+ All Categories
Home > Documents > Energy Tutorial: Exergy 101 - Stanford University

Energy Tutorial: Exergy 101 - Stanford University

Date post: 30-Jan-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
26
GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Exergy 101 Chris Edwards Professor Department of Mechanical Engineering Stanford University GLOBAL CHALLENGES GLOBAL SOLUTIONS GLOBAL OPPORTUNITIES GCEP RESEARCH SYMPOSIUM 2012 | STANFORD, CA
Transcript
Page 1: Energy Tutorial: Exergy 101 - Stanford University

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Energy Tutorial:

Exergy 101

Chris Edwards

Professor – Department of Mechanical Engineering

Stanford University

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

GCEP RESEARCH SYMPOSIUM 2012 | STANFORD, CA

Page 2: Energy Tutorial: Exergy 101 - Stanford University

Which would you choose?

1 kg Air

20 C

1 bar

1 kg Air

20 C

8 bar

Hint: Both have exactly the same amount of energy...

The ability to do work depends upon both the state of the

resource and the state of the surroundings.

Page 3: Energy Tutorial: Exergy 101 - Stanford University

Energy, Entropy, Exergy

• is the extensive, conserved quantity that

is inter-convertible with heat and work:

• is the extensive measure of the number

of microscopic rearrangements of energy:

ln

in out

B

dU Q W

Energy

Entropy

S k

is the potential of an energy resource to do work

in a given set of surroundings ( environment)a.k

Exerg

.

y

.a

Page 4: Energy Tutorial: Exergy 101 - Stanford University

• Resource in contact with environmental reservoir

- reservoir is

(fixed intensive state, not extensive)

- reservoir has

(boundary props fixed, irrev. in syste

large but finite

fast internal transport

0

any species

m)

:

:

ko

b k k

k k gen

ko

o o k o k k o gen

k

k

E dU Q W h N W

QS dS s N S

T

W dU P dV T dS h T s N T S

revW 0environmentalspecies i

Exergy

Page 5: Energy Tutorial: Exergy 101 - Stanford University

" "

• Reaction must reversibly transform all species ( )

to species that are naturally present in the environment ( ).

• Consider a reaction that does this transformation for species :

:j

resource j

i

j

Rxn A a A bB

with extent of reaction (extensive)

(signed coefs.)

• The balance for environmental species then becomes

:

while the balance for a non-environ

j

j j ij i

i

i i i ij j

j

cC dD

aA bB cC dD M M

i

N dN N

mental species is

:j j j j

j

N dN

i i ij j j

j

N dN dN

Exergy

Note: Any environmental species present in

the resource “reacts” to form itself.

Page 6: Energy Tutorial: Exergy 101 - Stanford University

Exergy Revisited

• RHS has exact differentials. The state of the environment enters

only through fixed, intensive parameters ( , , ).

• Since it is exact & with constant

rev o o io i io ij j j

i i j

o o io

W dU P dV T dS dN dN

T P

coef., integral is path independent.

• Integrate along a two-part path:

I: At to the thermo-mechanical ( )

dead state. (No diffusion or reaction per

fixed

mit

composition

fixed thermo

ted.)

II: At

restricted

, but with diffusion and

reaction to the environmenta

-mec

l (

ha

) dead state.

nical state

unrestricted

Page 7: Energy Tutorial: Exergy 101 - Stanford University

Exergy Revisited

max

T-M Dead State

Fixed Comp.maxResource State No Reaction

Dead State

T-M Dead State

• The fi

o

o

o o io i io ij j j

i i j

o o

ij

o o io i io j

i i j j T TP P

W dU P dV T dS dN dN

W dU P dV T dS

dU P dV T dS dN dN

rst integral is sometimes referred to as the

, . The second integral is the , .

• The of the resource is then:

• Adding th

-

e

TM C

int TM C

thermo mechanical

exergy chemical exergy

internal ex

X X

X Xergy

ext

X

erna

, gives the total exergy:

TM C

KE PE

X

l exergy

E

X X K PE

Page 8: Energy Tutorial: Exergy 101 - Stanford University

T-M Exergy

T-M Dead State

Fixed Comp.Resource State No Reaction

Resource Intensive State: , ,

Resource Extensive Composition:

Availability Fu

j

j

TM o o

TM TM o TM o TM

TM o o

T P x

N

X dU P dV T dS

X U U P V V T S S

or

X U PV T S

Thermo-mechanical Intensive State: , ,

Resource Extensive Composition:

= Gibbs Function in TM State, nction,

denotes any species present in the resou

o o j

j

TM o TM o TM

T P x

N

TMG

U PV T S

where j

A

rce.

TM TMX G A Original composition. Held fixed!

Page 9: Energy Tutorial: Exergy 101 - Stanford University

Chemical Exergy

Dead State

T-M Dead State

Gibbs Function in TM Dead State

o

o

TM

ij

C o o io i io j

i i j j T TP P

C TM o o TM o o TM o

io iTM io io ij j jTM jo

i i j

C TM o TM o TM

G

X dU P dV T dS dN dN

X U U P V V T S S

N N N N

X U PV T S

Environmental Intensive State: , ,

Unknown Extensive Composition:

Environ. UnknownIntensive Extensive

State Comp.

( )

o o io

io

o o o o o

T P x

N

io iTM io io ij j jTM jo

i i j

U PV T S

N N N N

The unknown composition in the system cancels out. (Whew!)

jN 00

Page 10: Energy Tutorial: Exergy 101 - Stanford University

Chemical Exergy

Chemical Potential

of Resource (at TM Dead State)

• We can interpret this on the basis of the chemical potential of the

initial resource and what it will become in the environment.

C TM io ij j

i

X G

Chemical Potential of Env. Species Formed from Species

Originally Present in Resource (at Env. Dead State)

• If we define the last term as

and

TM C

j

j

o

C TM o TM TM o

X X

N

X G X G G

G

G A G A oG

The chemical exergy is the difference between the chemical potential

(Gibbs function) of the resource before and after it has reacted and

diffused to become part of the environment (all at To and Po).

Page 11: Energy Tutorial: Exergy 101 - Stanford University

j j ij i

i

aA bB cC dD

aA bB cC dD

A A

C TM io ij j j

j i

X G N

Example:

2 2 2 2

4

4 2 2

, , , ,

4 2 2 2

F

• Environmental (dead) state: 25°C, 100 kPa

370 ppm, 3%, 20.

ind the chemic

3%, 76.66%

• 1 kmol, 2 2

1, 2,

al exergy of one kmol of meth e

an .

o o

CO o H O o O o N o

CH

CH O CO

T P

x x x x

N CH O CO H O

2

4 2 2 2

4 4 2 2 2

2 2 2 2 2 2

, , , ,

, ,o ,

,o , O,o ,

1, 2

• 2 2

, ln

ln , ln

• 130278 2 61090 3950 457232 19577

2 298091 8688 830 MJ (51.9

H O

C CH TM O o CO o H O o

o o

CH TM CH O O o O o

o o

CO CO o CO o H H O o H O o

C

X

RT x

RT x RT x

X

4MJ/kg CH )

Page 12: Energy Tutorial: Exergy 101 - Stanford University

C TM io ij j j

j i

X G N

Example:

4 3 8 2

4

, , ,

4 2 2 2 3 8 2 2 2

,

Find the chemical exergy of 1 kmol of methane mixed with

2 kmol propane and 1 kmol nitrogen. (Same

• 2 2 , 5 3 4

1 kmol, 2 kmol, 1 kmol

,

)

25%

CH C H N

CH

o i o

T

o

M

T P

CH O CO H O C H O CO H O

N N N

x

x

3 8 2

4 3 8 2 4 2 3 8

2 4 2 4 2 3 8 2 3 8 2

4 3 8 2 2

2 2 2 2 2

, ,

, ,

, , , ,

, , , ,

, , , , ,

50%, 25%

1, 1, 2, 5,

1, 2, 3, 4 0

• 2

2 1 2 2 5 2 3

C H TM N TM

CH C H O CH O C H

CO CH H O CH CO C H H O C H N

C CH TM C H TM N TM N o

O o CO o H O o O o CO o

x x

X

2 ,

, , ,o ,

2 4

ln , ln

• 5116 MJ (49.2 MJ/kg fuel)

H O o

o o

k TM k o k TM k k o k o

C

RT x RT x

X

Page 13: Energy Tutorial: Exergy 101 - Stanford University

C TM io ij j j

j i

X G N

4 2 2

4 2 2

4 2 2

4 2 2 2 2 2

, , ,

• 2 3.76 2 2 3.76

1 km

Find for 1 k

ol,

mol of methane mixed with s

2 kmol,

toichiometric a

7.52 kmol

9.51%, 19.01%, 71.48%

1, 2,

ir.

1,

CH O N

CH TM O TM N TM

CH O CO

C

CH O N CO H O N

N N N

x x x

X

2 2 2

4 2 2

2 2 2 2 2

, , ,

, , , , ,

, , ,o ,

4

2 0

• 2 7.52

2 7.52 2 2

ln , ln

• 822.5 MJ (51.4 MJ/kg CH or 2.83 MJ/kg mix)

H O N O

C CH TM O TM N TM

O o N o O o CO o H O o

o o

k TM k o k TM k k o k o

C

X

RT x RT x

X

Example:

Page 14: Energy Tutorial: Exergy 101 - Stanford University

C TM io ij j j

j i

X G N

2 2 2

2 2

4 2 2 2 2 2

, ,

Find for the of 1 kmol

of methane with a stoichiometric amount of a

• 2 3.76 2 2 3.76

1 kmol, 2 kmol, 7.52 kmol

9.51%, 19

ir.

CO H O N

CO TM H

C

O TM

CH O N CO H O N

N N N

x

X products of complete combustion

x

2

2 2 2 2 2 2

,

, , , , , ,

,

, ,o

,

4 4

.01%, 71.48%

• 2 7.52 2 7.52

ln

• 21.6 MJ (1.35 MJ/kg CH or 2.6% of for CH )

N TM

C CO TM H O TM N TM CO o H O o N o

k TM

k TM k o

k o

C C

x

X

xRT

x

X X

Example:

Page 15: Energy Tutorial: Exergy 101 - Stanford University

C TM io ij j j

j i

X G N

Example:

2

2

2

2

4 2

Find for 1 kmol of pure CO . (Inverse sequestration from air.)

Express the answer per unit mass of

1 kmol

All stoichiometric coefficients

CH that genera

are zero excep

te

t CO

d th

.

e CO .

CO

C CO

C

N

X

X

2

2 2

2

,

, , ,

,

2

4 4

ln ln

• 19.6 MJ 0.446 MJ/kg CO

1.23 MJ/kg CH (2.4% of for CH )

CO TM

TM CO o o o CO o

CO o

C

C

xRT RT x

x

X

X

There is sufficient exergy in the products of stoichiometric

methane-air combustion to drive the complete separation of all of

the CO2 produced by the reaction! (Lots of water!)

Page 16: Energy Tutorial: Exergy 101 - Stanford University

0 500 1000 1500 2000 2500 30000

200

400

600

800

1000

1200

T (K)

x (

MJ/k

mo

l) Methane

Carbon Dioxide

Water

Oxygen

Nitrogen

Single-Component Ideal Gases

Page 17: Energy Tutorial: Exergy 101 - Stanford University

0 500 1000 1500 2000 2500 30000

200

400

600

800

1000

1200

1400

1600

1800

T (K)

x (

MJ/k

mo

l-C

)

Methane-Air Reactants (Stoich.)

Methane-Air Products (Stoich.)

Carbon Dioxide

Methane Products & CO2

Page 18: Energy Tutorial: Exergy 101 - Stanford University

C TM io ij j j

j i

X G N

2 2 2

2 2

3 8 2 2 2 2 2

, ,

Find for the of

1 kmol of propane with

• 5 3.76 3 4 5 3.76

3 kmol, 4 kmol, 18.8 kmol

11.63%, 15.

stoichiometric air.

50%,

CO H O N

CO TM H

C

O TM N

C H O

X products of complete com

N CO H O N

N N N

x x

bustio

x

n

2

2 2 2 2 2 2

,

, , , , , ,

,

, ,o

,

2 2

72.87%

• 3 4 18.8

ln

• 56.7 MJ (18.9 MJ/kmol-CO . Less than pure CO .)

TM

C CO TM CO o H O TM H O o N TM N o

i TM

i TM i o

i o

C

X

xRT

x

X

Example:

Page 19: Energy Tutorial: Exergy 101 - Stanford University

0 500 1000 1500 2000 2500 30000

500

1000

1500

T (K)

x (

MJ/k

mo

l-C

)

Propane-Air Reactants (Stoich.)

Propane-Air Products (Stoich.)

Carbon Dioxide

Propane Products & CO2

Crosses at low T!

Separation possible!

Page 20: Energy Tutorial: Exergy 101 - Stanford University

Chemical Exergy of Common Fuels

Fuel Chemical Chem. Exergy† H° Reaction* G° Reaction* S° Reaction* Exergy

Species+ Formula MJ per fuel MJ per fuel MJ per fuel kJ/K per fuel to LHV

kmol kg kmol kg kmol kg kmol kg Ratio

Methane CH4 832 51.9 -803 -50.0 -801 -49.9 -5.2 -0.33 1.037

Methanol CH3OH 722 22.5 -676 -21.1 -691 -21.6 50.4 1.57 1.068 Carbon Monoxide CO 275 9.8 -283 -10.1 -254 -9.1 -98.2 -3.51 0.971 Acetylene C2H2 1267 48.7 -1257 -48.3 -1226 -47.1 -104.6 -4.02 1.008 Ethylene C2H4 1361 48.5 -1323 -47.2 -1316 -46.9 -25.2 -0.90 1.029 Ethane C2H6 1497 49.8 -1429 -47.5 -1447 -48.1 60.5 2.01 1.048 Ethanol C2H5OH 1363 29.6 -1278 -27.7 -1313 -28.5 117.7 2.56 1.067 Propylene C3H6 2001 47.6 -1926 -45.8 -1937 -46.0 36.6 0.87 1.039 Propane C3H8 2151 48.8 -2043 -46.3 -2082 -47.2 129.2 2.93 1.053 Butadiene C4H6 2500 46.2 -2410 -44.5 -2421 -44.7 36.9 0.68 1.038 i-Butene C4H8 2644 47.1 -2524 -45.0 -2560 -45.6 120.2 2.14 1.047 i-Butane C4H10 2800 48.2 -2648 -45.6 -2712 -46.7 214.4 3.69 1.058

n-Butane C4H10 2805 48.3 -2657 -45.7 -2717 -46.7 200.0 3.44 1.056 n-Pentane C5H12 3460 48.0 -3272 -45.3 -3353 -46.5 271.3 3.76 1.057 i-Pentane C5H12 3454 47.9 -3265 -45.2 -3347 -46.4 277.0 3.84 1.058 Benzene C6H6 3299 42.2 -3169 -40.6 -3190 -40.8 69.4 0.89 1.041 n-Heptane C7H16 4769 47.6 -4501 -44.9 -4625 -46.2 415.0 4.14 1.060 i-Octane C8H18 5422 47.5 -5100 -44.7 -5259 -46.0 531.4 4.65 1.063 n-Octane C8H18 5424 47.5 -5116 -44.8 -5261 -46.1 487.1 4.26 1.060 Jet-A C12H23 7670 45.8 -7253 -43.4 -7440 -44.5 626.4 3.74 1.057 Hydrogen H2 236 117.2 -242 -120.0 -225 -111.6 -56.2 -27.88 0.977

+All species taken as ideal gases. †Environment taken as: 25°C, 1 bar, 363 ppm CO2, 2% H2O, 20.48% O2, balance N2 .

*Reaction with stoichiometric air at 25°C, 1 bar. All products present as ideal gases, including water.

For simple fuels the exergy can be calculated directly.

For complex fuels (coal) it is not possible to calculate the exergy

(need entropy) and some form of correlation is required.

Page 21: Energy Tutorial: Exergy 101 - Stanford University

Standard-State Chemical Exergy

• may be expressed in terms of the standard state chemical

potential and chemical activity since ln .

• Defining the

; when is an environmen

-

tal sp

C

o

io i o i

o

ko

k

standard state chemical exer

X

R

g

k

y

T a

ecies

; when is a non-environmental species

and the

; when is an environmental species

; when is a non-environmental speciesik k

o

i ik k

i

k

ki

i

o

C TM k k o

k

effectiv

k

a k

a k

X G N R

e activit

T

y

lnk k

k

N

Page 22: Energy Tutorial: Exergy 101 - Stanford University

Standard-State Chemical Exergy

• Tabulated values of the standard-state chemical exergy can be

found in references such as:

J. Szargut, D.R. Morris, and F.R. Steward,

,

H

Exergy Analysis

of Thermal, Chemical, and Metallurgical Processes

emisphere, New York, 1988.

• Values found in the literature can differ from each other

according to the choice of species for the environmental dead

state (since the environment is not, itself, in equilibrium).

• For our purposes, tables of standard-state exergies are not

needed--we will calculate the chemical exergy directly.

Page 23: Energy Tutorial: Exergy 101 - Stanford University

Exergy Balances

= 0 0

(2nd L

2

aw) (Go

• Definition:

2

• Balance: :

o gen

TM C

o o o o o

system

External Internal

TransfersAccumulation T S

in out produced destroyed

X KE PE X X

mX V V mg z z U PV T S

X dX X X X X

G

uy-Stodola)

.

Carnot

• Transfers:

Other

Heat 1

1

Matter v

(m

fracti

olar

o

ex

n

Flow exergy

ergy)

comp./exp. o

rev

o

irrev o

o

W P P dV

W W

Q T T

W W T T

x P P N

where x X N

Page 24: Energy Tutorial: Exergy 101 - Stanford University

Example: LN2 Precooler

• Consider a precooler for hydrogen liquefaction

:

, steady

• Must consider 5 transfers as shown:

1 Heat 1

4 Matter v

in out dest

dest in out

o

o i i o ii

X X XdXX

dt dt dt dt

XX X X X

dt

Q T T

x P P N h T s

• If the device is configured such that the exergy of a stream cannot be

transferred, the exergy of that stream is necessarily destroyed.

(Recall extending the boundary to the environment in calcs

i

gen

m

S .?)

• How does the entropy generated in the ortho-para catalyst show up?

Page 25: Energy Tutorial: Exergy 101 - Stanford University

Comments on Efficiencies

I

,

Applies to heat engines only.• :

Is all heat equal in value?

Engine is modeled as heat engine.• :

Which heating value?

a.k.

Thermal

Fir

a

st

.:

-Law

outt

in

out

fuel in

W

Q

W

m HV

fuel conversion efficiency, ar

II

, Rev

Engine must still be modeled.• :

What are the prSecond-Law

Exerg

ocess constraints?

Model independent. (Neey

d dead state)• :

Applicable beyo

out

out

out outx

in in

bitrary overall efficiency

W

W

X W

X X

,

nd engines. (Any )

a.k.a.:

Assigns equal value to heat and work.• :

Which heating valuUti

e?

a.k.a.: - - - ( )

lization

out

out outu

fuel in

X

rational efficiency

W Q

m HV

combined heat and power CHP efficiency

Page 26: Energy Tutorial: Exergy 101 - Stanford University

Some Exergy Analysis Illustrations

• Exergy Resources

• GT/NGCC/STIG

• NG Reforming

• ASU

• SCATR

• SOFC/GT

• LHR Engines

• Environmental Impact

• Optimal Architectures


Recommended