Fundhelpsenergyefficiencybloomacrosscampus

32 MITambassadorsspreadthewordonwaysto“walkthetalk”

O U T R E A C H

34 StudentstackletheclimatecrisisfromCambridgetoCopenhagen

36 AsilverliningtotheCopenhagencloud?

38 Americansonclimatechange:Stillconcerned,lesssupportfor

majoraction,findsMITsurvey

40 MITteamrecommendsstrategyforreducingautomotivefueluse,emissions

LFEE • LaboratoryforEnergyandtheEnvironment

42 Lisbon’sbuildingsgetmoreenergyefficient,thankstoMITstudents

44 MartinFellows,2010–2011

M I T E I M E M B E R S

45 MITEIFounding,Sustaining,Associate,andAffiliatemembers

Energy FuturesC O N T E N T S

Energy Futures ispublishedtwiceyearlybytheMITEnergyInitiative.Itreportsonresearchresultsandenergy-relatedactivitiesacrosstheInstitute.Tosubscribe,[email protected].

Copyright©2010MassachusettsInstituteofTechnology.Forpermissiontoreproducematerialinthisnewsletter,pleasecontacttheeditor.

NancyW.Stauffer,[email protected]

ISSN1942-4671(OnlineISSN1942-468X)

MIT Energy InitiativeTheMITEnergyInitiativeisdesignedtoaccelerateenergyinnovationbyintegratingtheInstitute’scutting-edgecapabilitiesinscience,engineering,management,planning,andpolicy.

MITEnergyInitiativeMassachusettsInstituteofTechnology77MassachusettsAvenue,E19-307Cambridge,MA02139-4307

617.258.8891web.mit.edu/mitei

Coverphoto:JustinKnight,storypage4Design:TimBlackburnProofreading:LindaWalshPrinting:PuritanPress,Inc.PSB 10.05.0262

Printedonpapercontaining30%post-consumerrecycledcontent,withthebalancecomingfromresponsiblymanagedsources.

Page 4: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

2 | Energy Futures | MIT Energy Initiative | Spring 2010

A L E T T E R F R O M T H E D I R E C T O R S

Update on the MIT Energy Initiative

Dear Friends,

ThreewordscapturethefocusofMITEI’sworksinceourlastupdateinfall2009—innovation,education,andoutreach.Allthreesupportourcoremission:tohelpspeedtransformationoftheglobalenergysystemtoalow-carbonfutureandtohelpimprovetoday’senergysystemsasabridgetothatend.

TheimportanceofinnovationwasunderscoredbyDecember’sCopenha-genconference,wheretheworld’sleadersmettoaddressglobalclimatechange.Thegoalofachievingabindinginternationaltreatyforlimitinggreenhousegasemissionswasnotrealized.Indeed,somebelievethat—post-Copenhagen—thisgoalappearsevenfurtheraway.ThatoutcomeprovidesadditionalimpetusforMITEI’sworkonsynergistictechnology,busi-ness-model,andpolicyinnovationthatwilllowerthecostofclean,low-carbonenergyoptionsandacceleratetheirdiffusionintothemarketplace.

Duringthelastsemester,MITEIworkedwithitsmembersandMITfacultyto“filltheinnovationpipeline”inmultipleways.MITfacultygarneredmorethan10%ofthesecondroundofUSDepart-mentofEnergyARPA-Eawards,whichareintendedtomovecleantechnologieswithhighimpactpotentialfromthelaboratorytoprivatecapitalinvestmentoverafewyears(seepage20).TheMITEIFoundingandSustainingMemberprogramsarenowbeginningtogener-ateresultsandmakethempublic.Forexample,worksupportedbyFoundingMemberEnihasledtonewbiologicallyconstructedcatalystsforwatersplitting,andresearchfundedbyFoundingMemberBPhasyieldedapatentfora

gasificationsystemthatachieveshighefficiencywhileseparatingcarbondioxideforeasycapture.WecontinuetowelcomenewMITEImemberssuchasSustainingMemberWeatherfordandseveralaffiliatemembers.

Farther“upstream”inthepipeline,MITEIawardedanewroundofseedgrants,bringingthetotalto67novelandearly-stageinnovationprojectsfundedprincipallybyourmembers,withadditionalsupportfromdonors(seepage21).Onceagain,theseedgrantsusherednewfacultyintoMITEIpartici-pation,amongthemAssistantProfes-sorsCynthiaRudin(Management),whowilladvancemachinelearningforelectricsystemreliability,andEvelynWang(MechanicalEngineering),whowillexaminenanofilm-basedthermalmanagementforconcentratedsolarsystems.Weestimatethatnearly

25%ofMIT’sfacultyarenowengagedwithMITEIinsomecapacity.

ResearchawardsfromaseparateseedfundprogramhavebeenmadeundertheauspicesoftheLowCarbonEnergyUniversityAlliance,aresearchcollabo-rationamongMIT,TsinghuaUniversityinChina,andCambridgeUniversityintheUnitedKingdom(seepage22).ThisissueofEnergy Futures presentsfurtherdescriptionoftheseandotherresearchactivities,includingdetailedresultsfromfiveearlierMITEIseedgrantprojects(seethefeaturestoriesstartingonpage6).

EnergyeducationatMITisbeingsignificantlyenhancedbyanothersourceofsupport:philanthropy.Twosubstantialgifts,onefromtheS.D.Bechtel,Jr.Foundationandtheotherfromananonymousalumnus,areadvancingthedevelopmentofMIT’snovelenergyminor.Manyincomingfreshmenfornextfallindicatedaninterestintheenergyminor,andthesegiftsareenablingthecreationofenergyclasses,projects,andteach-ingmaterialsthatwillimpactstudentsandfacultybothwithinandbeyondMIT(seepage27).

MITEI’scampusenergymanagementprogramhasbenefitedfrombothphilanthropyandafirst-of-its-kindutilitypartnership.TheSilvermanEvergreenEnergyFund,establishedbyJeffreySilverman‘68in2009,isbeingusedtoimproveenergyefficiencyoncampusandincludesopportunitiesforcapturingthesavingsfromthesemeasuresandreinvestingthemintechnologiesandactivitiesthatfurtherreduceenergydemandoncampus.ThateffortwassubsequentlyenhancedbyasignificantgiftfromDaviddesJardins‘83(see

MITEI’sresearch,education,campusenergy,andoutreachprogramsarespearheadedbyProfessorErnestJ.Moniz,director(right),andProfessorRobertC.Armstrong,deputydirector.

Page 5: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 3

A L E T T E R F R O M T H E D I R E C T O R S

page31).InMay,MITanditselectricutility,NSTAR,announcedanambitiousthree-yearpartnershiptoreduceMIT’selectricityuseby34millionkilowatt-hours,or15%,throughinnovativeefficiencyandconservationactivities;substantialstudent,faculty,andstaffengagement;andthepilotingofnewtechnologiesandapproaches.

MITEI’soutreachcontinuestoprovideindustryleaders,governmentpolicy-makers,andotherinterestedpartieswithtechnicallygroundedanalysisandinformation.ExamplesofoutreachtoadvancecriticalunderstandingincludeAn Action Plan for Cars, producedbyateamledbyProfessorJohnHeywood(MechanicalEngineering—seepage40),andasymposiumontheelectrificationofthetransportationsystem,sponsoredbyfourMITEIassociatemembers.Inaddition,laterthisyearweexpecttoreleasetheresultsofmulti-year,multidisciplinaryanalysesofthefutureofnaturalgas,ofnuclearfuelcycles,andofsolarenergy.

Wealsosupport“inreach”tothecampus.ArecentfeaturedvisitorwasHisSereneHighnessPrinceAlbertIIofMonaco,whodiscussedhisAntarc-tictrekandtheimportanceofthatcontinentasa“canaryinthecoalmine”fortheglobalimpactsofclimatechange.Campusforumsfacilitatecommunitydiscussionsofcriticalenergytopics.Notablewasthe“TheRoadfromCopenhagen”forumatwhichMITProfessorsHenryJacoby(Management),EdwardSteinfeld(PoliticalScience),andMichaelGreen-stone(Economics)werejoinedbyHarvardProfessorsRobertStavins(Government)andStephenAnsolabe-here(PoliticalScience)toleadadiscussionoftheactionstakenat

OnApril13,HisSereneHighnessPrinceAlbertIIofMonacovisitedMITtosharehisobservationsonthepotentialimpactsofglobalclimatechange,basedonhisvisitstoboththeNorthandSouthPoles.TheprincelaterattendedasalonhostedbytheMITEnergyInitiativeinhishonorattheMITMuseum.(Moreatweb.mit.edu/mitei/news/spotlights/continent-warning.html.)

PaoloScaroni,left,CEOoftheItalianenergycompanyEniS.p.A.,andMITPresidentSusanHockfieldcuttheribbontocelebratetheopeningoftheEni-MITSolarFrontiersCenter,headquarteredontheMITcampus.(Moreonpage4.)

DuringapresentationtotheMITEnergyClubonDecember9,2009,ArunMajumdar,directoroftheAdvancedResearchProjectsAgency-Energy(ARPA-E),announcedthecreationoftheARPA-EFellowsProgramforpostdoctoralstudentsandrecentPhDgraduates.Helateraddressedaninvitation-onlyMITEnergyInitiativeSalonforMITEImembers,faculty,andlocaldignitaries.(Moreatweb.mit.edu/mitei/news/spotlights/majumdar-announce.html.)

Phot

os: J

ustin

Kni

ght

Copenhagenandtheirimplicationsfortheenergyfuture(seepage36).

Thesupport,hardwork,andcommit-mentofallofMITEI’sfriendsandparticipantsarewhatmakesthislevelofactivitypossible,andwearegratefulforallthatyoudo.WehopethatyouenjoythisfiftheditionofEnergy Futures asasnapshotofsomeoftheoutcomesthatwillhelpshapeourenergyfuture.

Sincerely,

Professor Ernest J. MonizMITEIDirector

Professor Robert C. ArmstrongMITEIDeputyDirector

June2010

Page 6: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

4 | Energy Futures | MIT Energy Initiative | Spring 2010

New Eni-MIT center brings high-tech tools to solar researchTheEni-MITSolarFrontiersCenter(SFC)unveiledfacilitiesMay4thatwillprovideresearchersaroundtheInstituteunprecedentedopportunitiestotestnewmaterials,integratetheirwork,andpinpointnewdirectionsforground-breakingadvancesinsolarenergy.

ThenewlaboratoriesandmeetingspaceinBuilding13markthenextstepinanongoingpartnershipbetweentheItalianenergycompanyEniS.p.A.andMIT.Inearly2008,thetwobeganafar-reachingcollaborationaimedattransformingglobalenergysystemsthroughadvancedsolarenergytechnologies.ThenewfacilitiesareexpectedtospeedtheprogressofMIT’ssolartechnologyadvancesandtoevaluateandvalidatetheirpotentialinthemarketplace.

“Ifonly10%ofwhatIhaveseeninMITlaboratoriesmaterializes,itwillchangetheworld,”saidEniS.p.A.CEOPaoloScaroniatribbon-cuttingceremo-niesatMIT.Scaronisaidsolarpowerisapromisingchoicetohelpreplacehydrocarbon-basedfuelsinthecomingcentury.Eni,afoundingmemberoftheMITEnergyInitiative(MITEI)andasupporterofsolar-relatedresearchacrossMIT,intendstoleadthefieldsofinnovationandadvancedtechnolo-giesinrenewableenergy,hesaid.

“ThepairingofEni’slong-termstrategicvisionandMIT’sincrediblecapacityforinnovationhasthepotentialtofunda-mentallytransformhowtheworldproducesandconsumesenergy,”saidMITPresidentSusanHockfield.

Hockfield,Scaroni,andErnestJ.Moniz,directorofMITEIandtheCecilandIdaGreenProfessorofPhysicsandEngi-neeringSystems,spokeatceremoniesinauguratingtheSFC’snewPhotovoltaicsCharacterizationLaboratory.“Havinga

centralhands-onfacilitywherestudentscangatherforaninteractiveexchangeofinformationisinvaluablefortheMITsolarresearchcommunity,”saidSFCco-directorVladimirBulovic,professorintheDepartmentofElectricalEngi-neeringandComputerScience.

InadditiontotheSFC,EnisupportsprojectsinenergyresearchatMITontraditionalhydrocarbons,methanehydrates,globalclimatechange,andtransportationoptions.ThealliancewithMIThasadurationoffiveyearsandinvolvesafinancialcommitmentfromEnifor$50millionintotal,equallydistributedbetweentheSolarFrontiersprogramandotherMITEIprojects.

TheEni-MITSolarFrontiersresearchprogramfocusesoninitiativesrangingfromthedevelopmentofphotovoltaic(PV)devicestodesigningsolarplantsthatareeconomicaltobuildandoperate.

“WhatEnihasbroughttothetableisanunprecedentedabilitytomaketesting

R E S E A R C H R E P O R T S

andevaluationassessmentsaboutmaterialsandinstrumentsinastandardway,”saidDanielG.Nocera,theHenryDreyfusProfessorofEnergy,professorofchemistry,andco-directoroftheSFC.“Theresearchinitiatedtwoyearsagowiththeinaugurationofthecenterisnowmaturing.TherearetremendousnumbersofMITstudentsworkinginconcertwithEniwithaheavyemphasisonsolarenergycaptureandconversion.”

Morethan20MITfacultyand40graduatestudentswillusethenewlabstodevelopandtestsolardevicesandmaterials—somethatcapturesunlightontheirownandsomethatboosttheperformanceofexistingsilicon-basedstructures.Thesun’senergycanbe

Lefttoright:SalvatoreMeli,executivevicepresident,ResearchandTechnologicalInnovation,Eni;ErnestMoniz,directoroftheMITEnergyInitiative(MITEI);UmbertoVergine,seniorexecutivevicepresident,StudiesandResearches,Eni;MelanieKenderdine,executivedirector,MITEI;NicolaDeBlasio,vicepresidentforR&DInternationalDevelopment,Eni,andMITvisitingscientist;andRobertArmstrong,deputydirector,MITEI.MonizandVergineareholdingupsolarcellsdepositedonpapersubstrateswithelectrodesshapedaslogosofEniandMIT.

EniCEOPaoloScaroniandMITPresidentSusanHockfieldatapressconferenceheldduringtheinaugurationoftheEni-MITSolarFrontiersCenter.

Page 7: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 5

R E S E A R C H R E P O R T S

• astandardmethodofdevicetestingthatwillenableresearcherstosharedatameasuredunderidenticalconditionsacrossdifferentdeviceplatforms;

• anatomic-forcemicroscopewiththeabilitytomeasuretheelectronicstructureofnanostructuredPVcellsandtheelectronicbehaviorwithinthematthelevelofindividualatomsandmolecules;and

• thin-filmdevicegrowthandfabrica-tioncapabilitiesnototherwiseavailabletoSFCresearchersoncampus.

“Withthesetools,wecandiscernthefastdynamicsofphotonsandelec-tronswithinsolarcells,wecanidentifywhichprocessesareworkingandwhicharenot,andthenproducethenextsetofdevicesusingonlythemosteffectivestructures,”Bulovicsaid.“Measuringtheelectronicphenomenawithinnanostructuredmaterialsisthekeyforinformingthedesignofimproveddevices.”

capturedandstoredinfuelsandbatter-ies,whileefficientlyconvertingthesun’sraysintoelectricalcurrentinvolvestheinnovativeadoptionofPVmaterials.Capture,conversion,andstoragemustworktogethertomakesolarenergyaviableglobalpowersource.

“Wenowhaveaplacewherepeopleworkingaroundcampusinmechanicalengineering,chemistry,materialsscience,electricalengineering,andotherdepartmentscanperformastandardassessmentoftheperfor-manceoftheirinventions.Thiscapabil-ityismissinginsolarenergyresearchperformedinseparatelaboratoriesorwithoff-sitecollaboratorsthatallusedifferentassessmentstandardsandtools.Thesecomponentsmustworktogethertobeeffective,”Nocerasaid.

Maximizing returns

ThePhotovoltaicsCharacterizationLaboratorywillprovide:

• specializedequipmentsuchaspowerfullaserstoconductprecisesolarmeasurementsundercon-trolledenvironmentalconditions;

Aboveleft:ProfessorVladimirBulovic(right),SFCco-director,explainstoEniCEOPaoloScaronithecoatingprocessthatProfessorKarenGleason’sandhisgroupusedtodepositonpaperasolarcellthathasan“Eni”-shapedelectrode.Abovecenter:GraduatestudentsJillRowehl(left)ofmaterialsscienceandengineeringandPatrickBrownofphysicsusethenewultra-fastlaser—shownaboverightinclose-up—toexaminehowelectronsinnanomaterialsforsolarcellsbehavewhenblastedbypulsedlightofwell-definedwavelengths.Right:PostdoctoralassociatesAlexiArango(left)andNiZhaooftheResearchLaboratoryofElectronicsusethenewSFCatomic-forcemicroscopetostudythesurfacetextureofananostructuredthinfilm.

Partnerships across disciplines

ThenewlaboratoryandconferencespacebuildsonpartnershipsamongEniandMITresearchers,Nocerasaid.Thephotovoltaicslab’sdedicatedresearchequipmentisexpectedtoenhanceeffectivehybridsolutionsinseparatebutrelatedfieldsofinterdisci-plinarysolarenergyresearchatMIT,hesaid.“We’vehadalotofgreatresults.Thenextstepistointegrate,andthat‘swhatthelabisallowingustodo.Itmakesalotofsensethatthisiscomingonlinenowatthisstageofresearch,whenwe’reatapointofsystemintegration,focusedonhowweactuallymakeadevicethatembodiestheprogressinmultiplelaboratories.”

“What’suniqueaboutthelabisthatitbringsEniandMITpeopletogetheroncommonground,takingdifferentprojectsandintegratingthemalongapathtowardforward-lookingtechnol-ogy,”Nocerasaid.“That’stheexcitingthingforme.”

• • •

By Deborah Halber, MITEI correspondent

Phot

os: J

ustin

Kni

ght

Page 8: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

6 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

Tailored lighting: Reducing wasted watts

Imaginewalkingdownadimlylithallandhavinglightsaboveyougetbrightasyoupassandthengodimagain.Ifyoustandstill,thelightsstayon—noneedtowaveyourarmsaround.Afteryouleave,thelightsgooff,savingenergynowoftenwastedonlightingunoccupiedspaces.

KeytothisscenarioisanewMIT“proximitydetector”thatusesafluores-centlamp’sownelectricfieldtodeter-minewhensomeoneispresent.Thedetectoreasilyfitsintoexistingornewlightfixtures,withnoneedforextrapowerorspeciallyinstalledcontrolnetworks.Sinceeachlighthasadetec-tor,thesystemcanturnononeorafewlightsinanoverheadbankoffluores-cents,tailoringthelightingtothelocationsofindividualsintheroom.

Thepotentialenergysavingsofsuchtailoredlightingcouldbeconsiderable,especiallyintheresidentialandcom-mercialsectors,whereoperatinglightsconsumesaboutathirdofalltheelectricityused.ThathighconsumptionisaconcerntoStevenLeeb,professorofelectricalandmechanicalengineeringandaMacVicarFacultyFellow.Todemonstrate,hepointstohisofficeceiling,where400to800wattsoflightingisrunningallthetime.“That’sanappallingnumberifyouthink,forexample,thata400-wattradiostationcouldserveasmalltown,”hesays.

HeandgraduatestudentsJohnCooleyandAl-ThaddeusAvestruzandunder-graduateDanielVickery,allofelectricalengineeringandcomputerscience,arethereforetryingtofindopportunitiestotakethosefixturesandwattsandusethemtoprovideotherfunctions—withnointerruptionordistortionintheprimaryfunctionofdeliveringlight.“It’sanapproachwecalldualuse,”Leebsays.“Wetakeenergyorinformation

fromanelectricalapplianceanduseitforanotherpurpose.Inthiscase,wewouldn’tchangethequalityofthelightbutwouldaddanotherfeaturethatmighthelpsaveenergy.”

Thefeaturetheyareaddingistheabilitytodetectthepresenceofpeoplenearby.Theycouldusethatinformationtocontrolheatingandairconditioningsystemsbasedonoccupancyortoactasasecuritysystemtolookforintruders.Buttheirprimaryfocushasbeenonusingittoshutoffunnecessarylights—inparticular,fluorescentandother“gas-discharge”lampsthatproduceabouthalfoftheartificiallightintheUnitedStatesinallsectors.

Usingmotionsensorstodetectoccu-pancyandcontrollightingishardlyanewidea,butcurrentsystemshaveseveraldrawbacks.Theytypicallyinvolveawirednetworkofcontrollersthatisdifficultandexpensivetoinstallandrequiresextraelectricitytooperate.Tominimizeexpense,asinglemotionsensormaycontrolallthelightsinanarea—aninefficientapproachiftheroomislargeandsparselyoccu-pied.Finally,theydependonmotionratherthanpresence,soifoccupantsremainstillfortoolong,thelightsmayturnoff.

Withtheirnewdevice,Leebandhisstudentsaddressallthoseproblems,andtheydoitbyusingastheirdetectoranaturallyoccurringphenomenon—theelectricfieldthatpermeatesthespacearoundanoperatingelectric-dischargelamp.Putapersoninthatspace,andtheelectricfieldchanges.Thechangeistinybutdetectable.

Monitoring natural interactions

Thekeyisthatweareallslightlycapacitive,thatis,wecanholdandconductelectriccharge—afactthatLeebdemonstrateswithasimpleexample.Thinkofwalkingacrossacarpet,touchingadoorknob,andgettingashock.Asyouwalkalong,saysLeeb,youscrapeupelectronsandaccumulatecharge.Touchingthedoorknob“closesthecircuit,”creatingareturnpathforthatcharge,andelectronsjumptotheknobasaspark.You’vebeendischarged.

Whenapersonenterstheelectricfieldaroundafluorescentlamp,heorshebecomespartofaverycomplicatedcircuitthatinvolvesinteractionsbetweenthepersonandthelamp,thelampandthewalls,thewallsandtheground,thegroundandtheperson,andmore.Sotheelectricfieldcanbeviewedastheresultofacomplexcircuitthatisconnectedfromeveryconductortoeveryotherconductor.Therefore,asoneconductor—theperson—movesaround,theelectricfieldintheareachanges.

Thestudentsdesignedandbuiltadevicethatcandetectsuchchangesintheelectricfieldandcontrolthelightaccordingly.Theirdetector—asimplecircuitboard—replacestheconventionallampballastandisconnectedtotwoelectrodesmountedseveralfeetapartonthecoverofthelightfixture.Measuringanelectricfieldrequiresfindingthevoltagesimultaneouslyattwopoints—herethetwoelectrodes—andthencalculatingthedifferencebetweenthem.Bymonitoringthatdifferenceovertime,thestudents’devicecandetectsmallchangesintheelectricfieldwhenapersonwalksby.

Page 9: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 7

R E S E A R C H R E P O R T S

Includedinthedeviceisa“softwarelayer”—computerprogrammingthatinterpretstheobservedchanges.Forexample,itknowstorejectcertaintypesofchangesasfalseandthereforenotrelevant.Itknowswhentoturnthelightfullonorbacktodim.Anditknowswhenapersonispresentbutstandingstill—orisstandingexactlybetweentheelectrodessothatthedifferenceintheirmeasurementsiszero.Thekey:thepersoncannotgettothemiddlewithoutgoingbyoneoftheends,andthedetectorremembers.

“It’sverycleveraboutthechangesitlooksfor,”saysLeeb.Andhestressesthatitisperfectlysafe.“Wehaven’tchangedthelightatallorchangedtheinteractionbetweenanyobjectintheroomandthelight,”hesays.“Allwe’vedoneisputinadetector.”

Simulations and demonstrations

Computersimulationsofthedevicehaveproducedimagessuchasthoseshownabove.Thelampisatthetop,andtheverticalbaratthebottomisasix-foot-tallconductivecolumnrepre-sentingaperson.Thecolorsrepresentthestrengthoftheelectricfieldintheregionofthelamp.Theseriesofimagesshowshowthe“person”walkingunderthelampdisturbstheelectricfield.

Theresearchteamhasconstructedtwoprototypedetectors.Onehangsverti-callyinsideatwo-bulbfixturefortestinginareal-worldconfiguration,whiletheotherismountedhorizontallyandcaneasilybemovedforexperimenta-tionanddemonstration.

Testswiththehorizontalprototypeconfirmitsabilitytodetectapersonwalkingby.Thephotosandfigureonpage8presentsampleresults.Asthepersonwalksbythelamp,thevoltagedifferencemeasuredbythedetectorgoesup.Itthengoesbackdown,returningtoneutral—hereabout–62millivolts—whenhereachesthemid-point.Thevoltagedifferencegoesdownashepassesbytheotherhalfofthelampandthenbackuptowardneutralasheleaves.Thesystembeginstodetectthepersonatadistanceof8to12feet—plentyoftimeforthelamptobrightenandcreateapooloflighttoguidetheway.

Theresearchershavealsotriedusingtheirdevicewithdimmingballasts.Thedetectionsystemdemonstrateshighsensitivityevenwhenthelampisdimmedtojust1.3%ofitsmaximumpower.Thatoutcomeimpliesa98.7%powersavingsforeachlampwhileitisdimmed.

Looking to the future

Theyarenowworkingonawirelesslinkthatwillenablecommunicationsbetweenadjacentlampssothatasinglelampcancommandaclusterofauto-dimminglamps.Suchcommandlampscouldbedistributedthroughoutaspacetoachieveadesiredlightingscheme.

Theyareinvestigatingtwoschemesforlargeroomswithmanyoverheadfluorescents.Inonescheme,allthelightsareturnedonbutdimmed,andeachonecontainstheproximity-sensingelectronics.Ifanoccupantisdetectedbelowanylamp,thatlampturnsfullonuntilthepersonmovesaway.Intheotherscheme,onlysomeofthelightsinanarrayareleftonforsensing.Theothersareturnedoffbutarelinkedbyawirelessnetworktotheoneswithsensors.Ifasensorinalightdetectsanoccupant,itturnsontheadjoininglights.Criticaltothisschemeiscarefulspacingofthelightswiththesensorstogetfullcoverageoftheroom,leavingno“blindspots”whereapersonwouldnotbedetected.

“Givingfluorescentlightstheabilitytorespondtothepresenceofpeopleisjustthefirststep,”saysLeeb.“Nowwe’reworkingtodefinelightingprofilesforspecificsettingsthatwillensurethecomfortandsafetyoftheoccupants

Theseimagesaretheresultofacomputersimulationoftheresearchers’proximitydetectorinaction.Theverticaldark-bluebarisasix-foot-tallconduc-tivecolumnrepresentingaperson.Thebrighthorizontalbaratthetoprepresentsthefluorescentlamp.Thecolorsindicatethecalculatedstrengthoftheelectricfieldaroundthelamp.Intheseriesofphotos,the“person”walksfromrighttoleftbelowthelamp,intheprocesscausingasignificantdisturbanceintheelectricfield.Theimagesonpage8showwhathappenswhenarealpersonfollowsthesamepathwayinfrontofaprototypedetector.

Imag

es: c

ourte

sy S

teve

n Le

eb, M

IT

Page 10: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

8 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

whileminimizingenergyconsumption.We’realsolookingataddingphotosen-sorsthatwillcontrolthelevelsoflightingasappropriatetothetimeofdayorambientlight.Andwe’reworkingtoextendourapproachtosolid-statelightingbasedonLEDs.Theenergysavingsshouldbesignificant.”

• • •

By Nancy W. Stauffer, MITEI

This research was supported by a seed grant from the MIT Energy Initiative, by the US Department of Energy, and by the Grainger Foundation. More information can be found in:

J. Cooley, A. Avestruz, and S. Leeb. An Autonomous Distributed Demand-side Energy Management Network Using Fluorescent Lamps. IEEE Power Electronics Specialists Conference, Rhodes, Greece, June 2008.

J. Cooley, A. Avestruz, S. Leeb, and L. Norford. A Fluorescent Lamp with Integral Proximity Sensor for Building Energy Management. IEEE Power Electronics Specialists Confer-ence, Orlando, Florida, June 2007.

(A) (B) (C)

ThesephotosshowprojectdirectorProfessorStevenLeebwalkinginfrontofaprototypefluorescentlampequippedwiththeproximitydetector.Thecurvebelowshowstheoutputvoltagefromthedetector,withlettersmarkingpositionscorrespondingtothephotos.AsLeebwalksby,theoutputgoesupandthendown,returningtoneutral(about–62millivolts)whenhereachesthemidpoint.Theoutputthengoesdownashepassestheotherhalfofthelampandfinallybackuptowardneutralasheleaves.Whilethechangeinvoltageissmall,thedevicesendsaclearmessagethatsomebodyisnearby.

0 -65

-64

-63

-62

-61

-60

-59

5 10 15 20 25 30 35 40

Data samples

(A)

(B)

(C)

Demonstration of proximity detector

Mea

sure

d vo

ltag

e di

ffer

ence

(mill

ivol

ts)

Page 11: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 9

R E S E A R C H R E P O R T S

Engineering fat-making bacteria:A road to plentiful biodieselAnMITteamisgettingtoknowalittle-studiedbacteriumthatconsumesmaterialsrangingfromsoilcontami-nantstocornhusksandstoresthemasglobulesoffatidealformakingbiofuels.Usingavarietyofapproaches,theresearchershavebeengaininginsightsintothebiologicalprocessesandgeneticpathwaysthatcontrolthatconversion,enablingthemtofurtherenhancethebacterium’sfat-makingability.

Bestofall,theyareconvertingthefatintofuelsthat—unlikeethanol—containenoughenergyperlitertobeusedintrucks,trains,ships,andevenairplanes.“We’realreadymakingfatfromourbacteriaintojetfuel,”saysAnthonySinskey,professorofbiologyanddirectoroftheresearch.“We’regoingtoflyanairplaneonit!”

Asthenationstrugglestoreplacefossilfuelsusedintransportation,muchattentionhasfocusedonethanolandhydrogen.ButSinskey’steamisinsteadaimingforbiodiesel,afuelwithseveraladvantages.Ithasamuchhigherenergydensitythanethanolhas(seethechartaboveright).Itdoesnothavethenationalsecurityissues—orthepollutantemissions—associatedwithdieselmadefrompetroleum.Andunlikehydrogen,itisa“drop-in”fuel.“Wealreadyhavetheinfrastructurefortransporting,storing,andpumpingbiodieselandthevehicleenginesthatcanburnit,”saysSinskey.

Mostpeoplemakingbiodieselstartwithafatcalledtriacylglycerol,orTAG.FamiliarsourcesofTAGsincludeleftoversfromdeepfatfryersandgreasetraps,fatsfrommeatrendering,andvegetableoils.Theconversiontobiodieselissosimplethatpeoplearedoingitintheirgaragesandbarns,accordingtoDanielMacEachran,a

postdoctoralassociateintheDepartmentofBiology.Asabonus,TAGscanalsobeconvertedintojetfuel.“Butwe’renevergoingtopowerthecountryortheworldongreasetrapsandanimalrenderings,”saysMacEachran.Growingalgaeonbiomassisanothernon-foodapproachtoproducingTAGs,butthetechnologyisstillunderdevelopment,andthereareproblemstobesolved.

Fat-producing bacteria

AnothernaturalsourceofTAGsisbacteria.Givebacterialotsofcarbon(cropwasteandthelike)andnotmuchnitrogen,andtheywillstoreexcesscarbonforfutureuse.Inabout90%ofbacteria,thestoredcarbonisintheformofapolymer,whichsomemembersoftheSinskeyLabareusingtomake“bioplastics.”

ButasmallgroupofbacteriainsteadstoresthecarbonintheformofTAGs,andoneofthemthatdoesitreallywellisRhodococcus opacus.Thisbacteriumisnotwellunderstoodandismoredifficulttoworkwiththan,say,E. coli.Butitgrowsquickly;itisnotpathogenic;anditproducesremarkablequantitiesofTAGs—insometests,asmuchas75%ofitsdryweight.More-over,itcanmetabolizeawiderangeofcarbonsources.Indeed,itwasfirstfoundgrowingonhydrocarboncon-taminantsinsandatagasworksfacilityinGermany.“Sothesebacterianotonlysurvivebutactuallythriveoncompoundsthatwouldkillmostotherorganisms,”saysMacEachran.

Expanding their appetites

Intheidealfermentationprocess,Rho-dococcuswouldquicklyandcompletelyconsumemixturesofcarbon“feed-stocks”andproducelargequantitiesofTAGs.Buttherearesomethings

thateventhisbacteriumdoesnoteat.Oneofthemisxylose,akeyconstitu-ent—alongwithglucose—ofthecellwallsofplants.IfRhodococcusbacteriaaregoingtoconsumecellulosicsourcessuchascornstoverandswitchgrass,theyneedtometabolizexyloseaswellasglucose.

Toachievethatgoal,KazuhikoKuro-sawa,aresearchscientistinbiology,turnedtogeneticengineering.HetookcarefullychosengenesfrombacteriathatnaturallymetabolizexyloseandinsertedthemintoRhodococcus.Theresult:astrainofRhodococcusthatmetabolizesxylosetoproduceTAGs.Betterstill,thisnewstrainconsumesglucoseandxyloseatthesametimeandataboutthesamerate.Mostbacteria,ifpresentedwithtwocarbonsources,willconsumefirstoneandthentheother,withalagingrowthastheyswitchgearsinthemiddle.BecauseKurosawa’sorganism“co-utilizes”xyloseandglucose,thereisnopausetoswitchgears,sotheoverallratesofgrowthandfatproduc-tionaredramaticallyhigher—andallthefeedstockisconsumed.

Inaddition,thebacteriummakesaboutthesameamountofTAGsonthemixtureasitdoesonglucoseorxylosealone,andthecompositionoftheTAGsisthesame.“Sotheremustbe

Energy values for various transportation fuels

• Ethanol 22–24 MJ/liter

• Gasoline 32–35 MJ/liter

• Petro-diesel 36.4 MJ/liter

•Biodiesel 33–36 MJ/liter

BioenergyFeedstockDevelopmentProgram,OakRidgeNationalLaboratory

Page 12: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

10 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

somecommonintermediatethat’sformedfromallcarbonfeedstocks,andthatintermediate—notthefeedstockitself—controlstheTAGssynthesis,”saysSinskey.“That’saninterestingphenomenon.”

Identifying fat-making genes

AnotherapproachtoincreasingRhodo-coccus’sabilitytometabolizecarbonandmakefatistoworkwiththebacterium’sowngenes.ThechallengethereistodeterminewhichgenesplayaroleinproducingandstoringTAGsandtodefineexactlywhateachgeneorsetofgenesdoes.Asacriticalfirststep,JasonHolder,postdoctoralassociateinbiology,sequencedthegenomeofRhodococcus opacus,identifyingalloftheDNAandmorethan7,000genesthatmakeupitschromosome.

MacEachranthendevelopedageneticscreeningtechniquetolocatethegenesofinterest.Thetechniqueinvolvestheuseofa“transposon,”ashortstretchofDNAthatcanintegrateanywhereamongthegenesonachromosome.Thepresenceofthetransposondisruptsthefunctionofwhatevergeneithap-penstolandin.SoifaRhodococcusbacteriumisexposedtoatransposonandthenstopsorslowsitsproduction

ofTAGs,thetransposonhaslandedinageneessentialforTAGmetabolism.SequencingtheDNAofthatbacteriumwillshowwherethetransposon—withitsrecognizableDNA—islocatedandthereforewhichgenehasbeenaffected.

ButmanygenesarelikelytoplayaroleinTAGmetabolism,soMacEachrandevelopeda“high-throughput”screen-ingtechnique.Heusesatransposonthatcarriesresistancetotheantibiotickanamycin.Hetakesabatchofbac-teria—billionsofindividualcells—andmixesthemwithabatchoftranspo-sons.Mostofthebacteriacellswillremainunchanged,butasmallfractionwillpickupatransposon.Whenthecellsareexposedtokanamycin,onlythosecontainingatransposonwillbeimmunetothekanamycinandsowilllive.

Inapainstakingprocess,theresearch-ersthenseparatetheremainingcells,spreadthemoutonaplatewithglucose,andletthemdivideandreplicatetoformdistinctcolonies.Eachcolonywillcontaintensofthousandsofidenticalcells,everyonewithatransposoninthesamelocationinitsgenome.Thecoloniesarenextgrownundercarefullyoptimizedhigh-carbon,low-nitrogenconditionsandthen

stainedwithachemicaldyethatisreadilyabsorbedbyfat.Mostofthecoloniesbecomedark—asignthatthetransposonhasnotinterferedwiththeirproductionofTAGs.Butafewwillremainpale.Inthosecolonies,thetransposonhaslodgedinanddisruptedagenethatplayssomecriticalroleintheformationofTAGs.

Key genes: What do they do?

ThatscreeningtechniquehaspermittedtheresearcherstoidentifyasetofgenesthataffectTAGformation.“ButnowwehavetodothehardscienceofcharacterizingeachgeneandfiguringoutexactlywhatroleitplaysinTAGmetabolism,”saysMacEachran.

Hehasbeenparticularlyintriguedbyagenehecalls“tadA”(from“TAGaccumulationdefective”).GenessimilartothetadAgenehavebeenfoundinseveralotherorganismsthatalsomakefat,butitsexactfunctionisunknown.“NooneelsehasworkedontadAbefore,sowe’removingintonewterritory,”saysMacEachran.

TogetacloserlookattadA,heusesatechniquecalledfluorescentmicroscopycombinedwithadyecalledNilered.Withinabacterium,TAGsarecontainedinlargesphericalstructuresknownaslipidbodies.ThoselipidsreadilytakeupNileredandbecomefluorescent,thuseasilydifferentiatedfromtherestofthecellunderthemicroscope.

TheimagesaboveshowthreetypesofRhodococcusbacteria,eachwithitslipidbodiesappearingasglowingspheres.Attheleftisthe“wildtype,”anatural,unalteredRhodococcusbacterium.Thelipidsarefairlyuniforminsizeanddistribution.ThebacteriuminthemiddleimagelacksthetadAgene.Nowtherearebothsmalland

AnMITteamhasbeenworkingtounderstandthegeneticpathwayswherebythebacteriumRhodococcusconvertscropwasteandothercarbonmaterialsintolargequantitiesoffat—or“lipids”—idealformakingbiodieselandjetfuel.Here,theyshowtheeffectonlipidformationofagenetheyisolatedanddubbedtadA.Ineachcase,thelipidsglowwithafluorescentdye.Theleft-handimageshowsanatural,unalteredRhodococcusbacterium.ThebacteriuminthemiddleimagelacksthetadAgene,whiletheoneintheright-handimagehasexcesstadA.Itappearsthatthisgene’sprimaryroleisnotinmakinglipidsbutratherincontrollinghowtheyarestored.

Imag

es: c

ourte

sy o

f Dan

iel M

acEa

chra

n, M

IT

Page 13: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 11

R E S E A R C H R E P O R T S

largelipids,andratherthanbeinguniformlydistributed,theyappearstucktothewalls.Theright-handimageshowsabacteriumthatcontainslotsofextratadAgene.Nowtherearemassivelipidbodiesthatsitrightdownthemiddleofthecell.

Takentogether,theseobservationssuggestthatthetadAgene’sprimaryrolemaynotbeinmakingfatbutratherinstoringit.“LosingthetadAgeneseemstomessuptheorganism’sabilitytoassemblethelipidsproperly,”saysMacEachran.“Andhavingtoomuchofitproducesbig,singlelipidbodies.Sowebelievethatthisgeneproducesaproteinthatactsassortofashepherdtopullallofthelipidbodiestogetherintofewer,largerbodies.”

Continuing investigations

Theresearchersarecontinuingtogaininsightsintotheworkingsoftheirbacterium.Studiesof“neighbors”oftadAshowthatthosegenesalsoinfluencelipidbodystructure,eachoneinaslightlydifferentway.AndanalysesofsimilargenesinotherorganismssuggestamodelforcertainRhodococcusgenesthatmayhelplipidbodiesattachtooneanotherandcoalesce.FurtherscreeninghasidentifiedgenesinvolvedintheactualproductionofTAGs.

Thefeedstockstudiesalsocontinue.Theresearchershavenowtestedalmost200carbonsources,lookingforlow-cost,high-yieldonesthatcouldimproveprocesseconomics.TheyhaveidentifiedspecificcomponentsinfeedstocksthatinhibitcellgrowthandinterferewithTAGproduction.AndtheyhaveengineeredastrainofRhodococcusthatmetabolizesglycerol,awasteproductofbiodieselproduction.Withtheengineeredstrain,theglycerol

couldberecycledasafeedstockformorebiodieselproduction.

Finally,SinskeyandhisteamareworkingwithindustrytodevelopTAG-extractionmethodsthatwillyieldhighlyenrichedTAGfractionsandlowconcentrationsofproductsknowntointerferewiththeconversionofTAGsintobiodiesel.Inaddition,theyareexaminingchemicalandbiologicalcatalystsforconvertingTAGstofuelsandareworkingtoscaleupproduction.

Ifallgoesasplanned,SinskeyestimatesthatwithinafewyearstheRhodococcus-basedbiofuelswillbecommerciallyavailableasaviable,sustainablealternativetotoday’spetroleum-basedtransportationfuels.

• • •

By Nancy W. Stauffer, MITEI

This research was funded by a seed grant from the MIT Energy Initiative; by Shell International Exploration & Production, Inc.; and by Logos Technologies, Inc. More information can be found in:

K. Kurosawa, P. Boccazzi, N. de Almeida, and A. Sinskey. “High glucose cultivation of Rhodococcus opacus PD630 in batch-culture for biodiesel production,” Journal of Biotechnology, in press 2010.

Page 14: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

12 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

Improving the transistor:Small device, big energy savingsMITresearchershavedesignedanewtransistorthatcouldsignificantlyreducewastedelectricitywhenevervoltagemustbemodified,forexample,whenrechargingalaptoporhookingsolarpanelsintothepowergrid.WidespreaduseofthenoveltransistorcouldcutUSelectricityconsumptionaswellasgivenewlifetoemergingenergytechnolo-giesrangingfromelectriccarsandsolarcellstorevolutionarypowergenerationandtransmissionsystems.Powerelectronicsareusedtochangetheformofelectricalenergytomatchagivenneed.Inparticular,manynewelectronicdevicesandenergytechnolo-giesrequireswitchingalternatingcurrent(AC)todirectcurrent(DC)orviceversa.Forexample,batteriesandsolarcellsdealonlyinDC.Therefore,rechargingalaptoporcellphonebatteryrequireschangingtheACelectricitycomingfromthewalloutlettoDC.Conversely,connectingsolarcellstothepowergridandrunningthemotorinanelectriccarbothrequireconvertingDCtoAC.Atalargerscale,high-voltageDCtransmissionlinescantransferlargeamountsofpowerwithlowerelectricallossesthanAClinescan,buttheiruseisnowlimitedbecauseconvertingDCtoACisexpensive.

“Powerelectronicsareusedinmanydifferentplacesinourlives,”saysTomásPalacios,assistantprofessorofelectricalengineeringandcomputerscience.“Butanytimeyoutransformelectricity,therearealwaysenergylosses—andwithtoday’sdevices,thoselossesarehigh.”Ifwecouldreducethelossesinallpowerelectroniccircuits,Palaciossays,wecouldsavebetween10%and20%ofthetotalelectricitynowusedintheUnitedStates.Andifwecouldmakethepowerelectronicssmall,wecouldintegratethemintotheequipmentthatneedsthem.Small,

efficientpowerelectronicsthatcouldswitchACtoDCandbackagainwouldbeagame-changerforelectriccars,powergrids,renewableenergytech-nologies—indeed,fortheworld’sabilitytomeettheoverallenergychallenge.

Tohelpimprovepowerelectronics,PalaciosandgraduatestudentBinLuofelectricalengineeringandcomputerscienceareworkingononeofthekeycomponents—thetransistor.Thisbasicbuildingblockcanserveaseitheraswitchoranamplifier;itcanturnonandofforincreaseordecreasethecurrentflowinginanelectroniccircuit.

Atransistorconsistsofseverallayersofsemiconductorlinkedtothecircuit

bythreeterminals.Theelectronsthatcarrytheelectriccurrententerthetransistorthroughthefirstterminal(calledthesource).Theythentravelthrougharegionofthesemiconductorcalledthechannelandexitviathesecondterminal(thedrain).Asmallelectricalchargeonthethirdterminal(thegate)influencesthechannel’sabilitytoconductelectricity.Atransistorthususesasmallchargetoregulatetheflowofalargecurrent.

Howwellthetransistorperformsdependsinlargepartontwopropertiesofthesemiconductor.First,itmusthavelowresistancesoelectronscanflowthroughitwithease.Anyimpedi-menttothatflowproducesheat,

Si substrate

GaN

AlGaN Drain

Gate Al2O3

Electron channel

Source

MIT’s novel transistor

MIT’s novel gallium nitride power transistor

ThisschematicshowsanovelMITtransistorbasedonthesemiconductorgalliumnitride(GaN).Electronsenterviathesourceterminal(upperleft),flowthroughthelayerofGaN,andexitviathedrainterminal(upperright).Asmallelectricalchargeonthegateterminal(centertop)regulatestheflow.Toreducecosts,thetransistorisbuiltonaninexpensivesilicon(Si)substrate.Otherdesignfeaturespreventelectronsfromescapingwithinthedevice,soelectricallossesarelow.Andwhenthereisnochargeonthegate,theelectronsstopflowing—acriticalsafetyfeaturenottypicalofotherGaNtransistordesignsnowbeingconsidered.(Seetextfordetails.)

Page 15: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 13

R E S E A R C H R E P O R T S

whichtranslatesintowastedelectricity.Second,thesemiconductormustbeabletohandlehighvoltageswithout“breakingdown,”thatis,withoutallowingthecurrenttojumpfromthesourcetothedrainasaspark.Ifthebreakdownvoltageofthesemiconduc-torishigh,thesourceanddraincanbelocatedclosetooneanotherwithoutsparking;asaresult,thetransistorcanbesmaller,whichpermitstheoverallpowercircuittobesmallerandmoreefficient.

AccordingtoPalacios,thedesiredpropertiescanbefoundinafamilyofcompoundsandalloysbasedonnitridesemiconductors.Galliumnitride(GaN),forexample,isarelativelynewsemiconductorthathasaresistance100to1,000timeslowerthanthebestsemiconductorsnowbeingusedcommercially.Inaddition,itsbreak-downvoltagecanbe10timeshigherthaninconventionaldevices.

However,despitetheirpromise,GaN-basedtransistorsforpowerelectronicsarenotyetcommerciallyavailable.Palacioscitesthreeproblemswiththedesignsnowbeingconsidered.First,thebestdevicestodatearegrownonasubstrateofsiliconcarbide,anextremelyexpensivematerial.Second,inthosedevices,electronscanescapefromthechannelviathegateterminal,therebybeinglostfromthecircuit.Andfinally,ifthereisnochargeonthegate,electronscontinuetoflowthroughthetransistor.Thatcharacteristic—knownasbeing“normallyon”—isasafetyhazard.If,forexample,thegatestopsfunctioningwhilealaptopisrecharging,householdcurrentcouldflowatfullvoltageintothecomputerandquicklydestroyit.

The MIT design

PalaciosandhisteamthereforesetthreegoalsfortheirGaNtransistor:tousealessexpensivesubstrate,tokeepresistancelowwhilepreventingelectronsfromescapingviathegate,andtomakeadevicethatis“normallyoff.”Theyhavenowachievedallofthosegoals.

Theirdesignisshownonpage12.Electrons—indicatedbybluedashes—enterthroughthesourceattheupperleft,passthroughtheGaNsemiconduc-tor,andexitthroughthedrainattheupperright.Theamountofchargeonthegateatthetopregulatestheflowofelectronsfromthesourcetothedrain.

Specificfeaturesaddresstheresearch-ers’threegoals.Tobringdowncosts,theybuildtheirtransistoronasiliconsubstratesimilartothatusedbymuchoftoday’selectronicsindustry.Itisinexpensiveandcanbemanufac-turedusingstandardtechnologyformakingcommercialsiliconchips.

TolowertheresistanceintheGaNchannel,theresearchersputalayerofaluminumgalliumnitride(AlGaN)ontopoftheGaN.ThatlayerproducesahighdensityofelectronsintheGaNjustbelowtheGaN/AlGaNinterface,easingtheflowofcurrentthroughthechannelandreducingthetotalresistanceofthedevice.“TheelectronsreallyliketomovethroughtheGaNveryclosetothatinterface,”saysPalacios.Inaddition,topreventelectronsfromgoingintothegatecontact,theyaddathinlayerofadielectric—aluminumoxide(Al2O3),ahighlyinsulatingmaterialthatcompletelystopstheflowofelectronstothegate.

Finally,theyhavedevelopedanewfabricationtechnology—called“dual-gatetechnology”—tomakethetransis-tornormallyoff.TraditionalapproachestoachievingnormallyofftransistorsinvolvethinningdowntheAlGaNlayerunderthegate.ThatchangereducestheelectrondensityintheGaNchanneltothepointthatelectronswillnotflowintheabsenceofchargeonthegate.How-ever,thatapproachintroducesvery

Phot

o: D

anie

l Pie

dra

G, M

IT

Top-viewopticalmicrographofoneofthegalliumnitridepowertransistorsfabricatedatMIT.

Page 16: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

14 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

highresistance,whichleadstoheatingandthusenergylossesinthedevice.

Toovercomethisproblem,theMITresearchersmakethegate“T”shapedandthenomittheAlGaNlayercompletelyfromaverynarrowregionbeneaththefootoftheT(seethedrawingonpage12).BecausenoAlGaNisdepositedinthatregion,noelectronsareleftneartheinterface;andwhenthereisnochargeonthegate,currentnolongerflows.ButtheremovedsectionofAlGaNislessthan100nm—justwideenoughtocreatethenormallyoffconditionsbutstillsonarrowthatitdoesnotsignificantlyincreasetheresistanceofthetransistor.AndbecausethethinlayerofAl2O3insulatorseparatesthegatefromthechannelinthatregion,whenelectronsdoflow,theycannotescapetothegate.

Fabricating prototypes

Palaciosandhisteamhavenowsuccessfullyachievedeachstepneededtofabricatetheirnoveltransistor.TheyhavedevelopedmethodsofusingthinlayersofGaNonsiliconwafers,ofdepositingtheAl2O3insulator,andoffabricatingnormallyofftransistorsusingthenewdual-gatetechnology.TestsofinitialprototypesconfirmthattheirdeviceisnormallyoffandthatelectronsareeffectivelyconfinedtothechannelneartheGaN-AlGaNinterface.“Infact,ourpreliminarymeasurementsshowthattheelectronsmovealongthatchannel10timesfasterthantheydoinotherpowerdevices,”saysPalacios.

Encouragedbyresultstodate,PalaciosisalreadyindiscussionwithotherMITresearcherswhomightbenefitfromthesmall,efficientpowerelec-tronicsmadepossiblebythenewGaN

transistor.Amongthepossibilities:newcircuitdesignsforhigh-efficiencyinvertersandconvertersforthepowerindustry,powermodulesforhybrid-vehicleandfuel-celltechnologies,and—becauseoftheirtoleranceforhightemperatures—high-performancepowerelectronicsfornewsolarconcentrators.

“Withournewdevicesweshouldbeabletomaximizeandoptimizepowerconversionandaddmoreintelligencetocurrentandnewpowersystemsatawiderangeofvoltagelevels,”saysPalacios.“Transistorsandpowersystemsareubiquitous,sothepotentialforsavingenergyanddevelopingandimplementingnewenergytechnologiesissubstantial.”

• • •

By Nancy W. Stauffer, MITEI

This research was funded by a seed grant from the MIT Energy Initiative and by the US Department of Energy. Further information can be found in:

B. Lu and T. Palacios. “New enhancement-mode GaN HEMT based on dipole-Engineering.” IEEE Electron Device Letters, forthcoming 2010.

B. Lu, E. Piner, and T. Palacios. High-Performance Dual-Gate AlGaN/GaN Enhancement-Mode Transistor. Presented at the 37th International Symposium on Compound Semiconductors (ISCS), Kagawa, Japan, May 31–June 4, 2010.

Page 17: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 15

R E S E A R C H R E P O R T S

Small springs could provide big power

Energy density of selected energy storage devices

Current CNT fibers

Ideal CNT fibers

Steelsprings

Lithium-ionbatteries

0.1

1

10

100

1000

10000

Ener

gy d

ensi

ty (k

J/kg

)

Thebarontheleftshowstheenergydensityof“current”carbonnanotube(CNT)fibersnowbeingpreparedandtestedbyMITresearchers.Thebaratthefarrightshowstheenergydensityof“ideal”CNTfibers,aspredictedbytheiranalyticalstudies.Asthecentralbarsshow,theenergydensityoftheresearchers’CNTspringsalreadyexceedsthatofsteelspringsandmayeventuallyexceedthatoftypicallithium-ionbatteries—withtheaddedadvantageofpotentiallyhigherdurabilityandreliability.

NewresearchbyMITscientistssuggeststhatcarbonnanotubes—tube-shapedmoleculesofpurecarbon—couldbeformedintotinyspringscapableofstoringasmuchenergy,poundforpound,asstate-of-the-artlithium-ionbatteries,andpotentiallymoredurablyandreliably.

Imagine,forexample,anemergencybackuppowersupplyoralarmsystemthatcanbeleftinplaceformanyyearswithoutlosingits“charge,”portablemechanicaltoolslikeleafblowersforyardclean-upthatworkwithoutthenoiseandfumesofsmallgasolineengines,ordevicestobesentdownoilwellsorintootherharshenvironmentswheretheperformanceofordinarybatterieswouldbedegradedbytem-peratureextremes.Thatisthekindofpotentialthatcarbonnanotubespringscouldhold,accordingtoCarolLiver-more,associateprofessorofmechanicalengineering.Carbonnanotubesprings,shefound,canpotentiallystorefarmoreenergyfortheirweightthansteelspringscan(seethechartonthispage).

Indeed,theoreticalanalysisperformedbyLivermore,graduatestudentFrancesHillofmechanicalengineering,andresearchaffiliateTimothyHavelSM’07showedthatthecarbonnanotubespringscouldultimatelyhaveanenergydensity—ameasureoftheamountofenergythatcanbestoredinagivenweightofmaterial—morethan1,000timesthatofsteelspringsandcompa-rabletothatofthebestlithium-ionbatteries.LaboratorytestsbythesameteamplusA.JohnHartSM’02,PhD’06demonstratedthatthenanotubesreallycanexceedtheenergystoragepotentialofsteel.

With a snap or a tick-tock

Forsomeapplications,springscanhaveadvantagesoverotherwaysofstoringenergy,Livermoreexplains.Unlikebatteries,forexample,springscandeliverthestoredenergyeffectivelyeitherinarapid,intenseburstorslowlyandsteadilyoveralongperiod—asexemplifiedbythedifferencebetweenthespringinamousetrapandinawindupclock.Also,unlikebatteries,storedenergyinspringsnormallydoesnotslowlyleakawayovertime;amousetrapcanremainpoisedtosnapforyearswithoutdissipatinganyofitsenergy.

Forthatreason,suchsystemsmightlendthemselvestoapplicationsforemergencybackupsystems.Withbatter-ies,suchdevicesneedtobetestedfrequentlytomakesuretheystillhavefullpower,andthebatteriesmustbereplacedorrechargedwhentheyrun

down.Butwithaspring-basedsystem,inprinciple“youcouldstickitonthewallandforgetit,”Livermoresays.Carbonnanotubespringsalsohavetheadvantagethattheyarerelativelyunaffectedbydifferencesintempera-tureandotherenvironmentalfactors,whereasbatteriesneedtobeoptimizedforaparticularsetofconditions,usuallytooperateatnormalroomtemperature.Nanotubespringsmightthusfindapplicationsinextremeconditions,suchasfordevicestobeusedinanoilboreholesubjectedtohightemperatureandpressure,oronspacevehicleswheretemperaturecanfluctuatebetweenextremeheatandextremecold.

“Theyshouldalsobeabletochargeandrechargemanytimeswithoutalossofperformance,”Livermoresays,althoughtheactualperformanceovertimestillneedstobetested.

Page 18: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

16 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

Shesaysthatthespringsmadefromtheseminusculetubesmightfindtheirfirstusesinlargedevicesratherthaninmicro-electromechanicaldevices.Foronething,thebestusesofsuchspringsmaybeincaseswheretheenergyisstoredmechanicallyandthenusedtodriveamechanicalload,ratherthanconvertingittoelectricityfirst.

Anysystemthatrequiresconversionfrommechanicalenergytoelectricalandbackagain,usingageneratorandthenamotor,willlosesomeofitsenergyintheprocessthroughfrictionandotherprocessesthatproducewasteheat.Forexample,aregenerativebrakingsystemthatstoresenergyasabicyclecoastsdownhillandthenreleasesthatenergytoboostpowerwhilegoinguphillmightbemoreefficientifitstoresandreleasesitsenergyfromaspringinsteadofanelectricalsystem,shesays.Inadditiontothedirectenergylosses,abouthalftheweightofsuchelectromechanicalsystemscurrentlyisinthemotor-generatorusedfortheconversion—somethingthatwouldnotbeneededinapurelymechanicalsystem.Harvesting carbon nanotubesTomaketheirsprings,theresearchersusecarbonnanotube“forests.”Eachforestcontainsbillionsofcarbon

nanotubesgrownverticallyupwardfromaflat,one-square-centimetersiliconsubstratebythermalchemicalvapordeposition.Fromthisforest,theypeeloffasmallstrand,creatingafiberofafewmillionalignednanotubes.Tomakethefibermorestable,theyincreaseitsdensitybyplacingadropofacetoneortolueneonit.Astheliquidevaporates,thenanotubesaredrawntogetherbycapillaryeffects.Theresearchersthenstretchthefiber,therebystoringmechanicalenergyinthestrainedcarbonbondsofeachnanotube.Todeliverthestoredenergytoadesiredload,theyallowthefibertocontract—eithersuddenlyorslowly—sothatitreturnstoitsoriginallength.

Onereasonthemicroscopictubeslendthemselvestobeingmadeintolongerfibersthatcanmakeeffectivespringsisthatthenanotubemoleculesthem-selveshaveastrongtendencytosticktoeachother.Thatmakesitrelativelyeasytospinthemintolongfibers—muchasstrandsofwoolcanbespunintoyarn—andthisissomethingmanyresearchersaroundtheworldareworkingon.“Infact,”Livermoresays,thefibersaresostickythat“wehadsomecomicalmomentswhenyou’retryingtogetthemoffyourtweezers.”Butthatqualitymeansthatultimatelyitmaybepossibleto“makesomethingthatlookslikeacarbonnanotubeandisaslongasyouwantittobe.”

Livermoresaysthattocreatedevicesthatcomeclosetoachievingthetheoreticallypossiblehighenergydensityofthematerialwillrequireplentyofadditionalbasicresearch,followedbyengineeringwork.Amongotherthings,theinitiallabtestsusedfibersofcarbonnanotubesjoinedinparallel,butcreatingapracticalenergystoragedevicewillrequireassemblingnanotubesintolonger

andlikelythickerfiberswithoutlosingtheirkeyadvantages.

“Thesescaled-upspringsneedtobelarge(i.e.,incorporatingmanycarbonnanotubes),butthoseindividualcarbonnanotubesneedtoworkwellenoughtogetherintheoverallassemblyoftubesforittohavecomparableproper-tiestotheindividualtubes,”Livermoresays.“Thisisnoteasytodo.”

Livermoreandherteamarenowworkingoncreatingnew,higher-performingcarbonnanotubespringsandondemonstratingtheirusetodriverealloads—featsthatwouldmakepossiblemanyexcitingopportunitiesfortheiruseasflexible,durable,andreliableenergystoragedevices.

• • •

By David L. Chandler, MIT News Office, with additional reporting by Nancy W. Stauffer, MITEI

This research was funded by an MIT Energy Initiative seed grant and by Deshpande Center for Technological Innovation Ignition and Innovation grants. Further information can be found in:

F. Hill, T. Havel, A. Hart, and C. Livermore. “Characterizing the failure processes that limit the storage of energy in carbon nanotube springs under tension.” Journal of Micromechanics and Microengineering, forthcoming 2010.

C. Livermore, F. Hill, and A. Hart. “Storing elastic energy in carbon nanotubes.” Journal of Micromechanics and Microengineering, September 2009.

C. Livermore, F. Hill, and T. Havel. “Modeling mechanical energy storage in springs based on carbon nanotubes.” Nanotechnology, June 2009.

Thespringstestedinthisworkconsistoffibersmadeofdenselypackedarraysofcarbonnanotubes,harvestedfrommulti-walledcarbonnanotubeforestsgrownbythermalchemicalvapordeposition.Thisscanningelectronmicroscopeimageshowsthelong,alignedarraysofcarbonnanotubesthatmakeupeachfiber.Eachcarbonnanotubehasanouterdiameterof10nmandfourtofiveinnershells.

Imag

e: c

ourte

sy o

f Fra

nces

Hill

G, M

IT

Page 19: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 17

R E S E A R C H R E P O R T S

Urban metabolism: Helping cities make scarce basic resources go furtherManycitiesindevelopingregionsoftheworldarefacingcriticalshortagesofwater,energy,andotherbasicresources—andthoseshortageswillrapidlyintensifyastheirpopulationsexplodeincomingdecades.Tohelpalleviatesuchhardship,MITresearchersareworkingwithleadersintheIcaregionofPerutodeveloptwointeract-ingcomputationalmodelsthatwillhelpthemfindwaystousetheirlimitedresourcesmoreefficientlyandtotakebestadvantageoftheirabundantnaturalsourcesofenergy,includingsunshine,wind,andwaves.

Inrelatedwork,theMITteamisusingthesameanalyticaltechniquestostudyresourceflowsinancientcitiesasapossiblewindowintohowourpost-fossil-fuelscitiesmaylook.

Muchdiscussionisfocusingonmakingcitiesintheindustrializedworldsustain-able.Buzzwordsincludezero-energybuildings,photovoltaicinstallations,andplug-inhybridcars.Suchattentioniswellwarranted,accordingtoJohnFernández,associateprofessorofbuildingtechnology,becauseoverthenextthreedecades,95%ofpopulationgrowthworldwideisprojectedtooccurincities,addinganother2.5billionpeopletotoday’s3billioncitydwellers.

Butthevastmajorityofthosenewcitydwellerswillliveindevelopingcoun-tries,whereconcernfocusesonprovid-ingthebasics—food,water,housing,andthelike.“Thegreatestgrowthinurbanpopulationwillbeinthemostresource-constrainedareasoftheworld,”saysFernández.“Thelimitsthatthoseregionswillfacearelikenothingwewillseeintheindustrializedworld.It’sawholedifferentlevelofdiscussion.”

Facedwith“cripplingresourcelimits,”plannersandengineersinsuchcities

desperatelyneedtoolstohelpthemmakedesign,planning,andtechnologydecisionsthatensurethemostefficientuseoftheresourcestheyhave.Suchtoolscouldalsohelpthemfindwaystomaketheircitiesmoreresilienttoshockssuchasearthquakesandothercrisesthatmayinterrupttheflowofgoodstoapopulacelikelytoliveclosetothemarginingoodtimes.

Focus on Peru

OneplacewithanurgentneedforsuchplanningtoolsistheIcaregionofsouthernPeru.Thecoastalcitiesinthatregionarenetexportersofnaturalresources,includingoil,naturalgas,andcopper,buttheyareneverthelessextremelypoor—andin2007theyweredevastatedbyaseriesofearthquakes.InJanuary2008,teamsfromMITbeganworkingwithresearchersandgovern-mentleadersinPerutohelpwiththeredevelopmentprocess,andtwothingsbecameclear:managingflowsofresourcestoensuretheirmostefficientuseiscritical,andatooltoguidepolicymakersinachievingthatgoalwouldbeinvaluable.

Accordingly,FernándezhasbeendevelopingacomputationalmodelthatwillenableleadersinPeru—andincitiesworldwide—toseetheimpactsofpossiblepolicyoptionsontheavailabil-ityofcriticalresources.Hehasbeenworkingcloselywithacademicresearch-ers,localcommunities,andgovernmentofficialsinPerutoformulatetheessen-tialarchitectureofthemodel.

Theworkbuildsonaconceptknownasurbanmetabolism,whichusesaholisticviewofthewaycitiesconsumeresources.“Thinkofacityasanorganismthatconsumesrawmaterials,fuel,andwaterandgenerateswaste,”saysFernández.“Howdoesthis

complexorganismusetherawmateri-alsthatitacquires—andcanitusethemmoreefficiently?”

Toanswerthosequestions,Fernándezandhiscollaboratorsuseamethodol-ogycalledmaterialsflowanalysis(MFA)tocreateaphysicalaccounting(inmeasurablequantitiessuchasweightorvolume)ofspecificresourcesentering,passingthrough,andleavingacityand—mostimportant—exactlyhowtheyareusedwithinthecitylimits.AdiagramoftheMITmodelappearsonpage18.

Thesystemboundaryisthecityitself—the“urbaneconomy.”Thetophalfisthe“biogeochemicalcontext,”thebottomhalf,the“socioeconomiccontext.”TheMITworkfocusesmainlyonthesocioeconomicsection.

Enteringfromtheleftarealltheimports.“Activeinputs”enteringtheurbanzonearewater,energy,materials(fuelandnon-fuel),andbiomass.Addingtothosebulkmaterialsisthe“municipalextraction”ofsand,gravel,andthelikewithincitybounds.Threefundamentalurbanactivitiesdriveallofthoseresourceflows,namely,goodsandservices,thebuiltenvironmentandinfrastructure,andtransportation.Thosethreeactivitiesaretheresultofanthropogenicaction—ofpeoplemakingdecisionsandactingonthem.

Mostofthematerialinputsleavetheurbanboundaryasoutputs.Thelargestportionofmaterialsremainingintheurbanspaceisusedinthemakingofbuildingsandinfrastructure.Thisadditiontothedurablestockaccountsforthemateriallegacyofoursociety.Somewasteremainsinthe“municipalsink”aswell(forexample,materialputintolandfills),andsootandotherpollutantsareleftbehindintheair.

Page 20: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

18 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H R E P O R T S

“Environmentaldispersion”accountsfornaturalprocessesthatremoveheat,materials,air,andwateroutoftheurbanzone.

Afinalitemamongtheactiveinputsis“regionalhiddenflows,”whichmeasuresresourcesthatsimplypassthroughthecity—forexample,ifthecityisaport.Thoseinputsmayproducesignificantfinancialflowsbutnonetphysicalflowsofmaterials.

Thetophalfofthediagramencom-passespassiveflowsthroughtheurbaneconomy—flowsnotactivatedbyhumandecisions.Thenaturalinputsincludewater(groundwater,rain),air,andsolarradiation.Thoseinputsareaffectedbythebehavioroffloraandfaunawithinthecityandbynaturalbiogeochemicalprocesses,includingthecarbon,nitrogen,phosphorus,andwatercycles.Passiveoutputsarewater,air,andheat.

Inpresentingthemodelframework,Fernándeznotesthe“socio-environ-mentalinterface”betweenthetopand

thebottomofthediagram.Thatinterfacepermitspassiveinputstomovetotheactivepartofthemodel,andviceversa.“WithMFA,wecandefinehowacitycantakeadvantageofpassiveflows,forexample,usingsolarradiationtorunsolar-thermalandphotovoltaicsystemstogeneratepower,”saysFernández.“Suchusesofpassiveflowscanmakeacitygreenerandlessdependentontheavailabilityofactiveflowssuchasfossilfuels.”

Taking a closer look

Identifyingtheflowsandusesofresourcesinacityisonlythefirststep.Thenextquestionsare:Wherearethepotentialsavingsinthissystem?Andwhereinthissystemwouldinterventionbemostpractical?

Toanswerthosequestions,theMITresearchersapplyanothermodelingtechnique—systemdynamics—tospecificresourcesflowingintothethreeurbanactivitieswithintheMFAmodel.Systemdynamicsisdesignedtohandlecomplexsystemsthatchangeover

time,withinterlinkedcomponentsthatinfluenceoneanotherandfeedbackloopsthatdrivehowthesystembehaves.

Onesystemdynamicsmodel,forexample,tracksironasaninputforconstructionandexaminesthepotentialforsavingsbyincreasingreclaimedorrecyclediron.Inthemodel,ironflowsintoconstruction,which—controlledbythedemandforhousing—generatesthehousingstock.Ironisembeddedinthehousingstockuntilabuildingisdemolished.Then,basedonthecurrentpriceofiron,theironbecomesdemoli-tionwasteorisreclaimed.Thereclaimedirononceagainbecomesaninputforconstruction—oritcanbesenttoanironstockpilewithinthecity.

Withsuchananalysis,policymakerscanexploredifferentwaystodeliverandmaintainrawmaterialsandcanassessthepossibilityofstockpilingresourcesasameansofmakingtheircitymoreresilienttosupplyinterruptions.“Itmaynotbepracticalforalotofmaterials,”notesFernández.“Howdoyoustore

inputspassive

ac�ve

outputspassive

ac�ve

water

energy

materials

water

air

solar radia�on

flows

biomass

urban economy

regional hidden flowsregional hidden

water

energy

materials

biomass

water

air

heat

imports

biogeochemical context

socioeconomic context

Goods andservices

Built environmentand infrastructure

Transporta�on municipalsink

environmental dispersion (heat, materials, air + water)

carbon

nitrogen

phosphorus

water

municipalextrac�on

municipal hidden

flows

socio-environmental interface

flora andfauna

cycles

exported municipalwaste

passiveexports

MIT urban materials flow framework

Page 21: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 19

R E S E A R C H R E P O R T S

materialthat’susefulandvaluablenowforsomepossiblefutureoccurrence?Buthavingameansofidentifyingwhatstocksshouldbestoredandhavinganexplicitprogramfordoingitcanbecritical.”

Next steps—and broadening the view

TheMITteamisnowworkingtoimplementtheirnewmodelusingdataforthecitiesofsoutherncoastalPeru.Gettingverifiableandrigorousdataonspecificresourcesisprovingtobethebiggestchallengesofar,accordingtoFernández.Heandhiscollaboratorsareusingeverysourceofdatatheycanfind,bothformalandinformal.Insomecases,theyextrapolatefromnationaldata;inothers,theyuseeconomicdataasaproxy.Forexample,ifanaveragepurchasingpowerhasbeendefinedforagivendemographic,theyassumethatthosepeoplebuyacertainamountoffood,wood,textiles,andsoon.

Meanwhile,theyareusingtheiranalyti-calframeworkforotherapplications.Inoneproject,ArtessaSaldivar-Sali,agraduatestudentinMIT’sDepartmentofArchitecture,isdevelopinga“typol-ogy”ofcitiesandderivingresourceprofilesforeachtype.Sheissurveying500citiesworldwide,groupingthemaccordingtotheirbasicattributes(forexample,location,climate,population,anddevelopmentlevel),andthendevelopingaresourceprofileappropri-ateforallthecitiesinagiven“cluster.”

Withsuchadatabase,policymakerswillbeabletocompareresourceflowsintheirowncitywithresourceflowsinothercitiesintheircluster.Ifothercitiesaremoreresourceefficient,theycanseenotonlythepotentialforimprovementbutalsowherethegreatestopportunityformakingpositivechangeis.

Looking back

Inanotherproject,Fernándezandhisteamareusingtheirmodelingframeworkplusarcheologicaldatatoestablishthematerialandenergyflowsthatservedtheurbanpopulationinanancient,pre-IncancitycalledCaral.This5,000-year-oldcity,locatednorthwestofpresent-dayLima,isthoughttohavebeenthefirstlarge-scaleurbancenterintheAmericas.Ithadapopulationofmanythousandsandasophisticatedagriculturaleconomybasedoncotton,otherplantfibercrops,andtextiles.

WhileitmightseemhardertoperformMFAforanancientcitythanforamodernone,Fernándezsaysthatinsomewaysitisactuallyeasier.“TheeconomyofCaralwasmuchlessdiversethantoday’surbaneconomiesare,sotherearefarfewerproductstomap.Also,archeologistssurveyingthesiteworkhardtodeterminethedetailsoftheeconomy.”Forexample,teamshavesiftedthroughwastepitstodetermineeveryplantspeciesthatwasbroughtin.“That’sawholelotmoredetailthanwecangetforacontemporarycityoflikesizeinPeru,”saysFernández.

Henotesthattheonlygoodexampleswehaveoftrulysustainablecitiesarethepre-fossil-fuelcities.“Interestingly,resultsfromstudyingtheancientcityofCaralmayprovideinsightsintohowourpost-fossil-fuel,‘sustainable’citiesmightlookintermsofresourceflows,houses,products,transportationmethods,andsoon,”hesays.“Cluesaboutourpathwayforwardmaybederivedfromthislookbackward.”

• • •

By Nancy W. Stauffer, MITEI

Research on the urban metabolism of cities—both modern and ancient—in the Ica region of Peru was supported by a seed grant from the MIT Energy Initiative. Additional funding has come from the MIT-Portugal Program. The MITEI seed grant also helped support a two-day workshop in January 2010 at which an international group of people working in urban metabolism began to define common standards and conventions for materials flow analysis. Work to benchmark cities around the world is now being supported by the MIT-Portugal Program. The study of urban metabolism of ancient cities is continuing with seed funding from the Holcim Foundation and funding from an Integrated Research Grant with the Singapore-MIT Alliance for Research and Technology (SMART) Centre. Further information can be found in:

J. Fernández. Urban Metabolism and a Resource Efficient Built Environment. Invited lecture. Centre for African Cities, University of Cape Town, South Africa, May 7, 2010.

J. Fernández. Urban Metabolism of Ancient Caral, Peru. Presented at the 3rd Forum 2010 Re-Inventing Construction, sponsored by the Holcim Foundation, Mexico City, April 12–17, 2010.

J. Fernández. Urban Metabolism: Past, Present and Future Resource Flows. Presented at the Alliance for Global Sustainability Annual Conference, Tokyo, Japan, March 15, 2010.

J. Fernández, P. Ferrão, and L. Rosado. Unified Methodology for Evaluating Sustainable Consumption Options in an Urban Metabolism Context. Presented at the International Society of Industrial Ecology Conference, Lisbon, Portugal, June 22, 2009.

Page 22: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

20 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H N E W S

ARPA-E clean energy awards: MIT leads again

OnceagaintheUSDepartmentofEnergy(DOE)hasrecognizedMITasanengineofenergyinnovation.OnApril29,itawarded$11millioningrantstoMIT-ledresearchprojectsfocusingonbacterialproductionofmotorfuels,anovelcarboncapturetechnology,anew“semi-solidflowbattery,”andteamsofmicrobesthatworktogethertoproducebiodiesel.AccordingtoDOE,those“ambitiousresearchprojectscouldfundamentallychangethewaythecountryusesandproducesenergy.”

ThenewgrantsarepartofthesecondroundofawardsfromDOE’sAdvancedResearchProjectsAgency-Energy(ARPA-E)—fundingthatisintendedtoaccelerateinnovationincleanenergytechnologies,increaseAmerica’scompetitiveness,andcreatejobs.

Thistime,ARPA-Eawardedatotalof$106millionto37energyresearchprojectsin17states.MITwastheleaderonfourprojectsandnamedacollaboratorononemore.Anadditionalthreewereawardedtootherorganiza-tionsinMassachusetts.

ShortdescriptionsofthefourMITprojectswiththeirleadresearchersfollow.TheprojectsspanthethreeareasoffundingdefinedintheARPA-Ecallforproposals:electrofuels—biofuelsfromelectricity;batteriesforelectricalenergystorageintransportation;andinnovativematerialsandprocessesforadvancedcarboncapturetechnologies.ThefirsttwoproposalsweresubmittedthroughtheMITEnergyInitiative(MITEI).

—ProfessorAnthonySinskeyofbiologyandhealthsciencesandtechnologyreceived$1.7milliontoengineerabacteriumthatcanmetabo-lizehydrogen,carbondioxide,andoxygenandproducebutanol,whichcanbeusedasamotorfuel.Keychallengesincludegettingtheorganismtomakeabundantamountsofbutanol—withoutthenbeingpoisonedbyit—anddesign-ingahigh-performancebioreactorsystemthatcandeliverthemixofgasesneededforthebiologicalprocesstooccur.Theresearchisbeingper-formedincollaborationwithMichiganStateUniversity.

—ProfessorAlanHattonofchemicalengineeringandSeniorResearchEngineerHowardHerzogofMITEIreceived$1milliontodevelopanewprocesscalledelectrochemicallymediatedseparation(ECMS)forthepost-combustioncaptureofcarbondioxideatcoal-firedpowerplants.AccordingtoDOE’sannouncementoftheawards,the“anticipatedbenefitsincludegreatlyincreasedenergyefficiencyforcarbondioxidecapture,easierretrofittingofexistingcoal-firedpowerplants,andsimplerintegrationwithnewfacilities.”ElectronicsconglomerateSiemensisinvolvedintheresearch.

—ProfessorYet-MingChiangofmaterialsscienceandengineeringwasawarded$5milliontodesignarevolu-tionarysemi-solidflowbatteryfortransportationthatcombinesthebestcharacteristicsofrechargeablebatteriesandfuelcells.Thisnewconceptcouldenablelighter,smaller,andcheaperbatteriesforelectricvehicles.AccordingtoDOE,theflowbattery“potentiallycouldcostlessthanone-eighthoftoday’sbatteries,whichcouldleadtowidespreadadoptionofaffordableelectricvehicles.”Collaboratorsinthe

workareRutgersUniversityandA123SystemsInc.,anMITspinoffcompanythatdevelopsandmanufactureslithium-ionbatteriesandsystems.

—ProfessorGregoryStephanopoulosofchemicalengineeringreceived$3.2milliontodevelopatwo-stagemicrobe-basedprocessthatwouldmakeoilfromhydrogenandcarbondioxide,orelectricity.Inthefirststageoftheprocess,ananaerobicorganismwouldutilizehydrogenandcarbondioxidetoproduceanorganiccom-pound,suchasacetate.Inthesecondstage,theacetatewouldbeusedbyanaerobicmicrobe,whichwouldgrowandintheprocessproduceoilthatcaneasilybeconvertedintobiodiesel.HarvardUniversityandtheUniversityofDelawarearecollaboratingontheresearch.

Inaddition,MITisnamedasacollabo-ratoronaprojecttodevelopaninex-pensive,rechargeablemagnesium-ionbatteryforelectricandhybrid-electricvehicleapplications.Theprojectwasawarded$3.2millionandisledbyPellionTechnologiesInc.,anMITspinoffcompany,withcollaborationfromBar-IlanUniversityaswellasMIT.

“ThenewARPA-EawardsfurtherinvigorateMIT’spursuitofthebestbreakthroughideasinenergy,accelerat-ingadvancesfromthebeginningoftheinnovationpipelinetotheend,”saidErnestMoniz,directorofMITEIandtheCecilandIdaGreenProfessorofPhysicsandEngineeringSystems.“Thetech-nologieschosenforsupportholdgreatpotentialforreducingcarbonemissionsinboththetransportationandthepowersectors.”

Threeawards—allintheareaofelectro-fuels—wenttootherorganizationsinMassachusetts,joiningtheregion’s

Page 23: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 21

R E S E A R C H N E W S

growingenergytechnologyinnovationcluster.TheUniversityofMassachusettsAmherst,withtheUniversityofCaliforniaSanDiegoandGenomatica,received$1millionfor“Electrofuelsviadirectelectrontransferfromelectrodestomicrobes”;GinkgoBioWorks,withtheUniversityofCaliforniaBerkeleyandtheUniversityofWashington,received$4millionfor“EngineeringE. coli asanelectrofuelschassisforisooctaneproduction”;andHarvardMedicalSchool—WyssInstitutereceived$4millionfor“Engineeringabacterialreversefuelcell.”

“InthefirstroundofARPA-EawardslastOctober,Massachusettscompaniesreceivedalargershareoffunding—22percent—thananyotherstate,and,onceagainwiththisround,theCommonwealthisshowingitscolorsasaclearleaderincleantechnologyinnovation,”EnergyandEnvironmentalAffairsSecretaryIanBowlessaid.“IcongratulateMITandtheotherMassachusettsARPA-Ewinners—allofwhicharepartnersinourpursuitofacleanenergyfuture.”

Inthefirstround,selectedprojectsincludedoneMITresearchlabandfiveMassachusetts-basedcompanies,fourofthemMITspinoffsandonewithstronglinkstoMIT.

ThenewawardsweremadethroughtheAmericanRecoveryandRein-vestmentAct,amultibillion-dollarinvestmentintendedtostimulateeconomicgrowththroughinnovation,science,andtechnology.Ofthatmoney,$400millionwasdesignatedforARPA-Eandwillsupportthreeroundsofawards.

• • •

By Nancy W. Stauffer, MITEI

MITEI awards fifth round of seed grants for energy researchRecipients of MITEI seed grants, Spring 2010

Energy-efficient desalination by shock electro-dialysis in porous media Martin Bazant Chemical Engineering

Energy-efficient algorithms Erik Demaine, Martin DemaineComputer Science and Artificial Intelligence Laboratory (CSAIL)

Solar energy conversion using the phenomenon of thermal transpiration Nicolas HadjiconstantinouMechanical Engineering

Synthesis of bimetallic nanoparticle structures as catalysts for fuel cellsKlavs JensenChemical Engineering

Advanced multi-core processor architectures for power electronics controls and simulation: enabling efficient integration of renewables into the smart grid John JoannopoulosPhysics Ivan CelanovicInstitute for Soldier Nanotechnologies Srini DevadasElectrical Engineering and Computer Science

Multi-functional self-assembled photonic crystal nanotexture for energy-efficient solid state lighting Lionel KimerlingMaterials Science and Engineering

Subsurface change detection for CO2 sequestration Alison Malcolm, Michael FehlerEarth, Atmospheric, and Planetary Sciences

Self-assembled polymer-enzyme nanostructures for low-temperature CO2 reduction Bradley OlsenChemical Engineering

A novel framework for electrical grid maintenance Cynthia Rudin Management

Novel bioprocess for complete conversion of carbon feedstocks to biofuels Gregory StephanopoulosChemical Engineering

Ultra-low drag hydrodynamics using engineered nanostructures for efficiency enhancements in energy, water, and transportation systems Kripa VaranasiMechanical Engineering

Nanofilm-based thermal manage-ment device for concentrated solar energy conversion systemsEvelyn Wang Mechanical Engineering

Experimental study of millimeter-wave rock ablation Paul Woskov Plasma Science and Fusion Center

Page 24: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

22 | Energy Futures | MIT Energy Initiative | Spring 2010

R E S E A R C H N E W S

Tsinghua/Cambridge/MIT alliance awards first research grantsOnOctober1,2009,TsinghuaUniversityinChina,theUniversityofCambridgeinEngland,andMITintheUnitedStatesjoinedforcestocreatetheLowCarbonEnergyUniversityAlliance(LCEUA).Throughthiscooperativerelationship,thethreeworld-classinstitutionswillconductcollaborativescientificresearchonlow-carbonenergytechnologiesandcarryoutpolicyresearchandanalysisonlow-carbonenergysolutions,withaparticularfocusonChina.

OnMarch25,2010,theLCEUAannounceditsfirstseedgrantawards.Theprojectsandtheirleadinvestigatorsareasfollows.

Geo-energy systems simulator: From building scale to city scale (Er-xiangSong,Tsinghua;KenichiSoga,Cam-bridge;AndrewWhittle,MIT).Districtenergysystemsbasedongeothermalenergyhavebeenavailableformorethantwodecades,butapplicationsaregenerallylimitedtobuildingsorsmallcommunities.Theirfeasibilityatthecityscalerequiresanewgenerationofmultidisciplinaryandmultiscaleassess-mentmethods.Thisresearchwilldeveloptoolsforexaminingtechnology,management,policy,andlegislationissuesrelatingtotheuseofgeothermalsystemstoprovidelow-carbon,renew-ableenergyatthecityscaleforheatingandcoolingbuildingsandinfrastructure.Thesetoolswillbuildconfidenceinlarge-scaleapplicationsofgeothermalsystemsintegratedwithurbaninfra-structureandalsowillallowcompari-sonswithothercandidatetechnologiessuchascombinedheatandpowersystemsandsolarthermalsystems.

Technology development for total conversion of sweet sorghum feedstock to biofuels(Shi-ZhongLi,Tsinghua;PaulDupree,Cambridge;GregoryStephanopoulos,MIT).Sweetsorghum

isanidealnon-foodfeedstockforethanolproduction.Tooptimizetheconversion,thisresearchwillimprovetheefficiencyofthefermentationprocess;investigatethestructureofplantcellwallstoimproveplantsforbiofuelproduction;andengineeryeaststhatcansimultaneouslyutilizepentoseandhexose(constituentsofcellwalls)andcantoleratehighlevelsoftheethanolproduced.Theoutcomecouldsurpassanycellulosicethanoltechnol-ogypresentlyunderdevelopmentduetotheutilizationofboththesolublesugarsandthecellulosicmaterialofthesorghumplant.

Innovative power generation technolo-gies for low-grade energy sources (MinZhu,Tsinghua;LipingXu,Cambridge).Industrialproductionisamajorcon-sumerofenergyinChina,andindustrialprocessesgeneratehugeamountsofwasteheatandcombustibleresidualgaseswithlowcalorificvalue.Whilesuchlow-graderesidualgasesareoftenusedinsteamboilers,muchhigherefficiencycouldbeachievedinprinciplebyusingthemincombinedcyclegasturbines.Oneobjectiveofthisprojectistoprovidenewinsightsintothedesignandoperationofgasturbinecombus-torsforlow-calorific-valuegases,inparticular,fromthepointofviewofflamefundamentalsandcombustionstability.AnotherobjectiveistoexplorethepotentialoforganicRankinecycleenginesforefficientlyconvertingwasteheattoelectricpower.TheseobjectivesarecloselyalignedwiththeChinesegovernment’spoliciestoextendgasturbinetechnologyandtoreduceemissionsandsaveenergy.

Biphasic sorbents for carbon mitigation: materials and process development (GuangshengLuo,Tsinghua;T.AlanHatton,MIT).Aminescrubbingwithselectedsolventsisaneffectivemeans

ofremovingdilutecarbondioxide(CO2)fromfluegasstreamsofcoal-firedpowerplants—thefirststepincarboncaptureandstorage.Usinghighsolventconcentrationswouldreducetheenergypenaltyandaddedcostofsuchscrub-bingbutwouldcauseunacceptableequipmentcorrosion.Thisprojectaimstodesignandengineersorbentsthatencapsulatetheconcentratedaminesolutionwithinahighlyporoussolidsupport.Becausethesolutionwillhaveminimalcontactwithequipmentsurfaces,amineconcentrationscanbehighwithnoadverseeffects.TheR&Dprogramincludessorbentdevelop-mentandprocessengineeringandreactordesignfortheeffectivecaptureandregenerationofCO2.

TheawardsareUS$400,000foratwo-waycollaborationandUS$600,000forathree-waycollaboration.Projectdurationistwotothreeyears.

Tsin

ghua

Uni

vers

ityUn

iver

sity

of C

ambr

idge

MIT

/Pho

to: D

onna

Cov

eney

Page 25: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 23

R E S E A R C H N E W S

Moniz named to Blue Ribbon Commission on America’s Nuclear Future

Why an alliance?

FormationoftheLCEUAwasmotivatedbythebeliefthatreducinggreenhousegasemissionsrequiresgoingtothesource.Together,China,theUnitedStates,andtheEuropeanUnionareresponsibleformorethanhalftheworld’senergyuseandassociatedcarbonemissions.Accordingly,thethreeinstitutionsofscienceandtech-nology—Tsinghua,Cambridge,andMIT—decidedtojoinforcestoestablishacooperative,multiregionalprogramtotakeonthechallengeofclimatechange.

Initsinitialstagesofoperation,theallianceisfocusingoneconomicandpolicymodelingforalow-carbonfuture,combustionandcarboncapture,low-carboncitiesandefficientindustry,biofuels,thermalenergyconversion,andnuclearpower.Thefirstcallforproposals,issuedinJanuary2010,elicited26proposalsinthosesixresearchareas,eachinvolvingresearch-ersatTsinghuaincollaborationwiththoseatCambridgeorMITorboth.

TheLCEUAwasinitiatedwithaninvestmentofaboutUS$10millionfromtheChinesegovernmenttofundcoreoperationsincludingcollaborativeseedprojects.Afundraisingcommitteeisnowactivelyseekingtobuildonthisinvestment.Theallianceismanagedbyasteeringcommitteemadeupoftwomembersfromeachuniversity.Thesteeringcommitteeisresponsibleforreviewingsubmittedproposalsandselectingthosetobefunded.

• • •

By Nancy W. Stauffer, MITEI

MITEnergyInitiativeDirectorErnestMonizhasbeennamedtotheBlueRibbonCommissiononAmerica’sNuclearFuture,whichwillproviderecommendationsfordevelopingasafe,long-termsolutiontomanagingthenation’susednuclearfuelandnuclearwaste,theUSDepartmentofEnergy(DOE)announcedonJanuary29.

MonizcurrentlyservesasamemberofPresidentBarackObama’sCouncilofAdvisersonScienceandTechnology(PCAST).MonizservedasDOEunder-secretaryfromOctober1997untilJanuary2001.From1995to1997,hewasassociatedirectorforscienceintheOfficeofScienceandTechnologyPolicyintheExecutiveOfficeofthePresident.MonizisalsodirectorofMIT’sLaboratoryforEnergyandtheEnvironment.HeistheCecilandIdaGreenProfessorofPhysicsandEngi-neeringSystemsatMIT,wherehehasbeenonthefacultysince1973.HehasservedasheadoftheDepart-mentofPhysicsandasdirectoroftheBatesLinearAcceleratorCenter.

Thecommission,whichwillbechairedbyformerCongressmanLeeH.HamiltonandformerNationalSecurityAdvisorBrentScowcroft,willproduceaninterimreportwithin18monthsandafinalreportwithin24months.Formoreinformation,gotohttp://www.energy.gov/news/8584.htm.

MITEI press briefing showcases energy research

OnFriday,March5,ProfessorErnestMoniz,directoroftheMITEnergyInitiative(MITEI),hostedapressbriefingonthelatestadvancesinenergyresearchatMIT.MonizkickedoffthebriefingwithanoverviewofMITEI.Morethan20journaliststhenlistenedasprominentMITenergyresearchersdescribedtheirworkandansweredquestionsfromtheaudience.Topicscoveredrangedfromnano-structuredmaterialsandliquidmetalbatteriestothermopowerwavesandanewcomputersimulationprogramthatcanshowthelong-termclimateconsequencesofemissions-reductionproposals.Thespeakersandtheirtopicsarelistedbelow.Forvideosofthepresentations,gotohttp://web.mit.edu/mitei/news/seminars/press-brief-3-5-10.html.

• Ernest MonizWelcomeandMITEIoverview

• Marc BaldoCenterforExcitonicsatMIT:anoverview

• Daniel NoceraCatalystforahighlymanufacturableandinexpensivestoragemechanismforsolarenergy

• Paula HammondMaterialsforenergyapplicationsusingelectrostaticassembly

• Gang ChenNanostructuredmaterialsforenergyapplications

• Michael StranoDiscoveryandapplicationofthermopowerwaves

• John StermanC-ROADS(ClimateRapidOverviewandDecisionSupport)policysimulationmodel

• Luis OrtizTheliquidmetalbattery,agrid-storagesolutionfordispatchablerenewableenergy

• Michael GreenstoneUnequalburdens:predictingthemortalityimpactsofclimatechangeintheUSandIndia

Phot

o: J

ustin

Kni

ght

Page 26: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

24 | Energy Futures | MIT Energy Initiative | Spring 2010

E D U C A T I O N

New design-build class weaves nature into rural Cambodian schoolRebeccaGouldwasintriguedbyane-maildescribinganewclasswhereshecouldworkwithgraduatestudentsoutsideherdisciplineanddosome-thingthatcouldaffectpeople.“WeweretodesignaclassroominruralCambodiawithnaturallighting,noairconditioning,naturalventilation,noglass,andlownoiselevelbetweenclassrooms,”saysGould,ajuniorincivilengineering.Shejumpedattheopportunityandsignedupfor“DesignforaSustainableFuture.”

“Ourclasswasprimarilygradstudentsandpeopleinthearchitecturedepart-mentorbuildingtechnology,soIwasworkingwithpeoplewhohadbeenoutinthefieldandworkedbefore,”addsGould.“Ididn’tknowhowtocreateamasterplanbeforetheclass.”

Duringthefallsemester,shelearnedhowtoanalyzeabuildinganddesignacampus.Then,duringIndependentActivitiesPeriod(IAP)inJanuary,sheandherclassmatestraveledtoCambodiafor15daystoseehowwelltheirbuildingplanswouldworkonlocationandhowastructurecanbebuiltfromscratch—avaluableexperiencefortheundergraduateandgraduatestudentsalike.

“Physicalbuildingonsiteisincredible,”saysLisaPauli,athird-yearmaster’sstudentinarchitecturewhohadworkedforthreeyearsinNewYorkasadesigner.“Inschool,wetendtobelimitedtolearningaboutconstructioninoneortwodimensions.Butworkingonsiteoffersanentirelynewunderstand-ingofhowtopouraconcreteslaborlevelasite.”

AndreaLove,afirst-yeargraduatestudentinarchitecturewhohadworkedatasustainablearchitecturefirmforsevenyears,saysshelearnsbetterby

seeinganddoingthanbyreading.“There’salotyoucanlearninthefield.Whenyouactuallytryadesigninthefieldtoseeifitworks,itgivesyoualotofexperience.”Sheaddsthatsincethestudentswereworkingwithlocalunskilledlaborers,theymodifiedtheirdesignstoadapttolocalskillsets.

Duringtheproject,the15studentsintheclassandtheirthreeinstructorscollaboratedwithaCambodianarchi-tecturefirmandpeoplefromthelocalschool.TheMITgroupalsogotsomeunexpectedhelponsite.Thelocalschoolkidswatchingthemwetbricksinasmallpondsoonjoinedin.“Thekidsdidit,too,intheircuteschooluni-forms,”saysPauli.

Project-based learning

Thedesign-buildprojectstartedasaclassrunlastfallbyMarilyneAndersen,associateprofessorofbuilding

technologyandaphysicsengineer;JohnOchsendorf,associateprofessorofbuildingtechnologyandastructuralengineer;andJ.MeejinYoon,associateprofessorinarchitecturaldesignandalicensedarchitect.Theclasswasdividedintothreeteams,eachtaskedwithdesigningaK–12greenschoolintheprovinceofSiemReap,hometothefamousAngkorWattemplecom-plex.Theyalsowereaskedtosuggestimprovementstoanexistingschoolandtobuildakitchenforagovernment-runschoolnearby.

Intheclassroom,thestudentslearnedtouseLightsolve,MIT’shome-growndaylightingsimulationprogram,andRhinoceros,acommercial3Dmodelingprogram,tohelpguidetheirprojectdevelopment.Oneteamalsousedacomputationalfluiddynamicspro-gramtomodelandanalyzeairflowsaroundthebuildingsinitsproposedcampusdesign.“Theundergraduates’

Aspartofasustainabledesignclass,ateamofMITstudentstraveledtoCambodiatotestsomeoftheinnovativeideastheyhaddevelopedintheclassroom.Onechallengewastouseavailablelow-cost,low-energymaterialswhereverpossible.Here,schoolchildreneattheirlunchwhilesittingonnewrammed-earthbenchesmadefromsoilplus5%cementbinder.

Phot

os: I

nês

Sant

os

Page 27: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 25

E D U C A T I O N

enthusiasmwasthroughtheroof,”Paulisays.“Theyjumpedintolearningthenewsoftwareprograms.”EverydesignwentthroughmanyiterationsbeforetheteamsheadedtoCambodia.

“Thisclassillustratestheextraordinaryimpactthatproject-basedlearninghasonstudentsateverylevel,”saysDonaldLessard,theEpochFoundationProfes-sorofInternationalManagementandco-chairoftheEnergyEducationTaskForce.“It’sverydifferentfromalectureinroom10-250andhasapositiveinfluenceontheirmotivationandhowtheylearninthefuture.Theygettoknowreal-worldstakeholdersandchallenges,givingtheirlearningexperiencenewrelevance.”

TheCambodianschool,knownastheJayPritzkerAcademy,isfundedbyDanPritzker,anentrepreneurwhoisbuildingEnglishK–12collegeprepara-toryschoolsinthecountry.Theschoolsarefreeandlookforbrightstudentsfromlow-incomefamiliesinSiemReap.TheaimistograduatestudentswhocouldeventuallyattendMITorothercollegesoverseas.Cambodia’seducatedclasswasdecimatedbytherulingKhmerRougeinthe1970s,leavingbehindalargelyagriculturalanduneducatedpopulation.

“ThePritzkerFoundationislookingathowtogetfromhumbleagriculturetotakingSATs,”explainsOchsendorf.ThePritzkersrevieweddesignspreparedbyeachofthethreeMITteams,plusonebyalocaldesigncompanyinCambo-dia,andmayultimatelypickelementsfromeachdesignforthenewschool.

Using what nature offers

Ochsendorfsaysstudentsandthegeneralpublicknowalotabouttheperformanceofcars,butdonotthinkofbuildingsashavingperformanceinthewaytheyuseenergyaswell.“Oneoftheprimarythingswehopefullyconveyedto[thearchitecture]studentsisthenotionthatbuildingperformanceshouldbepartofthewaytheydothings,”hesays.

InCambodia,thestudentshadtoconsiderthehumid,hotclimatewheretemperaturesoftenclimbto100°F,regionaltasteindesign,andtheorientationofbuildingsforcooling.“Theyhadtolookathowtheenviron-mentandlimitedresourcesdictatethedesignofabuilding,”hesays.

Usingavailablematerialsalsoledtosomecreativesolutions,accordingtoOchsendorf.Inthekitchenbuiltinthegovernmentschool,thestudentsreplaced30%oftheconcretewithlocal

ashfromburningricehuskstomakethefloorslab.ThisissimilartoRomanconcrete,whichismadewithvolcanicash,hesays.Themixturerecyclestheashandmakesforastrongconcrete,withlowergreenhousegasemissions.Anothermaterialinnovationwasaddinga5%cementbindertosoiltomakerammed-earthbenches.

Ochsendorfhopesthestudentswillcarryonwithsuchcreativethinkingwithinagivenenvironmentalsettingbecausedesignconsiderationsinadeveloped,colderarealikeMassa-chusettsaremuchdifferentthaninCambodia’stropical,low-infrastructureenvironment.

Multidisciplines are key

Yoonsaysthatwhiletherearedesign-buildprojectsatMITallthetime,theytypicallydon’thavethediversityoffacultyaswellaspublicserviceandsustainabilityaspectsofthisnewclass.“Ilearnedsomuchfrommycolleagues,”shesays.“AtMITweteachinside-by-sideclassrooms,butwedon’tteachallthreedisciplines[engineering,buildingphysics,andarchitecture]atthesametimeinthesameclassroom.”

Andersensaysshenoticedhowharditistoworkinaninterdisciplinaryway.“Therearelanguagedifferences.Itwas

Inadditiontodesigningalternativesforanewlow-energyschoolcampusfor800students,theMITstudentsconductedaserviceprojectbybuildingakitchenforasmalllocalschool.Intheleft-handphoto,MITgraduatestudentsinarchitecture(lefttoright)JosephNunez,AdamGalletly,ZacharyLamb,Yan-PingWang,andLeeDykxhoornmoveaconcretecisternintoplace.Intheright-handphoto,SamanthaCohen’11ofcivilandenvironmentalengineeringlaysbricksforthevaultedroofofthepantry.

Page 28: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

26 | Energy Futures | MIT Energy Initiative | Spring 2010

E D U C A T I O N

tohavereachedouttoabroaderrangeofengineeringstudentsbyadvertisingtheclassearlier,buttheverylargenumberofapplicantsfromarchitectureitselfshowsthatthiswasthekindofclassstudentswereeagertoseeoffered,”shesays.Shejudgestheclassasuccessbecauseitforcedallofthestudents—thegraduatestudents,whowereprimarilyinarchitecture,andtheundergraduatesincivilengi-neering—tothinkoutsidetheirusualcomfortzone.“Itwasarichlearningexperienceforboththemandus.Theyhadtothinkcross-boundaryandhadtoincorporatenewkindsofdesignobjectives.Ultimately,itenhancescreativity,”shesays.“Thehopeistheywillnowseedesigninamoreholisticway.”

• • •

By Lori Fortig, MITEI correspondent

asuccessonlybecausethethreeprofessorsworkedtogetherverywell,”shesays.

“Workingacrossdisciplineswassoimportant,aswasworkingwiththepeoplewhoworkandlivethere,”addsPauli.“Wewentthroughthefullcycleofadesign.”Oneexamplewastheroofforthenewschool.“Weuseddigitalmodelingsoftwaretoanalyzethebuildingandthenadjustedourroofoverhangsandwindowopeningstocreateanidealindoortemperatureforthestudents,”saysPauli.Toventilatetheclay-tiledroof,theMITteamcameupwithalayereddesignofclaytiles,avaporbarrier,corrugatedmetal,insulationboard,anairgap,andmoreinsulationboard.

Andersensaysshehadhopedtheclass,whichwascompetitive—therewere40applicants—wouldhaveattractedmoreengineers.“Wewouldhaveliked

Here,teammembersfinishbuildingthevaultthatisatthecoreofthekitchen.Afewdayslater,theschoolchildrenwereservedtheirfirstmealinthenewkitchen.

This class was supported in part by the Dirk (SB 1975) and Charlene (SB 1979) Kabcenell Foundation.

Page 29: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 27

E D U C A T I O N

UndergraduateenergyeducationatMITwastransformedthisyearwiththelaunchofthemultidisciplinary,Institute-wideEnergyStudiesMinor.Nowthattransformationhastheresourcesitneedstomoveoutofthestartupphase,thankstotwomajorgiftstotheMITEnergyInitiative(MITEI):$5.37millionfromtheS.D.Bechtel,Jr.Foundationand$2.4millionfromananonymousdonor.

Thosegiftsaddtothe$1milliongrantprovidedbytheDirk(SB1975)andCharlene(SB1979)KabcenellFounda-tioninJune2007—beforetheminorwasestablished—todevelopnewenergy-relatedcurriculaandstrengthenexistingprograms.Todate,theMITEIEnergyEducationTaskForcehasputtheKabcenellgranttouseinthecreationorrevisionof10classesandfourworkshopsspanningthepriorityareasoftheminor:energyscience,energytechnologyandengineering,andenergysocialscience.

Oneoftheoriginalgoalsoftheminorwastotransformundergraduateenergyeducationfromadiffusesetofofferingstoacoherentandcoordinatedcurricu-lumaccessibletoallundergraduates.Therewasaprofusionofenergy-relatedclasses,buttherewasnoclearpathwayforstudentsinterestedinenergy.“MIThasavastcoursecatalogthatcanbedauntingforanystudentlookingforaclassthatinterestshimorher,”saysseniorChristopherCarper.“ThecurriculumoftheEnergyStudiesMinorpointsoutrelevantcoursesforinter-estedstudents,regardlessofmajor.”

TheenergyminorisintendedtocomplementanymajorinanyMITschool,inparttoencouragestudentstotakeclassesindisciplinesthattheymaynototherwiseexplore.Thatrequirementwasaneye-openerfor

Carper,amechanicalengineeringmajor.Inchoosinganelectivefromalistofabouttwodozenpossibilities,hesettledonanarchitectureclass.Itwasfullofnewtopicsforhim—fromstudyingthevaporandthermalpermeabilityofafaçadeinordertopinpointcondensa-tionriskstodeterminingtheeffectofafaçade’sthermalmassontemperaturestabilization.“BeforetakingIntroduc-tiontoBuildingTechnology,Ineverunderstoodhowapplicablemechanicalengineeringistosustainablebuildingdesign,”hesays.

Focus on project-based learning

Overfiveyears,thegiftfromtheS.D.Bechtel,Jr.Foundationwillsupportthecreationandimplementationofeightnewenergy-relatedclasses,halfofwhichwillbeproject-basedclasseswithanemphasisonappliedskills.Thegoalistoensurethatthecurriculum

coversthewidestpossiblespectrumofenergy-relatedtopicsandthatitissufficientlyflexibletoaccommodateanyinterestedstudent.Eachyear,acallwillbeissuedtoalldepartmentsforproposalsfromfacultyinterestedindevelopingeitherproject-basedortraditionalclasses.“MIT’snewenergyminor,withitsmultidisciplinaryapproachandemphasisonproblem-focusedlearning,isjustthekindofeducationthatengineersneedtomakeadifferenceinenergy,”saysLaurenDachs,presidentoftheS.D.Bechtel,Jr.Foundation.“Weareexcitedtohelptheminormoveintoitsnextphaseofdevelopment.”

Thegiftwillalsobeusedtoidentifyandrenovateproject-basedteachingspacetoservemultipleclassesanddisciplines.Project-basedclassesmayinvolveactivitiesrangingfromfeasibilitystudiesandsystemsimula-

Two major gifts bolster MIT energy minor

“D-Lab:Energy”labinstructorSarahReedGofmechanicalengineering(secondfromright)andmentorGwynJones,instructorintheEdgertonCenter(secondfromleft),discussmaterialoptionsforatoolthatTylerLiechty’10(left)andJulianaVelez’11designedtoimprovethespeedandeffectivenessofphotovoltaicpanelcuttingataNicaraguanmanufacturerofsolarcellphonechargers.

Phot

o: J

ustin

Kni

ght

Page 30: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

28 | Energy Futures | MIT Energy Initiative | Spring 2010

E D U C A T I O N

tionstothedesignandconstructionofprototypedevices.Suchactivitiesoftenhaveneedsnotmetbytraditionalclassrooms—fromlaboratoryequip-mentandspacetosimplestoragefacilities.Project-basedlearningisonewaytheminorhelpsstudentsdevelopabroadviewofenergyandtheskillstotacklereal-worldchallenges.JeffreyMekler,aseniorinaeronauticsandastronautics,wantedtogetabetterunderstandingofenergyalternativesafterbeinginvolvedinaclassprojectonhowtoimprovewindturbineperformance.“Theminorfocusednotonlyonenergytechnologiesbutalsoonthelargersocial,political,andeconomiccontextsthatenergytechnologies—andperhapsmoreimportantlyengineers—mustoperatein,”hesays.“Myclassesencouragedmetothinkaboutsolutionstoourenergychallengesthatcombinetechnologieswithpolicyandmarketsolutions.”

Thethirdcomponentofthegiftfocusesonsharingthenewapproachesandmaterialsoftheenergyminorwithfaculty,students,andhighschoolteachers.MechanismsforsharingincludeMIT’sOpenCourseWare(OCW),webresources,andprintandelectronictextbooks.Afterthreeyears,15classeswillbeofferedonanewOCW“energyplatform.”Withtheseactivities,thesupportfromtheS.D.Bechtel,Jr.Foundationwillhelpimproveenergyeducationaroundtheglobe.

AsignificantachievementoftheenergyminorhasbeentosupportclassesthatbringtogetherfacultyandstudentsfromdiverseareasoftheInstitute.However,thatintegrationcreatesdifficultiesbecauseaclassspanningdisciplinesdoesnotfallwithinany

singledepartment’sareaofrespon-sibility.Facultyleadersareabletoengagecolleaguesfromacrosscampustoco-teachtheirclasses,butthereisnoclearsourceoffundingtosupportgraduateteachingassistants.Theanonymousgifthashelpedestablishafundforthatimportantpurpose.

RobertArmstrong,ChevronProfessorofChemicalEngineeringanddeputydirectorofMITEI,says,“TheenergyminorishavingatransformativeeffectonoureducationprogramandwillhavealastingimpactonMIT.Thetworecentgiftsarehelpingustoensurethattheminorisrobustandthatwecansustainanenvironmentofeducationalinnovationinthisimportantarea.”

ForoneofthefirstMITstudentstograduatewiththeminor,thatinnova-tionhasbothpersonalandpracticalimplications.“IcanonlyimaginethattheEnergyStudiesMinorwillhaveapositiveimpactonmycareeropportunities,”saysCarper.“ItmaybethemostvaluableminoratMITbecauseoftherapidgrowthofenergy-relatedindustriesaroundtheworld.”

Teaching and learning about energy...

JuliePaul’10,astudentin“D-Lab:Energy,”showsoffherteam’sprototypeofa“stove-within-a-stove,”aninsertfabricatedofaluminumsheetingtoenableresidentsofruralNicaraguatosubstitutecleaner-burningcharcoalforwoodasacookingfuel.

ProfessorVladimirBulovicofelectricalengineeringandcomputersciencedescribeselectron“tunneling,”aquantum-mechanicalphenomenonthatgovernschargetransportinsemiconductingmaterialsusedinphotovoltaicsolarcells,duringalecturein“Electromag-neticEnergy:FromMotorstoLasers.”

Phot

o: J

ustin

Kni

ght

Phot

o: J

ustin

Kni

ght

Page 31: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 29

...from the lab to the lecture hall

StudentsdiscussenergyefficiencypoliciesandpoliticswithProfessorJudyLayzerofurbanstudiesandplanning(atfarleft)inhernewundergraduateseminar,“ThePoliticsofEnergyandtheEnvironment.”

MargaretLloyd’12reviewsfindingsontravelemissionsduringherteam’spresentationofanupdatedMIT“carbonfootprint”studycompletedduring“ProjectsinEnergy,”across-disciplinaryclasstargetingfreshmenandsophomoresandsupportedbythed’ArbeloffFundforExcellenceinEducation.

Summer opportunities for energy professionals

MITProfessionalEducation—ShortProgramsofferscoursesoftwotofivedaysinlengthontheMITcampusduringthesummer.ShortProgramsaregearedtoworkingprofessionalsinengineeringandscience,andtheyattractaworldwidestudentbodywithmanydifferentinterests.Professionalsfromindustry,government,andaca-demiacometolearnfromMITexpertsandbringactionableinformationbacktotheirorganizations.MITShortProgramsreachabroadspectrumofprofessionalswhocancommunicateindustryperspectives.Inkeepingwiththestronginterestinenergyonaswellasoffcampus,ShortProgramswillofferthefollowingcoursesforsummer2010.

• Biofuelsfrombiomass:technologyandpolicyconsiderations(G.Stephanopoulos)

• Carboncaptureandstorage:science,technology,andpolicy(R.Juanes,H.Herzog)

• Cleanenergytechnology:understand-ingmaterialslimitationsandopportuni-ties(G.Ceder,J.Grossman,H.Tuller)

• Designofmotors,generators,anddrivesystems(J.Kirtley,S.Leeb)

• Energyinthecontextofclimatepolicy:strategicchallengesandopportunities(M.Webster)

• Modelingandsimulationoftransportationnetworks(M.Ben-Akiva)

• Nuclearplantsafety(M.Kazimi,N.Todreas)

• Organic,molecular,andnanostructuredelectronics:physicsandtechnology(V.Bulovic,M.Baldo)

• Presentandfutureinternalcombustionengines:performance,efficiency,emissions,andfuels(J.Heywood,W.Cheng)

• Solarenergy:capturingthesun(D.Nocera)

Formoreinformation,[email protected].

E D U C A T I O NPh

oto:

© D

onna

Cov

eney

Phot

o: J

ustin

Kni

ght

Page 32: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

30 | Energy Futures | MIT Energy Initiative | Spring 2010

E D U C A T I O N

Energy Futures Week 2010

EnergyFuturesWeek2010wasfilledwithenergy-relatedeventstoinspireandeducatetheMITcommunityaswelooktothefutureofsustainableenergy.TheweekwaspartofMIT’sIndependentActivitiesPeriod(IAP)inJanuary,whichoffersabreakfromtheacademicroutineofthefallandspringsemesters.Morethan20events—includinglectures,paneldiscussions,tours,informationses-sions,strategygames,andworkingsessions—ensuredthatEnergyFuturesWeekembodiedthespiritofIAP.

Above:ProfessorJohnStermandescribesC-ROADS,asimulationmodelthatcanquicklycalculatetheclimateimpactsofspecificmitigationproposals.Aboveright:AfterSterman’spresentation,participantsinthesessiondividedintoregionalgroups,negotiatedemissions-reductionproposals,reconvenedforplenarypresentations,andrantheirproposalsthroughthesimulation.TheUSDepartmentofStateusesC-ROADStoanalyzetheclimateimpactsofvariouscountry-levelproposalsandsharedthatunderstandingwithotherpartiestothe2009UNClimateChangeConferenceinCopenhagen.Seehttp://climateinteractive.orgformoreinformation.

Left:LucyFan’12helpstomakeBuildingE52moreenergyefficientbyapplyingcaulktoawindowgap.Duringthisworkshop,stafffromMIT’sDepartmentofFacilitiesdiscussedanddemonstratedbuildingweatherizationtechniques.

Clockwisearoundtablefromleft:LindaPattonofHousing,RuthDavisofFacilities,RyanGrayandPeterNormanoftheMITLibraries,andWilliamVanSchalkwykoftheEnvironment,Health,andSafetyOfficebrainstormstrategiestopromotegreenerpracticesfortheoffice.TheinteractiveGreenAmbassadorsworkshopprovidedinsightsonbehaviorchangeresearchtostudentsandstafffromallcornersoftheInstitute.(Seepage32formoreonMIT’sGreenAmbassadors.)

KellyRan’12discussesdetailsoftheMITSolarElectricVehicleTeam’slatestcar,Eleanor,atthestudentprojectsshowcaseduringEnergyFuturesWeek.Theeventfeaturedtheworkofstudentsactiveinresearchandgroupsoncampusthatrevolvearoundenergy,theenvironment,andsustainability.

Phot

os: J

ustin

Kni

ght

Phot

os: J

ustin

Kni

ght

Phot

o: J

enni

fer D

iMas

e, M

ITEI

Page 33: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 31

C A M P U S E N E R G Y A C T I V I T I E S

Fund helps energy efficiency bloom across campusOnehurdlecollegesanduniversitiesfaceastheytrytoimproveenergyefficiencyisfiguringouthowtopayforit.Thelong-termsavingsfromthesekindsofprojectscanbesignificantforalargeinstitution—doneright,suchaplancouldsaveMITseveralmilliondollarsonitsenergybilleachyear.Buttheseenergyprojectsrequiresubstantialup-frontinvestment,andthatcanbechallengingforschoolsstrugglingwithbudgetcuts.

MITisonapathtomeetthischallenge,thankstoa$1milliongiftfromJeffreySilverman‘68aboutoneyearago.Withthismoney,theInstitutehasestablishedafundtosupportcampusenergyandefficiencyprojectsthathaverapid“paybacks”—orsavingsthataccrueandthencanbereinvestedintoadditionalprojects.

Silvermanwasintriguedbythisgivingopportunitybecauseitallowedhimtomakeamajordifferenceathisalmamaterwhilealsoleveraginghisinitialinvestmentsothatitcouldgrowandbeusedindifferentways.“Theideaofprovidingtheseedmoneythatwasgoingtocreatesavingsandthengetreinvestedintomoresavingsinterestedme,”hesaid.Hewasalsoimpressedthatthefundwasdesignedsothatthesavingswouldberigorouslymeasured,documented,andverified.

Silverman,asuccessfulcommoditiestrader,firstheardabouttheinvestmentopportunityfromTheresaM.Stone,MIT’sexecutivevicepresidentandtreasurer,whoalsoco-chairstheCampusEnergyTaskForce.ThetaskforcewasestablishedbytheMITEnergyInitiativetohelpMIT“walkthetalk”onenergyuse.Stonebudgeted$500,000inseedmoneyin2008topromoteenergyconservationworkinresponsetoareviewbytheDepartmentof

FacilitiesandastudentteamfromtheMITSloanSchoolofManagement’sLaboratoryforSustainableBusiness.ThatreviewdeterminedthattheInstitutecouldsaveabout$6millioneachyear—or10%ofitsannualenergybill—throughconservationprojectsthathavequickpaybacks.Stone’steamthendevelopedalistofappropriatepaybackprojects,estimatingtheywouldcostMIT$14millioninoneupfrontinvestment.

SilvermanwaseagertocontributetoStone’seffort,andsoinApril2009heformedtheSilvermanEvergreenEnergyFund.DaviddesJardins‘83,aconsultantandinvestorwhoisalsopassionateaboutcampusenergyissues,hassincedonatedanadditional$500,000totheeffort.

“ThegiftsmadebyJeffandDavidmarkedvotesofconfidenceinourcommitmenttoimplementdisciplined,measurableimprovementsdesignedtoimprovecampusenergyefficiency,”Stonesays.“Theirseedmoneycontin-uestobearfruitfortheMITcommunityandforthosewhovalueourexample.”

Todate,thefundhaspaidtoupgradethelightingsystemsintheRayandMariaStataCenterforComputer,Information,andIntelligenceSciences,aswellastheStrattonStudentCenter.Thetwoprojectsrequiredacombinedinvestmentofnearly$600,000andhaveresultedinestimatedannualsavingsofabout$185,000,meaning

theywillhavepaidforthemselvesafteraboutthreeyears.

AnothermajorfocusoftheSilvermanfundhasbeentorecalibratethenearly200fumehoodsintheDreyfusChemis-tryBuilding(Building18).Fumehoodsaremassiveventilationdevicesthatprotectresearchersfrompotentialchemicalexposurebysuckingupairandexhaustingitoutside—andtheyrequirealotofenergy.Asignificantamountofthisenergyconsumptioncanbereducedbyloweringthevolumeofairthatmovesthroughthehoodswhilestillprovidingthesamelevelofprotec-tion.Thisprojectcostabout$430,000andwillsaveabout$160,000annually.

ThesavingsfromthefirstroundofprojectsfinancedbytheSilvermanfundwillbereinvestedintoasecondroundofenergyconservationwork.Theseadditionalprojectswillmostlikelyincludemorelightingretrofitsandfumehoodwork.Theycouldalsoinvolvestrategiesforreducingheating,ventilation,andair-conditioningneedsinunoccupiedspaces.Afterthissecondroundofinvestmentsisdeployed,Stonewillexaminethefund’seffectivenessinmeetingtheInstitute’sgoalsforpaybackopportunities.

InformationonotherinnovativecampusenergyprogramsatMITandanewlyreleasedtaskforceupdatereportareavailableathttp://web.mit.edu/mitei/campus.

• • •

By Morgan Bettex, MIT News Office

Page 34: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

32 | Energy Futures | MIT Energy Initiative | Spring 2010

C A M P U S E N E R G Y A C T I V I T I E S

MIT ambassadors spread the word on ways to “walk the talk” JessicaE.GarrettwasalreadygivingherEdgertonCentercolleaguestipsongoinggreen—takethestairs,bringreusablecontainerstothelunchtrucks,turnofflights—whenshefoundoutaboutanewCampusEnergyTaskForceprogramaimedatpromotingsustain-ablepracticesoncampus.Now,whenshejokinglymakesherco-workersearntherighttodisplay“Iwalkthetalk”postcardsontheirofficedoors,GarrettisperformingherdutyasaGreenAmbassador.

TheGreenAmbassadorsprogramcreatesandempowersanetworkofstudent,staff,andfacultyvolunteerstopromotesustainablepractices.Energyconservation,greenpurchasing,alterna-tivetransportation—thesky’sthelimit,solongasitmakesMITalittlegreener.

“TheGreenAmbassadorsprogramseekstohelpestablishMITasamodelofcommunity-engagedsustainabilitythroughstrengtheningoursustainabil-itycommunity,providingandsharingcriticalinformationandknowledge,driving‘place-based’action,supportingcollaboration,andsharingbestprac-tices,”saysStevenM.Lanou,deputydirectorforenvironmentalsustainabilityandamemberoftheCampusEnergyTaskForceoftheMITEnergyInitiative.

Therearecurrently172GreenAmbas-sadorsacrosscampus.OneofthemisPeterH.Fisher,professorofphysics.“Itrytokeeppeopleoffairplanes.Imoveprinterstowheretheyareinconvenientsopeopleprintless.Iputtherecyclingbinnearthedeskandtheregularwastebasketontheothersideoftheroom,”hesays.“Centralismybeliefthatlivingwellandlivingsustainablyaredeeplyrelated.”

TheGreenAmbassadorsprogramhelpsindividualsshareinformationand

enablesbestpracticesthatcanmakeadifference.“Atabasiclevel,GreenAmbassadorsshowbyexamplethechoicesandpracticesthatcanbeadoptedtohaveanimpact,”Lanousays.Hisofficecoordinatesthedevelop-mentofoutreachandeducationalmaterialaswellasnetworkingtools.Lanou’sstaff,alongwithanactiveandengagedsteeringcommitteeofstudentandstaffvolunteers,hostseventstostrengthenthenetworkandhelpsGreenAmbassadorsidentify“greening”opportunities.

Expanding on past success

TheGreenAmbassadorsprogramisanoutgrowthofcampusworkinggroupsinrecyclingandotherinitiativesthathavebeeninexistenceforaslongas10years,accordingtoNiamhKelly,assistantofficerfortheEnvironment,Health,andSafetyOffice(EHS),whohasbeenworkingwithLanoutodeveloptheprogram.

StudentswhohelpedsetthestagefortheprogramincludePamelaLundin,graduatestudentinchemistry,andJialanWang,graduatestudentinfinancialeconomics.Foundersofthestudentgroup“ClosingtheLoop,”LundinandWangspearheadedarecentpilotprojectthatslashedafter-hourselectricityuseinBuildings16and56.

“Therehavebeen‘greening’initiativesoncampusforalongtime,butwithoutaname,”Kellysays.“Theambassadorsprogramisalittlebroaderthanprevi-ouseffortsbecauseitincludeselementssuchaspurchasingandgreenevents—andissponsoredbyanInstitute-wideinitiative.”

Inresponsetorequestssuchas“Whatcanwedoinouroffice?”KellyandLanoutooktheirshowontheroadwith

presentationsthathavesinceturnedintohandoutsabouttopicssuchashowtoincreaseenergyefficiencyandrecyclingandhowtosetcomputers,monitors,andprintersonenergy-savingmodes.UsingtheirownN52office-matesasguineapigs,KellyandLanoupostsustainability-relatednewsonbulletinboards,printdouble-sided,andvanquishscreensavers,Kellysays.LanouplanstopostdataonhowmuchenergyisconsumeddailybytheEHScopymachines,computers,andwatercoolers.

“Asindividuals,weoftenfeelpowerlesstomakeanimpactonglobalclimatechange.Whenanindividualswitchestoabetterpractice,theimpactismulti-pliedasotherslearnofandadoptthenewpractice.Whenindividualactionbecomescollectiveaction,theaggre-gatecanhaveaverylargecumulativeimpact,”Lanousays.

Breaking down barriers

AccordingtoKatA.Donnelly,anEngineeringSystemsDivisiongraduatestudentresearchingbehaviorchangeandenergyefficiencywhopresentedherfindingsataGreenAmbassadorseventduringIndependentActivitiesPeriod2010,oneofthereasonspeopledon’tconserveenergymaybethefactthatenergyisinvisible—there’snofeedbackfromthesystemonhowmuchwe’reusing.

Donnellyadvocatesanapproachcalledcommunity-basedsocialmarketing,whichfocusesonbehaviorchange.Equallyeffectiveinoffices,dormitories,andlaboratories,socialmarketinginvolvesputtingyourselfinotherpeople’sshoestounderstandtheirbiasesanddeterminetheprobabilityandpotentialimpactofkeybehaviorchanges.Inthisway,shesays,Green

Page 35: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 33

C A M P U S E N E R G Y A C T I V I T I E S

Ambassadorscanhelpuncoverbarrierstosavingenergyanddesignapproachestobreakdownthosebarriers.

Socialmarketingreliesonincentivesandeducation—tacticsnowbeingusedbyMITambassadors.TheCampusEnergyTaskForcehaslaunchededuca-tionalstrategiessuchasposterande-mailcampaignsthatquantifythesavingsassociatedwithusingrevolvingdoors,closinglabfumehoodswhennotinuse,andturningofflights.“WeprovidedsomeharddatathatwouldanswerthequestionsatypicalMITcampusmemberwouldask,”Kellysays.

Garrett,theEdgertonCenterinstructorandGreenAmbassador,knowsthevalueofincentives.Shepubliclyacknowledgesandcongratulatesher“green”colleaguesatstaffmeetings—atacticDonnellywouldapplaud.“It’scheesy,butitdoesgetpeopletellingme

Fromleft,JessicaGarrettandAmyFitzgerald,instructorsintheEdgertonCenter,andPaulaCogliano,administrativeassistantintheOfficeofExperientialLearning,bringreusableplasticcontainerstoalunchtruck.GarretthadbeenadvocatingsuchsustainablepracticesevenbeforeshejoinedtheteamofGreenAmbassadors.

whattheyaredoingandthinkingofwaystheycouldmakemorechanges.Amazingwhatpeoplewilldoforafreepostcard.”And,shemightadd,achancetohelpsavetheplanet.

• • •

By Deborah Halber, MITEI correspondent

Phot

o: c

ourte

sy o

f Jes

sica

Gar

rett,

MIT

Page 36: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

34 | Energy Futures | MIT Energy Initiative | Spring 2010

O U T R E A C H

Students tackle the climate crisis from Cambridge to Copenhagen WhileworldleadersattherecentUnitedNationsclimatesummitwrestledwiththethornypoliticssurroundingglobalagreement,MITstudentsandtheirpeersfromaroundtheworldwereinperfectaccord:Theypledgedtomaketheirowncampusesgreenerandtospreadthewordofstudent-ledinitiativesthatseektotackleclimatechange.

MITstudentstraveledtoCopenhagenduringthe2009UNClimateChangeConference(COP15)toattendaworkshopconvenedbyYalestudentspartneringwiththeUniversityofCopenhagenandtoorganizeandattendeventsthroughtheWorldStudentCommunityforSustainableDevelopment(WSC-SD).

Theworkshop,attendedbymorethan60universitystudentsfromtheUnitedStates,Canada,Sweden,Denmark,Switzerland,Australia,Japan,andChina,exploredwaysstudentsandtheirinstitutionscanminimizeenviron-mentaldamageandpromotesustain-ablesolutions.TheeventtookplaceDecember13–14attheUniversityofCopenhagen.Inthecomingyear,universityteams,includingMIT’s,willimplementprojectsontheircampusesandreportbacktothegroup.Thehopeisthatbysharingbestpractices,universitiescanhelpinspireinstitu-tionalchangebeyondtheircampuses.

KatherineDykes,EngineeringSystemsDivisiongraduatestudent,vicepresidentoftheMITEnergyClub,andastudentrepresentativeontheMITEnergyInitiative’sCampusEnergyTaskForce,presentedanoverviewofMIT’smanycampusinitiativesattheworkshop.“Itwasreallygreattoseethekindofbottom-upeffortsthatarehappeningallovertheglobe,as

evidencedbytheglobalparticipationattheevent,”shesays.

Dykes’presentationaddressedtheInstitute’scurrentstatusandfuturedirectionsfor“greeningMIT.”Shediscussedpossiblesourcesoffundingforcampus-focusedinitiativesandhowtotrackimplementationofthoseinitiatives.Dykesreportedtoworkshopparticipantsonmorethan20MITactivitiesthatrangefromconservingwater,compostingfoodwaste,andmeteringenergyuseindormstoretrofittinglightingandheatingsys-tems,poweringdowncomputerswhennotinuse,andbuildingsilverandgoldLEED-certifiedbuildings.Sheplanstospearheadastudentefforttoassesscurrentandpastprogramsdirectedatcampusenergy,environmental,and

sustainabilityissuestoidentifywhat,amongMIT’smanyandvariedprojects,isandisn’tworking.“Ihopethatthestudywearedoingwillproviderealinsightastohowandwhyourenergyandsustainabilityprogramsaredoingwellandprovideguidanceforfutureefforts,”Dykessays.

ShesaysthebestthingabouttheCopenhagenworkshop“wasthecon-nectionsformedbetweenthedifferentuniversitygroups.It’sagreatwaytosharebestpracticesandkeepeachotheraccountableforwhatweproposetodo.”

Inanefforttogaugehowwellcampussustainabilityprogramsareworking,theMITstudentteamwillcollaboratewithcounterpartsatYaleandCarnegie

KatherineDykes,anMITgraduatestudentintheEngineeringSystemsDivision,wasamongtheparticipantsatastudent-runworkshopongreeninguniversitycampuses,heldduringtheUNClimateChangeConferenceinCopenhageninDecember2009.Dykestoldworkshopattendees—morethan60studentsfromuniversitiesworldwide—aboutMIT’smanyinitiativestocutcampusenergyuse,reduceenvironmentalimpacts,andincreasesustainability.

Phot

o: J

ustin

Kni

ght

Page 37: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 35

O U T R E A C H

MellonUniversityonhowcampusesbenchmarkandmeasuretheimpactoftheirprograms.Inthisearlystageofthestudy,theactualmethodsofmeasuringandmonitoringarestillbeingdiscussed,Dykessays.MITEI’sCampusEnergyTaskForcesupportedanundergraduatestudenttoassistwiththeprojectduringspringsemester.

Inspiring thought-leaders

TwootherstudentstraveledtoCopenhagen.AsmembersofSustain-ability@MIT,astudentumbrellagroup,AaronThom,aseniorincivilandenvironmentalengineering,andKatherineE.Potter,agraduatestudentinearth,atmospheric,andplanetarysciences,areautomaticallyaffiliatedwiththeWSC-SD.Thisgroupbringstogetherstudentcommunitiesworkingonenvironmentalsustainabilityallovertheglobe,soCopenhagenwasaprimefocalpoint.Fromtheconference,PotterandThom“contributedtoablog(http://cop15.wscsd.org/),releasedane-bookofstudents’connectionstoclimatechange(http://wscsd.org/2009/12/11/resolutions-21-young-leaders-on-climate-change/),andheldaget-togetherunitingstudentspresentatCOP15,”Pottersays.

TheWSC-SDe-book,RE:SOLUTIONS—21 Young Leaders on Climate Change,showcased20innovativestudent-ledprojectsrangingfromasolar-poweredopenaircinematoreforestationpro-jects,alldemonstratingthatstudentsworldwidearetakingtheleadontacklingclimatechange.Thepublicationaimsto“inspirethought-leadersinbusiness,academia,andcivilsocietytoacknowledgeandsupportstudentinitiatives,”accordingtotheWSC-SD.

JohnSterman,theJayW.ForresterProfessorofManagementanddirector

oftheMITSloanSchoolofManage-ment’sSystemDynamicsGroup,alsoattendedtheCopenhagenconferencealongwithateamfromClimateInteractive—aconsortiummadeupoftheMITSloangroup,theVermont-basedSustainabilityInstitute,theHarvard,Mass.-basedsoftwarecom-panyVentanaSystems,andmanyMITalumni.ClimateInteractivedevelopedtheC-ROADSclimatepolicysimulationmodelusedbytheUSnegotiatingteam.

“StudentssuchasKatherineDykesandtheotherswhoattendedtheCopenhagenclimateconferencenotonlyhadachancetoseetheinterna-tionalnegotiationprocessupclose,butbyorganizingandspeakingatavarietyofworkshopsandsideeventstheywereleadersthemselves,”Stermansays.“Gettingoutofthelabandengagingwithpolicymakersisavitalpartofthat‘mensetmanus’MITspirit.”

Bytheendoftheconference,aftereightdrafttextsandall-daytalksamong115worldleaders,PresidentBarackObamahelpedbrokerapoliticalagreementamongChina,SouthAfrica,India,Brazil,andtheUnitedStates.Theso-calledCopenhagenAccordacknowledgesthatclimatechangeisoneoftoday’sgreatestchallengesbutdoesnotcommitcountriestospecificemissionsreductions.Callingthedeala“meaningfulagreement,”Obamasays,“Thisprogressisnotenough.Wehavecomealongway,butwehavemuchfurthertogo.”

“Howinspiringitwastoseethemassesofprofessionals,politicians,scientists,andtheworldcommunity,youngandold,descenduponCopenhagenfortheclimatetalks,”Pottersays.“Therewasnodoubtthattheworldseestheneedforaction—nopiddlydebateovertherealityofitall.”MITstudentsand

theircounterpartsfromaroundtheworldshowedthatwhenitcomestomediatingtheworld’sclimatewoes,universities’actionsareliketheirwords:loudandclear.

• • •

By Deborah Halber, MITEI correspondent

Page 38: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

36 | Energy Futures | MIT Energy Initiative | Spring 2010

O U T R E A C H

A silver lining to the Copenhagen cloud?

AlthoughDecember’sUNClimateChangeConferenceinCopenhagenwaswidelyportrayedasafailure,somespeakersatanMITpaneldiscussiononFriday,February5,suggestedthatitsresultsactuallyrepresentrealprogressintheworld’seffortstoheadoffthedangersofclimatechange—andthatinfacttheresultsmayhavebeenbetter,inthelongrun,thananoutcomethatmostpeoplewouldhaveconsidereda“success”atthetime.

TheCopenhagenconference“haselicitedsomestrongreactions,bothpositiveandnegative,”saidMITEnergyInitiativeDirectorErnestJ.Monizasheintroducedthepanelistsfortheevent,called“TheRoadfromCopenha-gen.”OfficiallyknownastheCOP15conference(15thConferenceoftheParties),somehavetakentocallingit“Copout15,”hesaid.“Ataminimum,itwasaninterestingprocess.”

RobertStavins,professorofbusinessandgovernmentatHarvard’sKennedySchoolofGovernment,openedwitharelativelyupbeatassessment.“Whatwouldhavebeenpossible,butIthinkunfortunate,wouldhavebeenasignedinternationalagreement”attheconclusionoftheconference,hesaid.“Unfortunate,becausetheonlyagree-mentfeasiblewouldhavebeen‘Kyotoonsteroids,’”hesaid—thatis,anagreementthatperpetuatedthestruc-tureoftheKyotoAccordsignedin1997(whichcalledforreductionsinemis-sionsby39industrializednations).Thatagreementhadnosetrequirementforactionbyemergingeconomies,andStavinssaidthatanysimilaragreementfromCopenhagenmighthavebeensignedbyUSrepresentativesattheconference,butwouldneverhavebeenratifiedbytheUSSenate.

WhatemergedbytheendoftheCopenhagenprocessinstead,Stavinssaid,wasreal,substantivenegotiationbeingcarriedoutdirectlybyheadsofstate,includingPresidentBarackObama.Stavinscalledthissortofnegotiation“virtuallyunprecedented.”Inthiscase,thehigh-leveltalksledto“whatIwouldcharacterizeasasignificantpoliticalaccord,”which,hesaid,addressedthetwokeydeficienciesofKyoto:Ithasexpandedtheagree-menttoinclude,sofar,nationsrespon-sibleformorethan80%ofallgreenhousegasemissions,anditextendedthetimeframecoveredbytheagreementfrom2012to2050.

MichaelGreenstone,the3MProfessorofEnvironmentalEconomicsatMIT,listedallthereasonstheUnitedStatesoughttochangeitspolicyonclimatechange.Greenstone,whojustreturnedtoMITafterayearaschiefeconomistontheCouncilofEconomicAdvisersattheWhiteHouse,saidthatprojec-tionsoftheimpactofthemeasuresnowbeingdiscussedsuggestthattheseproposalswillbarelymakeadentintheproblem.Healsosaidthatatargetofstabilizingcarbondioxidelevelsintheatmosphereat450partspermillion,assomehaveproposed,isnotpoliti-callyfeasible.Andhecomplainedthatcurrentproposalstoachieveemissionsreductionsrelyonmeasuresthatcannotbeverified.

“Currenttechnologiestomonitorreductionsareverypoor,”hesaid.Hesuggestedseveralpolicymeasurestoaddresstheseissues.Herecommendedashiftofresearchanddevelopmentfundingawayfromnewenergysourcesandtowardloweringtheemissionsofexistingfossil-fuelpowerplants,anddevelopingcarbonsequestrationtechnologiesandgeoengineeringsystemstomitigatetheeffectsof

increasedgreenhousegases;devoting“incredibleresources”towarddevelop-ingtechnologiesforaccuratelymeasur-ingemissions;andemphasizingthedevelopmentofatrueglobalmarketforcarbontrading.

StevenAnsolabehere,professorofpoliticalscienceatMITandHarvard,saidtheSupremeCourtdecisionlastyearthatgavetheEnvironmentalProtectionAgency(EPA)thepowertoregulategreenhousegaseshas“changedthegame”politically.“Myeconomistfriendstellmeit’stheworstway”foremissionstoberegulated,ratherthanhavingitdonethroughlegislation,hesaid,“butpolitically,itchangesthestatusquo.”Before,ifCongressfailedtotakeaction,therewouldbenoregulationofgreenhousegases;now,ifCongressdoesn’tact,theEPAcouldrequiremuchmoresuddenanddrasticchangessuchasimmedi-atelyshuttingdowncoalplantsthatareheavyemittersofcarbondioxide.Asaresult,hesaid,thatputspressureonCongressandmakesitmorelikelythatabillwillbepassedthisyear.

EdwardSteinfeld,directoroftheMIT-Chinaprogramandassociateprofessorofpoliticalscience,saidthatacrucialcomponentofanyglobalagreementsemergingfromtheCopenhagenconferencewillbetheroleofChina,theburgeoningeconomicgiantthatislikelytosoondisplacetheUnitedStatesasthebiggestemitterofgreenhousegases.InanalyzingChina’senergyandclimatepolicies,hesaid,thereisadisconnectbetweenpoliticalrhetoricopposingemissionslimitsandwhat’sactuallyhappeningthere.Thison-the-groundreality“givesusgroundsformoreoptimismthanthepoliticalsidedoes,”hesaid.

Page 39: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 37

O U T R E A C H

“IntheChineseenergysectortoday,rightacrosstheboard,”hesaid,“weareseeingjaw-droppinginvestmentsbeingmadeinnewtechnologyandthereplacementofoldinfrastructurewithnew”usingcutting-edgetechnology.“Thereisarecognitiontherethat

climatechangeishappening,andthatChinaisvulnerable”toitseffects.

HenryJacoby,co-directorofMIT’sJointProgramontheScienceandPolicyofGlobalChangeandprofessorofmanagementatMIT’sSloanSchool

ofManagement,saidthatdespitethedownbeatreportsabouttheoutcomeoftheCopenhagenmeeting,“it’simportantnottoloseheart.”Whilemanypeoplehadhopedforstrongeractionormoreambitioustargetsforcurbingemissions,hesaid,anyactionatallisworthwhile“becausealmostanythingwedoplaysapartinreducingtherisk”ofsevereconsequencesfromclimatechange.

IfallthepledgesmadebyvariousnationsbeforeandaftertheCopenha-genmeetingweremet,“wewouldstabilizeemissionsby2020,”hesaid.Whileatmosphericconcentrationswouldcontinuetorise,“wewouldbegintoturnthecorner”towardlevelingitoff.However,headded,inordertoavertthemostdamagingimpacts,theamountofmoneypledgedbytheindustrializednationstohelpfinanceenergyimprovementsinthedevelopingworldwouldneedtobeincreasedbyfourtofivetimes.

Onthepositiveside,hesaid,theearlieranyactionistaken,thegreateritseffects.TheproposalsforemissionsreductionsresultingfromtheCopen-hagenmeeting,hesaid,changethemedianoddsfortemperatureriseinthiscenturyfromapotentiallydevastating5to6degreesFifnoactionistakentoamoremanageable2to2.5degrees.

“That’smymaximumoptimism,”hesaid.

• • •

By David L. Chandler, MIT News Office

For a video of the entire two-hour panel discussion, go to http://web.mit.edu/mitei/news/video.html.

Fromtoptobottom,ErnestJ.Moniz,RobertStavins,MichaelGreenstone,StevenAnsolabehere,EdwardSteinfeld,andHenryJacobyatthepaneldiscussion,“TheRoadfromCopenhagen.”

Phot

o: J

ustin

Kni

ght

Page 40: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

38 | Energy Futures | MIT Energy Initiative | Spring 2010

O U T R E A C H

InarecentMITsurvey,Americansexpressedlessurgencyaboutdealingwithclimatechangethantheydidthreeyearsago—butstillfarmorethantheydidsixyearsago.Abouthalfofthe2009respondentsbelievedthattheUnitedStatesshouldjoinaninternationaltreatyaimedatreducinggreenhousegasemissions.

Americans on climate change: Still concerned, less support for major action, finds MIT surveyInarecentMITsurvey,Americansexpressedlessurgencyaboutdealingwithclimatechangethantheydidthreeyearsago—butstillfarmorethantheydidsixyearsago.

“Despitetheback-offsincethe2006survey,we’vecomealongwayinpublicsupportfordoingsomethingaboutclimatechangesincethefirstsurveyin2003,”saysHowardHerzog,seniorresearchengineerintheMITEnergyInitiative.Indeed,abouthalfthe2009respondentsbelievedthattheUnitedStatesshouldjoinaninterna-tionaltreatyaimedatreducinggreen-housegas(GHG)emissions.

Thenewsurveyshowstwootherstrikingchanges.Forthefirsttimethereisacorrelationbetweenpoliticalpartyandviews,withDemocratsconsistentlyrankingtheclimatechangeproblemasmoreseriousthanRepublicansandIndependentsdo.Andthereisasignificantincreaseinpeople’saware-nessofcarboncaptureandstorage(CCS)—aclimate-change-mitigationtechnologythatcallsforcapturingcarbondioxideemissionsfrompowerplantsandotherlargesourcesandinjectingthemintogeologicformationsforlong-termstorage.

ThatlastfindingisofparticularinteresttoHerzogandhiscolleagues,whohavebeenworkingonCCSsincethelate1980s.Theyundertookthefirstpublicsurveyin2003primarilytofindoutwhatpeoplethoughtaboutCCS.Atthattime,theirresearchhaddemon-stratedthetechnologicandeconomicpromiseofCCS,butpublicrecognitionandacceptanceofthetechnologywereaconcern.

Thegrouphasnowconductedthreesurveys—inSeptemberof2003,2006,and2009—tofindoutwhatthepublic

thinksaboutCCSinparticularandclimatechangeandenvironmentalissuesingeneral.Eachsurveyincludedabout20questionsfocusingontheenvironment,globalwarming,andavarietyofclimate-change-mitigationtechnologies.

Indesigningandadministeringthesurveys,theresearchteamcollaboratedwithKnowledgeNetworks,acompanythatspecializesinInternet-basedpublicopinionsurveys.Morethan1,200peopleansweredeachsurvey(withnooverlapamongthethreegroupsofrespondents).SamanthaF.O’Keefe,anMITgraduatestudentincivilandenvironmentalengineering,hasbeenworkingwithHerzogtoanalyzethe2009surveyresponses.

Resultsfromthethreesurveysprovideinsightsintohowpublicawareness,concern,andunderstandinghavechanged—ornotchanged—duringthepastsixyears.

Globalwarmingcontinuestoberankedfirstinalistof10environmentalconcerns,buttheenvironmentingeneralstillranksnearthemiddleofalistof22“mostimportantissuesfacingtheUStoday.”Theeconomy,healthcare,andunemploymentarethetopthreeconcerns—nodoubtareflectionoftherecenteconomicdownturnandhealthcaredebate.

Severalsetsofresponsesshowtherecentdeclineinurgencyabouttacklingclimatechange.Forexample,the

0 10 20 30 40

From what you know about global warming, which of the following statements comes closest to your opinion?

Global warming has been established as a serious problem and

immediate action is necessary.

There is enough evidence that global warming is taking place and

some action should be taken.

We don’t know enough about global warming and more research is

necessary before we take any actions.

Concern about global warming is unwarranted.

No opinion.

2009 2006 2003

From what you know about global warming…

Page 41: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 39

O U T R E A C H

fractionofpeoplewhofeelthatimmedi-ateactiontosolveglobalwarmingisnecessaryisnow23%—lowerthanin2006(28%)butstillhigherthanin2003(17%).Intermsofwillingnesstopayextraontheirelectricitybillto“solve”globalwarming,in2006peopleagreedtopayonaverage$21morepermonth,butin2009thatnumberdroppeddownto$14—roughlythevalueobservedinthe2003survey.

Nevertheless,60%ofthe2009respon-dentssaidthatthefederalgovernmentshouldbedoingmoretodealwithglobalwarming—avaluedown10percentagepointsfrom2006butstillasignificantfractionofthepopulation.Moreover,almosthalfthepeoplesurveyedin2009saidthattheUnitedStatesshouldjoinotherindustrializednationsinaninternationaltreatythatcallsforcuttingbackGHGemissionsfrompowerplantsandcars—evenafterbeingtoldthat“somepeoplesaythiswillhurttheeconomy.”

“Thatwassomewhatsurprising,”saysHerzog.“Eventhoughthepopula-tionhasbackedoffalittleintermsofcallingforurgentaction…Ithinkthere’sstillpopularsupportfordoingsome-thingaboutclimatechangebutprob-ablynotfortakingthedrasticactionsthatsomepeoplearecallingfor.Thequestionisnotsomuchaboutwhetherpeopleareinfavorornotinfavoroftakingactionbutmoreaboutthemagnitudeandthepace.”

Intermsofdemographictrends,the2009surveywasthefirsttoshowacorrelationbetweenviewsontheseverityoftheglobalwarmingproblemandthepoliticalpartyoftherespon-dent.Intherecentsurvey,Democratsoverwhelminglyrankedclimatechangeaseither“serious”or“some-whatserious.”Incontrast,Republican

responsesweredistributedamong“somewhatserious,”“uncertain,”and“concernisunwarranted,”whileIndependentresponseswereevenlyspreadacrossallchoices.“Itappearsthattheissuehasbecomemorepoliticizedthanitwasinthepast,”saysHerzog.

Technology awareness

Inthesectionofthesurveymeasuringawarenessoftechnologiesrelatedtoclimatechange,hybridcarsandsolarandwindenergycontinuedtotopthelistof“whatpeoplehaveheardaboutinthepastyear.”ButawarenessofCCSincreasedsignificantlysincetheprevioussurveys.Thefractionofpeoplerecognizingtheterm“carboncaptureandsequestration”was4%in2003,5%in2006,and17%in2009.

Whythebigincreaseinnamerecogni-tion?“There’sbeenasignificantincreaseinpresscoverageofCCSinthepastthreeyears,”saysHerzog.“It’sbeentalkedaboutincongressionalbills,andeventheUSpresidenthasmentionedthetechnology.”Interest-ingly,better-educatedandwealthierpeopleweremorelikelythanotherstohaveheardofCCS.Indeed,respondentsearning$100,000peryearwerefourtimesmorelikelytohaveheardofCCSthanthosemakinglessthan$25,000.

ButrespondentsstillwerenotreadytoacceptCCSasaviableoptionforaddressingclimatechange.AskediftheywouldincludeCCSinaclimatechangeplan,about25%ofthepeoplerespondedfavorablyandabout25%wereopposed,butfully50%werenotsure.ThatresponseisconsistentwithanotherquestioninwhichmanyrespondentswerenotsurewhichenvironmentalconcernsCCSwouldaddress.Despitetheincreasedname

recognition,manypeoplearestillunclearaboutthedetailsofCCS.

HerzogispleasedwiththeincreasedrecognitionofCCS.Hestressesthattheclimatechangeproblem“isnotgoingtogoaway,”soresearchshouldcontinueontechnologiessuchasCCS.“Ithinkmoreandmorepeopleseeitasatechnologythat’sgoingtobeimportantinthelongerterm,”hesays.“Andwe’regettingincreasingnumbersofe-mailsandotherinquiriesfromabroadspectrumofsources,fromeducationalinstitutionstoindustrytogovernmentalofficials,allwantingtoknowmoreaboutit.”

• • •

By Nancy W. Stauffer, MITEI

This research was supported by the MIT Carbon Sequestration Initiative (http://sequestration.mit.edu/CSI/index.html). More details about the 2009 survey along with links to the previous surveys are available at http://sequestration.mit.edu/research/survey2009.html.

Page 42: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

40 | Energy Futures | MIT Energy Initiative | Spring 2010

O U T R E A C H

MIT team recommends strategy for reducing automotive fuel use, emissionsCuttingpetroleumuseandgreenhousegas(GHG)emissionsinallofAmerica’scarsandlighttrucksisacriticalbutdauntingtask.Now,anMITreportoutlinesasetofpoliciesthatcouldaccomplishthatgoalinthenextfewdecades.Workingtogether,thepolicieswouldgiveallstakeholdersincentivestodotheirpart.

Manufacturerswouldberequiredtomakemorefuel-efficientcars,andconsumerswouldbeencouragedtobuythemandthendrivetheminafuel-efficientmanner.Meanwhile,thenationwoulddevelopacomprehensivestrategyonfuelssettinglong-termtargets,withcaretakentoaccountforthelife-cycleemissionsaswellasproduction,distribution,andvehiclerequirementsforeachpossiblefuel.

“Ifwe’reseriousaboutreducingpetro-leumconsumptionandGHGemissions,weneedtolookatthewholesystem—ateveryonewhomakes,buys,andusesvehiclesandtheirassociatedfuels,”saysJohnHeywood,professorinMIT’sDepartmentofMechanicalEngineering.“Allthepiecesareinterrelated,andweneedthemtoworktogether.Forexample,tighterregulationscanpushindustrytowardhigherfueleconomy,butthenweneedtocreateincentivesforconsumerstobuythosecars,whichmaybesmaller,lighter,andmoreexpensivethanthey’reusedto.”

ForpolicymakersinWashington,takingasystemsviewisdifficultbecauseofthepoliticsinvolved.Interestgroupsareconstantlyconvergingordivergingintoseparatecampsandlobbyingforseparatepolicies.Theresult,saysHeywood,isconfusioninthepolicydebateandadoptionofisolatedinitia-tivesthatfocusonspecificfuels,cartechnologies,andsoon.

Tohelpdemonstratehowasystemsapproachcouldwork,Heywoodturnedto10ofhisgraduatestudentsintheSloanAutomotiveLaboratory,eachofwhomisimmersedinstudyingsomeaspectofthetransportationproblem—fromselectedtechnologyandfuelsoptionstoconsumerbehaviortotheimpactsofspecificpoliciesandmore.Ayearago,Heywoodissuedthisgroupachallenge:Drawingontheirindividualknowledgeandexpertise,theyshouldtogethercomeupwithasensible,effective,andrealisticpolicyportfolio—AnAction Plan for Cars.

Thestudentsheldaseriesofmeetings,andultimatelyeachparticipantcontrib-utedtoonesectionofthereport,drawingonhisorherownexperiencesupplementedbyinformationfromothertransportationandenergysources.GuidedbyHeywoodandfeedbackfromseveraloutsideexperts,graduatestudentsValerieKarplusandDonaldMacKenzieofMIT’sEngineeringSystemsDivisionintegratedthesec-tionsintoa24-pagedocumentthatoutlinesasetofinteractingpoliciesthattheMITteambelievescansignificantlyreducepetroleumuseandemissionsinAmerica’scarsandlighttrucks.

Getting fuel-efficient vehicles on the road

Thefirstgroupofpoliciesaimstoreducethefuelconsumptionofnewvehicles.ThereportrecommendsthattheCorporateAverageFuelEconomy(CAFE)standardsforthefueleconomyofnewcarscontinuetotighten—wellbeyondthe2016targetof34.1mpg—andthatmanufacturersbegivenampleleadtimetoplanforthoseincreases.Twootherpolicieswouldcreatecon-sumerincentives.Onewouldestablisha“feebate”systemunderwhichbuyersofnewcarswouldgetarebateifthey

chosefuel-efficientmodels—orpayafeeiftheywentforgas-guzzlers.Theexactpaymentwoulddependonhowmanymilespergallonthepurchasedmodelisaboveorbelowasetfueleconomy.Theotherpolicyinthisgroupwouldincreasetaxesonmotorfuelsby10centspergalloneachyearforatleastthenext10years.

Thosethreepolicieswouldproduceasynergisticeffect,withmanufacturersproducingmoreefficientcarsandconsumersdemandingthem,motivatedbyimmediateandlong-termsavings.Tomakerisingfueltaxesmorepalat-able,driverswouldseereductionsontheirincometaxesorpayrolltaxes.ButsomeoftherevenuewouldbeusedtoimprovetheUStransportationinfrastructure.“Ourroadsandbridgesareinrealneedofmaintenanceandimprovement,”saysHeywood.“Thiswouldprovidemuch-neededmoneytogetthembackinshape.”

Educating vehicle buyers and drivers

Thenextpairofpoliciesisdesignedtohelpconsumersbuyanddrivemorewiselybygivingthemmoreinformation.Althoughlabelingprovisionsexist,itisnotalwaysclearwhatthecitedratingsmean.Ingeneral,thefueleconomylistedonstickersorinadvertisementsisforhighwaydriving,whenmostvehiclesareattheirmostfuelefficient.Newrulesshouldcallforaclearpresentationoffueleconomiesforbothhighwayandcitydrivingsothatcarbuyerscanmakemoreinformedchoices.

Thesecondpolicyaimstoteachpeoplehowtoavoiddrivingbehaviorsthatwastefuel.Drivingatasteady,comfort-ablespeedandavoidingrapidbrakingandacceleratingcanreducefueluseby10%ormorecomparedwithmore

Page 43: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 41

O U T R E A C H

aggressivedrivingbehaviors.“Perhapsitisn’taglamorouswaytoreduceconsumption,butit’srelativelylowcost—andit’sscalable,”saysKarplus.“Everydriverontheroadcandoit.They’lluselessfuel,savemoney,andreduceemissions,allatthesametime.”Informationcanbedistributedinadvertisementsandincorporatedintodrivers’educationprogramssothatnewgenerationsofdriverswilldevelopfuel-conservinghabits.

Fuels for the future

Thefinalsetofrecommendationsfocusesonfuels.Heywoodnotesthatcurrentinitiatives,laws,andrequire-mentsare“piecemeal,”withnocoherenceorclearsenseofpurpose.However,healsobelievesthatitis“inappropriateandprematuretosaysomethingabouthowspecificfuelsarebeingtreatedorshouldbetreated—withsubsidies,importduties,andsoon.We’remissingalotofbasicinfor-mation.”Theteam’srecommendationsthereforetakeabroaderviewofhowtomoveforwardonthefuelsside.

Afterintensediscussionanddebate,theMITteamreachedconsensusonthreecriticalpoints.First,alltransportationfuels—petroleum-basedaswellasalternativefuels—shouldbeevaluatedonthebasisoftheirfulllife-cycleGHG

emissions.“Whilethatmayseemobvious,thedevilisinthedetailsonthisone,”saysKarplus.Shecitesseveralexamples.GrowingbiofuelsinplaceoffoodcropsinIowamaypushupfoodimportsfromBrazil,wheretheneedforaddedagriculturallandcouldleadtodestructionofrainforest,animportantcarbonsink.Electricvehiclesemitnotailpipeemissions,butrecharg-ingtheirbatteriesmayincreaseelectric-itygenerationfromGHG-emittingpowerplants.“Andthelistgoeson,”saysKarplus.“Ifwe’rereallylookingforwaystoreduceGHGemissions,wehavetobecarefulabouthowwedotheaccounting.”

Thesecondrecommendationcallsfordevelopingacoordinatednationalstrategyforalternativefuels.Thishigh-level,overarchingstrategyshoulddefinecleartargetsandthen—basedoncarefulconsiderationofalltheoptions—identifyfuelsandtechnologiesthatcanbestcontributetomeetingthegoalsofdisplacingpetroleumandreducingGHGemissions.Developingasuccessfulstrategywillrequirefullparticipationofthenow-splinteredinterestgroupsthatsupportbiofuels,electriccars,hydrogen,naturalgas,andsoon.

Finally,anynationalfuelsstrategyshouldincludepoliciesthataddressthe

needfordevelopingfuelproductioncapacity,distributioninfrastructure,andcompatiblevehiclesatthesametime.Focusingononlyoneoreventwoofthosechallengeswillnotyieldtheintendedreductionsinpetroleumuseandemissions.Inaddition,currentsubsi-dies,mandates,andimporttariffs(forexample,onethanol)shouldbeexam-inedtomakesurethattheyareconsis-tentwiththenationalfuelsstrategy.

Moving ahead

Heywoodstressesthatthereportdoesnotattempttowritespecificlegislationorregulationortodefineendobjectivestootightlybecauseweneedtobetterunderstandthefullimpactsofourchoices.Thereportisinsteadmeanttodemonstrateasetofintegratedpoliciesthatcanhelpus“definewherewewanttogetto,decidewhetheragivenpathshowspotentialforgettingusthere,andthenplansothatwecanbothgetmovingandgetwiser.”

“We’rehopingourreportservesasafirststep,astartingpointtospurthinkingabouthowyoucanachievepoliciesthataregoingtoworktogetherinasynergisticway,”addsKarplus.“Wearen’tnecessarilysayingtoadoptthissetofpoliciesexactlyaswritten,butwe’redemonstratinghowWashing-toncanthinkaboutpoliciesinawaythatconsidershowtheymightbestworktogether.”

• • •

By Nancy W. Stauffer, MITEI

This study was supported in part by the MIT Energy Initiative. Go to http://web.mit.edu/mitei/research/studies.html to download a copy of An Action Plan for Cars: The Policies Needed to Reduce US Petroleum Consumption and Greenhouse Gas Emissions.

Primary Target Recommendation

Vehicle fuel economy • Continue to tighten CAFE standards beyond 2016 target of 34.1 mpg, providing ample lead time

• Implement a feebate system that adjusts new vehicle prices in proportion to fuel consumption

• Raise the tax on motor fuels by 10 cents per gallon each year, for at least 10 years

Driver behavior • Improve and standardize fuel economy labels on new vehicles and car-buying websites

• Establish driver education programs to inform consumers how to reduce fuel consumption through behavior

Fuel supply • Evaluate all fuels on the basis of full life-cycle GHG emissions

• Develop national strategy for alternative fuels with involvement of all stakeholders

• Address need for production capacity, distribution infrastructure, and compatible vehicles simultaneously

Main features of the policy portfolio presented in MIT’s An Action Plan for Cars.

Page 44: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

42 | Energy Futures | MIT Energy Initiative | Spring 2010

L F E E • LaboratoryforEnergyandtheEnvironment

Lisbon’s buildings get more energy efficient, thanks to MIT students ThreegraduatestudentsatMIT—onefromPortugalandtwofromtheUnitedStates—areseekingtoboosttheenergyefficiencyofLisbon’sbuildings.They’veestimatedthatasmanyas800,000structures,rangingfrommodernhigh-risestotwo-century-oldbuildings,wouldbenefitfromsomeformofintervention.

Thestudentsarelinkedbytheiraffilia-tionwithLeonGlicksman,MITprofes-sorofarchitectureandmechanicalengineering.GlicksmanbroughtthestudentstogetheralmosttwoyearsagotowalkthroughLisbon’sneighbor-hoodsandbrainstormaboutwaystodovetailtheirseparateresearchintereststohelpthecitybenefitfromenergy-savinginterventions.

InPortugal,buildingsareresponsibleformorethan30%oftotalenergyuse.InLisbon,thefigureisalmosttwicethatandisexpectedtogrowsignificantlyinthecomingyears.“Thismakesacompellingcasefortheneedtoretrofitexistingbuildingstock,”saysNunoClímacoPereira,aLisbonnativewhoisaPhDcandidateintheMIT-PortugalProgramandisbasedatInstitutoSuperiorTécnico(IST)inPortugal.HeiscurrentlyinresidenceatMIT.

WhilePereirausedmodelstopredictthecostsavingsofdifferentretrofittingoptionsovertime,MITmechanicalengineeringgraduatestudentStephenRaycreatedanewtoolforpeoplearoundtheworldtoinvestigatetheenergy-savingpotentialofdifferenttypesofroofs.MITbuildingtechnologygraduatestudentCarrieBrownisusingdatafromLisboninmodelsshedesignedforassessingenergy-efficientretrofitsandoptionssuchastheadditionofsolarpanelstobuildings.

AllthreeareaffiliatedwithMIT-Portugal,anearlyfour-year-oldcollabo-rationbetweenMITanduniversities,laboratories,andindustryinPortugalthatwaslaunchedbythePortugueseMinistryofScience,Technology,andHigherEducationtostrengthenthecountry’sknowledgebaseandinterna-tionalcompetitiveness.

Thetimeisripeforthestudents’initiative:Risingenergypricesandgovernmentefficiencyincentivesarecreatingapromisingclimateforenergyretrofitting.“Alotofinformationisstartingtobeavailableonhowenergy-efficientbuildingsperform.Thiswilldrivetheimplementationofretrofits,”Pereirasays.

History meets efficiency

Pereiraisdoingacasestudyofpoorlyconstructedresidentialbuildingsthatringthecity.Heestimatesthataquarterofthemneedmediumtohighlevelsofattention.He’slookingatthepro-jectedbenefitsofinsulatingtheirwalls

androofs,addingnaturalventilationsystemstotakeadvantageofoceanbreezes,andshadingandupgradingtheirwindowstoblocksomeofLisbon’srelentlesssunshine.

Amazingly,duetotheirthickwalls,buildingsdesignedimmediatelyafterLisbon’sdevastating1755earthquakearenotaswastefulassomenewerstructures.Still,Pereiracalculatedthataddinginsulation,doubleglazingwindows,andtakingadvantageofnaturalventilationcouldhalvetheenergyconsumptionofthevaulted-ceiling,tiledbuildingsknownasPombalinos.

Pereirahopestodefinethebestavail-ableretrofitoptionsforbothmodernandhistoricbuildings,assessthepotentialforenergyreductionscitywide,anddevelopamethodologyforlarge-scalerehabilitationthroughoutPortugal.Hewilldevelopimplementationstrate-gieswithLisboncityofficialsandtheLisbonMunicipalEnergyAgency.

Ray,whosedoctoralresearchfocusesonnaturalventilationincommercialbuildings,investigatedtheenergy-savingpotentialofvariousrooftypes.Healsocreatedanewsoftwaremoduletosupplementanexistingonlinedesigntool,theMITDesignAdvisor,thusprovidingengineersandarchitectsworldwidewiththeabilitytomimichisanalysisofLisbonroofs.

“WefoundmostbuildingsinLisboncouldactuallysavemoreenergybyaddinginsulationtothetraditionalredceramictileroofsinsteadofinstall-inganewroof,”Raysays.However,modernbuildingswithflatblackroofswouldfarebetterwithcoolorgreenroofs,hesays,whichreducerooftemperaturesandsolarheatgains.

Lefttoright:StephenRayandCarrieBrownofMITandNunoClímacoPereiraoftheInstitutoSuperiorTécnicoinPortugalreceiveda“bestposter”awardattheJanuary2009annualmeetingoftheAllianceforGlobalSustainabilityinZürich.Theirwinningposter,titled“RetrofitOptionsforIncreasingEnergyEfficiencyintheExistingBuildingStock—LisbonCaseStudy,”explainedthetrio’sresearchonwaysinwhichLisbonmightreduceenergyconsumptioninitsbuildingstock.

Phot

o: c

ourte

sy o

f Car

rie B

row

n G,

MIT

Page 45: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 43

L F E E • LaboratoryforEnergyandtheEnvironment

Brown,whoseworkfocusesonassess-ingtechnologychoicesinthebuiltenvironment,saysoptionsforsustain-ablebuildingsincludeavarietyofdemand-sideefficiencymeasuressuchasaddedinsulationandbetterwindows.Supply-siderenewableoptionsincludeaddingphotovoltaicsasanenergysource.

“Whiletherearemanyoptionstoreduceenergyusedinbuildings,itisoftendifficulttodeterminewhicharethemostappropriatetechnologiestoimplement,”shesays.“I’mreallyinterestedinhelpingpeoplefigureoutwhatchangestheycanmakewiththeleastamountofmoneythatcangivethemthebiggestenergysavings.”

Global connections

AlthoughRayandBrownarenotdirectlyenrolledinMIT-Portugal,theprogrampartiallyfundstheirresearch.In2009,RayorganizedaworkshopforstudentsintheMIT-PortugalSustain-ableEnergySystems(SES)groupinterestedinpursuingbuildings-relatedresearch.“Afterthatworkshop,itwasclearthatNuno,Carrie,andIhadworkthatwasinterrelated,”Raysays.The

threedesignedaposterpresentingthescopeoftheirworkinLisbon.TheposterwasselectedasoneofthesixbestpostersattheAllianceforGlobalSustainability’sannualmeetingin2009.

AcentralgoaloftheMIT-PortugalProgramistodemonstratethataninvestmentinscience,technology,andhighereducationcanhaveapositive,lastingimpactontheeconomy.Tothatend,MIT-Portugalhascreatedcutting-edgePhDandmaster’s-styleprogramsinvolvingeightPortugueseuniversitiesandresearchinstitutions.Eachsemes-ter,severalMIT-PortugalstudentsandfacultyvisitMITtodoresearchinleadinglaboratoriesattheInstitute.“TheseconnectionshelpMITinitseffortstobeaglobaluniversity,”Glicksmansays.Throughworkshopsandteleconferences,Pereira,Brown,andRayhavegivenandheardfeedbackontheirrespectiveprojectsaswellasthoseunderwayinMIT-Portugal’sentireSESgroup.

Rayisenthusiasticabouttheinterna-tionalconnectionshehasmadethroughtheprogram.“IappreciatethechancetocollaboratewiththefutureleadersofsustainableenergyinPortugal,”he

says,andhepredictsthattherelation-shipshehasdevelopedwillcontinuethroughouthiscareer.

“Thereisalotofinterestingreentechnologiesforbuildings,buttoooftenitseemssuchtechnologiesandtheirbenefitsarepoorlyunderstood,”Raysays.Byincreasingawareness,understanding,andinformationaboutthechoicesavailable,theMITstudents’workhasthepotentialtoreachwellbeyondLisboncitylimits.

• • •

By Deborah Halber, MITEI correspondent

• Predict roof surface temperature and associated energy savings from roof.

3 day trial shows potential impact

• Use results as input to Multi-Objective Optimization.

Retrofit options for increasing energy efficiency in the existing building stock –Lisbon Case-Study

Carrie Brown, MIT [email protected]

Steve Ray, MIT [email protected]

Nuno Clímaco Pereira, IST [email protected]

• 35% of primary energy consumption;• 800.000 buildings needing medium to urgent interventions(15% of the Building Stock);• Recently approved National Action Plan for Energy Efficiency;• Lisbon Municipality Efficiency Target: 9.4% less energy by 2013;• ESCOs interested on the energy retrofitting.

Lisbon - 4 typical and representative buildings structuresaccording to historic period/ construction techniques.

PORTUGUESE BUILDINGS FACTS

JOINT WORK OBJECTIVES• Improve the energy efficiency of buildings, focusing on improving the existing building stock in Lisbon, and afterwards, in Portugal;• Integrate all building sector players and variables for a comprehensive energy analysis;• Lead to new business opportunities (MPP partnership with Energy Company - GALP).

Energy rehabilitationMethodology

Initial Case-study: Pombalino Building(1755-1870)

CASE-STUDY

Copyright © DesignBuilder Software

Ackowledgements: The authors would like to thank the support by Prof. Leon Glicksman, MIT, Prof. João Parente and Prof. Luísa Caldas, IST, as well as the financial support by MIT Portugal Program and Fundação para a Ciência e Tecnologia

Main Sources: Tirone, L., et all, 2005. Lisbon Energy Framework. Lisboa E-Nova – Lisbon Municipal Energy and Environment Agency.AECOPS, 2008. Portuguese Civil Construction Market – Challenges and Opportunities, Lisbon. AECOPS – Portuguese Association of Public Works and Construction Corporations.

Efficient Roof Technologies (SR)

I. Characterization of existing building stock.

II. Thermal Modeling of a representative sample of City buildings - EnergyPlus as software (Design Builder interface).

III. Model Calibration by Monitoring Data.

IV. Identification of integrated energy Retrofitting Best Options.

a. Analysis of the direct energy impact of the Best Available Technologies (BAT)

b. Identifying energy retrofitting strategy facing energy inefficiencies and general rehabilitation needs

V. Replication potential analysis and Strategies Development - incorporate replication potential considering other contexts (from initial Lisbon city scale).

Final Results: Integrate the methodology in a broader scale multi-objective approach for a global energy intervention in the building (Sustainable Urban Energy Systems Research).

Energy Retrofit Methodology (NCP) Multi-Objective Optimization (CB)

295

300

305

310

315

320

325

330

335

0 20 40 60 80

Time [hrs]

Roo

f Sur

face

Tem

pera

ture

[K] black roof

cool roofred tile roof

Energy into Building [W/m2]insulation [m2C/W] R=0 R=17black roof 40 3.3cool roof 8.8 0.74red tile roof 31 2.6

I. Problem FormulationObjective:J1 = Heating + Cooling + Lighting Energy J2 = Capital CostInitial Variables:

II. Initial Results

III. Next Steps

I. Develop distributed generation (DG) module.

II. Incorporate roof, retrofit, and DG modules into the multi-objective optimization.

Variable Description Lower Bound

Upper Bound

Units

x1 Window to wall ratio 10 90 %x2 Wall R-value 1 7 m-C/Wx3 N-S façade length 10 400 mx4 Window type 0 2 clear, double, triplex5 Window coating 0 1 clear, low-ex6 Thermal mass 0 2 zero, high, low

95 100 105 110 115 120 125 130 135 140 145 150

100

100.2

100.4

100.6

100.8

101

101.2

101.4

101.6

101.8

J1 Annual Energy Consumption [kWh/m2]

J2 C

apita

l Cos

ts [$

/m2]

Estimated Pareto Front -- Energy Consumption and Capital Costs

Sampled PointsEstimated Pareto FrontUtopia Point

J1 Annual Energy Consumption [kWh/m2]J1 Watts / m2

*estimated capital cost, model still under development

J 2 $

/ m

2*

J2 C

apita

l Cos

ts [$

/m2]

• Predict roof surface temperature and associated energy savings from roof.

3 day trial shows potential impact

• Use results as input to Multi-Objective Optimization.

Retrofit options for increasing energy efficiency in the existing building stock –Lisbon Case-Study

Carrie Brown, MIT [email protected]

Steve Ray, MIT [email protected]

Nuno Clímaco Pereira, IST [email protected]

• 35% of primary energy consumption;• 800.000 buildings needing medium to urgent interventions(15% of the Building Stock);• Recently approved National Action Plan for Energy Efficiency;• Lisbon Municipality Efficiency Target: 9.4% less energy by 2013;• ESCOs interested on the energy retrofitting.

Lisbon - 4 typical and representative buildings structuresaccording to historic period/ construction techniques.

PORTUGUESE BUILDINGS FACTS

JOINT WORK OBJECTIVES• Improve the energy efficiency of buildings, focusing on improving the existing building stock in Lisbon, and afterwards, in Portugal;• Integrate all building sector players and variables for a comprehensive energy analysis;• Lead to new business opportunities (MPP partnership with Energy Company - GALP).

Energy rehabilitationMethodology

Initial Case-study: Pombalino Building(1755-1870)

CASE-STUDY

Copyright © DesignBuilder Software

Ackowledgements: The authors would like to thank the support by Prof. Leon Glicksman, MIT, Prof. João Parente and Prof. Luísa Caldas, IST, as well as the financial support by MIT Portugal Program and Fundação para a Ciência e Tecnologia

Main Sources: Tirone, L., et all, 2005. Lisbon Energy Framework. Lisboa E-Nova – Lisbon Municipal Energy and Environment Agency.AECOPS, 2008. Portuguese Civil Construction Market – Challenges and Opportunities, Lisbon. AECOPS – Portuguese Association of Public Works and Construction Corporations.

Efficient Roof Technologies (SR)

I. Characterization of existing building stock.

II. Thermal Modeling of a representative sample of City buildings - EnergyPlus as software (Design Builder interface).

III. Model Calibration by Monitoring Data.

IV. Identification of integrated energy Retrofitting Best Options.

a. Analysis of the direct energy impact of the Best Available Technologies (BAT)

b. Identifying energy retrofitting strategy facing energy inefficiencies and general rehabilitation needs

V. Replication potential analysis and Strategies Development - incorporate replication potential considering other contexts (from initial Lisbon city scale).

Final Results: Integrate the methodology in a broader scale multi-objective approach for a global energy intervention in the building (Sustainable Urban Energy Systems Research).

Energy Retrofit Methodology (NCP) Multi-Objective Optimization (CB)

295

300

305

310

315

320

325

330

335

0 20 40 60 80

Time [hrs]

Roo

f Sur

face

Tem

pera

ture

[K] black roof

cool roofred tile roof

Energy into Building [W/m2]insulation [m2C/W] R=0 R=17black roof 40 3.3cool roof 8.8 0.74red tile roof 31 2.6

I. Problem FormulationObjective:J1 = Heating + Cooling + Lighting Energy J2 = Capital CostInitial Variables:

II. Initial Results

III. Next Steps

I. Develop distributed generation (DG) module.

II. Incorporate roof, retrofit, and DG modules into the multi-objective optimization.

Variable Description Lower Bound

Upper Bound

Units

x1 Window to wall ratio 10 90 %x2 Wall R-value 1 7 m-C/Wx3 N-S façade length 10 400 mx4 Window type 0 2 clear, double, triplex5 Window coating 0 1 clear, low-ex6 Thermal mass 0 2 zero, high, low

95 100 105 110 115 120 125 130 135 140 145 150

100

100.2

100.4

100.6

100.8

101

101.2

101.4

101.6

101.8

J1 Annual Energy Consumption [kWh/m2]

J2 C

apita

l Cos

ts [$

/m2]

Estimated Pareto Front -- Energy Consumption and Capital Costs

Sampled PointsEstimated Pareto FrontUtopia Point

J1 Annual Energy Consumption [kWh/m2]J1 Watts / m2

*estimated capital cost, model still under development

J 2 $

/ m

2*

J2 C

apita

l Cos

ts [$

/m2]

Energy rehabilitation methodology—an extract from the students’ award-winning posterLisbon’s buildings get more energy efficient, thanks to MIT students

Page 46: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

44 | Energy Futures | MIT Energy Initiative | Spring 2010

L F E E • LaboratoryforEnergyandtheEnvironment

Martin Fellows, 2010–2011

TheMartinFamilySocietyofFellowsforSustainability,establishedatMITin1996throughthegeneroussupportoftheMartinFamilyFoundation,fostersgraduate-levelresearch,education,andcollaborationinsustainability.ThesocietysupportsandconnectsMIT’stopgraduatestudentsinenvironmentalstudiesandfostersopportunitiesformultidisciplinarycooperationinboththeshortandlongterm.

Regina ClewlowEngineeringSystemsDivisionExamining intercity demand for high-speed rail and air transportation and potential long-range scenarios under climate policies

Madhu Dutta-KoehlerUrbanStudiesandPlanningDeveloping planning strategies for climate change adaptation for rapidly growing cities of the global south

Katherine DykesEngineeringSystemsDivisionDeveloping a model for wind energy diffusion into the utility system withparticular attention to issues associated with integration

Anita GanesanEarth,Atmospheric,andPlanetarySciencesExamining regional monitoring of greenhouse gas emissions in India

David GriffithCivilandEnvironmentalEngineering(withWoodsHoleOceanographicInstitution)Quantifying the inputs and fate of steroidal estrogens in Massachusetts Bay

Roberto Guerrero CompeánUrbanStudiesandPlanningExploring effects of anti-poverty programs on household behavior toward climatic risks in rural areas

Rhonda JordanEngineeringSystemsDivisionDeveloping an electrification planning methodology that incorporates demand characteristics unique to the developing world

Woei Ling LeowEngineeringSystemsDivisionDeveloping algorithms for managing home electricity use in a smart grid

Samar MalekCivilandEnvironmentalEngineeringDeveloping new understanding of and design tools for grid shells for sustainable buildings

Bryan PalmintierEngineeringSystemsDivisionDesigning sustainable electric systems with significant renewable and demand-side resources by modeling intra-daily dynamics, uncertainty, and constraints during long-range planning

Jeff RomingerCivilandEnvironmentalEngineeringInvestigating the physical controls of nutrient uptake in aquatic vegetation

Nicholas RyanEconomicsMeasuring the scope for profitably saving energy in small, energy-intensive Indian factories and testing the efficacy of the Clean Development Mechanism in reducing carbon emissions

Sourabh SahaMechanicalEngineeringDeveloping probe-based nano- manufacturing tools and processes for nano-applications

Todd SenecalChemistryExamining the catalytic introduction of trifluoromethyl groups into organic molecules

Xing ShengMaterialsScienceandEngineeringExploring optical and electronic design to improve the performance of thin film photovoltaic and light-emitting devices

Yasuhiro ShirasakiElectricalEngineeringandComputerScienceDeveloping energy-efficient colloidal quantum dot light-emitting diodes for display and lighting applications

Gaj SivandranCivilandEnvironmentalEngineeringExamining plant-water interactions in dryland systems, where water is the limiting resource to ecosystem function

Lily SongUrbanStudiesandPlanningExamining community-utility partnerships for taking building energy efficiency retrofits to scale

Mattijs van MaasakkersUrbanStudiesandPlanningStudying the emergence of ecosystem services in river basin management: sources of scientific legitimacy in environmental decision making

Yi ZhuUrbanStudiesandPlanningDeveloping an urban information system for transportation and land use modeling, travel behavior, and urban sustainable transportation strategy

Page 47: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

Spring 2010 | MIT Energy Initiative | Energy Futures | 45

M I T E I M E M B E R S

MITEI Founding and Sustaining members

F O U N D I N G M E M B E R S

BPEni S.p.A.

F O U N D I N G P U B L I C M E M B E R

Masdar Institute of Science and Technology

S U S T A I N I N G M E M B E R S

ABB Research Ltd.Robert Bosch GmbHChevron U.S.A. Inc.Enel Produzione SpALockheed MartinSaudi Aramco SchlumbergerSiemensTotalWeatherford

S U S T A I N I N G P U B L I C M E M B E R

Portuguese Science and Technology Foundation

MembersasofJune15,2010

MITEI’sFoundingandSustainingmemberssupport“flagship”energyresearchprogramsorindividualresearchprojectsthathelpthemmeettheirstrategicenergyobjectives.Theyalsoprovideseedfundingforearly-stageinnovativeresearchprojectsandsupportnamedEnergyFellowsatMIT.Todate,membershavemadepossible67seedgrantprojectsacrossthecampusaswellasfellowshipsformorethan100graduatestudentsin20MITdepartmentsanddivisions.

MITEI Associate and Affiliate members

MITEI’sAssociateandAffiliatememberssupportarangeofMITenergyresearch,education,andcampusactivitiesthatareofinteresttothem.Currentmembersarenowsupportingvariousenergy-relatedMITcenters,laboratories,andinitia-tives;fellowshipsforgraduatestudents;researchopportunitiesforundergraduates;campusenergymanagementprojects;outreachactivitiesincludingseminarsandcolloquia;andmore.

Associate membersAgenciaNacionalDeHidrocarburos(ANH)—ColombiaCumminsEDFEntergyFundacióBarcelonaTecnológica(b_TEC)Hess

INSTITUTE OF SCIENCE AND TECHNOLOGY

Affiliate membersAlbachiaraRinnovabiliS.r.l.Alcatel-LucentAMSOCorporationAngelenoGroupAspenTechnology,Inc.BerkeleyInvestments,Inc.MarilynG.BreslowBrownsteinHyattFarber

Schreck,LLPCIDS–DCSEnergySavingsConstellationEnergyEnerNOC,Inc.ForgePartners,LLCGabelliCapitalPartnersNatalieM.GivansGlobespanCapitalPartnersGravitas&CieInt.SAGreengEnergyHarrisInteractiveICFInternationalIHS-Cambridge

EnergyResearchAssociates(CERA)

InGRIDEnergy,LLC

MillennialNet,Inc.MohaveSunPower,LLC

(MitchellDong)MooreandVanAllenNewEnergyFinanceNexant,Inc.NGPEnergyTechnology

Partners,LPNthPower,LLCOrmatTechnologies,Inc.OsakaGasCo.,Ltd.PalmerLabs,LLCPatriotRenewablesRedpointVenturesPhilipRettgerRockportCapitalPartnersS.KinnieSmith,Jr.Steptoe&Johnson,LLPGeorgeR.Thompson,Jr.TheTremontGroup,LLCWestportInnovationsInc.

Page 48: Energy Futures · 2016-07-01 · 2 | Energy Futures | MIT Energy Initiative | Spring 2010 A L E T T E R F R O M T H E D I R E C T O R S Update on the MIT Energy Initiative Dear Friends,

AttheCopenhagenclimatechangeconferenceinDecember2009,MITresearchersdemonstratedarevolutionarybicyclewheelthattransformsexistingbikesintohybridelectricbikesandpromotescyclingbyimprovingtheridingexperience.Thewheelstoresenergywhenevertheriderbrakesandthenusesthatpowertoprovideaboostforclimbinghillsormaneuveringintraffic.Assistedbyasmartphone,thewheelcantrackspeed,direction,anddistancetraveled;pollutionlevels;roadconditions;andeventheproximityoftherider’sfriends.DubbedtheCopenhagenWheel,itwasdevelopedbyCarloRatti,associateprofessorofthepracticeinMIT’sDepartmentofUrbanStudiesandPlanninganddirectoroftheSENSEableCityLaboratory,andhisteam.Thewheelcaneasilybemountedonanystandardbike.Moreathttp://senseable.mit.edu/copenhagenwheel/.

MIT Energy Initiative

Massachusetts Institute of Technology77 Massachusetts Avenue, E19-307Cambridge, MA 02139 -4307

Return service requested

Nonprofit OrganizationU.S. Postage

PAIDCambridge, MAPermit No. 54016

Phot

os: c

ourte

sy o

f the

SEN

SEab

le C

ity L

ab


Recommended