+ All Categories
Home > Documents > ENGI 1313 Mechanics I

ENGI 1313 Mechanics I

Date post: 11-Jan-2016
Category:
Upload: tobit
View: 20 times
Download: 0 times
Share this document with a friend
Description:
ENGI 1313 Mechanics I. Lecture 43:Course Material Review. Final Exam. Formulae Sheet Posted on course webpage Probably by end of Monday Coordinate with Dr. Rideout Not to be used in the final exam Final exam formulae sheet will be attached to the exam. Example 43-01. - PowerPoint PPT Presentation
22
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected] ENGI 1313 Mechanics I Lecture 43: Course Material Review
Transcript
Page 1: ENGI 1313 Mechanics I

Shawn Kenny, Ph.D., P.Eng.Assistant ProfessorFaculty of Engineering and Applied ScienceMemorial University of [email protected]

ENGI 1313 Mechanics I

Lecture 43: Course Material Review

Page 2: ENGI 1313 Mechanics I

2 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Final Exam

Formulae Sheet Posted on course webpage

• Probably by end of Monday

• Coordinate with Dr. Rideout Not to be used in the final exam Final exam formulae sheet will be attached

to the exam

Page 3: ENGI 1313 Mechanics I

3 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 The wheel weighs 20 lb

and rests on a surface for which μB = 0.2. A cord wrapped around it is attached to the top of the 30-lb homogeneous block. If the coefficient of static friction at D is μD = 0.3, determine the smallest vertical force that can be applied tangentially to the wheel which will cause motion to impend.

Page 4: ENGI 1313 Mechanics I

4 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

FBD Possible Friction

Analysis Cases Impending motion at B Impending motion at D Impending motion at

B & D Assumption at B

NB

FB

ND

FD

PT T

WA

WC

BBB NF

Page 5: ENGI 1313 Mechanics I

5 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

Analysis Wheel A 0MA

0F5.1T5.1P5.1 B

BFTP

20PNB 0Fy

BN20P

0Fx

BFT NB

FB

PT

WA

Tlb67.6FB BBB NF

lb3.13FTP B

Page 6: ENGI 1313 Mechanics I

6 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

Analysis Block C

ND

FD

T

WC

30ND

0Fy

lb67.6T

0Fx

lb67.6TFD

Page 7: ENGI 1313 Mechanics I

7 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

Check Assumptions Maximum friction force

at Point D

Calculated force at Point D

Assumption ok as block C does not have impending motion

ND

FD

T

WC

lb9lb303.0NF DDmaxD

lb67.6FD

maxDD FF

Page 8: ENGI 1313 Mechanics I

8 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

Check Assumptions Block C tipping

Therefore block does not tip

ND

T

WC

xWT3 C

x

xlb30lb67.63

ft667.0x

2

ft5.1ft667.0x

Page 9: ENGI 1313 Mechanics I

9 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-01 (cont.)

Conclusion Impending motion at B Block C stationary and

does not tip over

NB

FB

ND

FD

PT T

WA

WC

lb3.13P

Page 10: ENGI 1313 Mechanics I

10 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-02

The friction hook is made from a fixed frame which is shown colored and a cylinder of negligible weight. A piece of paper is placed between the smooth wall and the cylinder. If θ = 20°, determine the smallest coefficient of static friction μ at all points of contact so that any weight W of paper p can be held.

Page 11: ENGI 1313 Mechanics I

11 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-02

FBD Assume impending motion

at all contact points

N1

F1

N1

F1

W

N1

F1

N2

F2

11 NF

22 NF

Page 12: ENGI 1313 Mechanics I

12 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-02

Analysis of Paper FBD

N1

F1

N1

F1

W

WF2 1

0Fy

2

WF1

11 N2

WF

2W

N1

Page 13: ENGI 1313 Mechanics I

13 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-02

Analysis of Cylinder Objective is to Find

Orient axes to contact surface

N1 = W / 2

F1 = W / 2

N2

F2

xy

0MO

0rFrF 12

r

2

WF2

0r2

WrF2

Page 14: ENGI 1313 Mechanics I

14 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-02

Analysis of Cylinder Objective is to Find

Orient axes to contact surface

N1 = W / 2

F1 = W / 2

N2

F2

= 20

xy 0Fx

0cos2

Wsin

2

WN2

cos

1sin

2

WN2

cos

1sin

2

WF2

cos

1sin

2

W

2

W

2

WF2

cossin1 176.0sin

cos1

Page 15: ENGI 1313 Mechanics I

15 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 Determine the minimum

force P needed to push the tube E up the incline. The tube has a mass of 75 kg and the roller D has a mass of 100 kg. The force acts parallel to the plane, and the coefficients of static friction at the contacting surfaces are μA = 0.3, μB = 0.25, and μC = 0.4. Each cylinder has a radius of 150 mm.

Page 16: ENGI 1313 Mechanics I

16 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

FBD Impending Motion

Point A Point B Point C Point B and C

NA

FA

FA

NA

NAFA

NA

FA

P

W

W

xy

Page 17: ENGI 1313 Mechanics I

17 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

Analysis Assume impending

motion at point A

FBD of roller

FBD of cylinder

FA

NA

NCFC

P

W 0MO

rFrF CA

r = 0.15m

AA NF

0MO

rFrF BA

NA

FA

NB

FB

Wr = 0.15m

CA FF

BA FF

xy

Page 18: ENGI 1313 Mechanics I

18 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

Analysis of Tube

xy

030sins

m81.9kg75FN

2BA

0N9.367FN AA

0Fx

NA

FA

NB

FB

Wr = 0.15m

0N9.367FF

AA

A

0N9.367F3.0

FA

A

N158N7.157FA

AA NF

CBA FFF

N526N7.5253.0

N7.157FN

A

AA

Page 19: ENGI 1313 Mechanics I

19 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

Analysis of Tube

AA NF

CBA FFF

xy

030cosN8.735N7.157NB

0N2.637N7.157NB NA

FA

NB

FB

Wr = 0.15m

N795N9.794NB

0Fy

N158N7.157FA

Page 20: ENGI 1313 Mechanics I

20 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

Analysis

FA

NA

NCFC

P

W

r = 0.15m

xy

030coss

m81.9kg100FN

2AC

0Fy

0N6.849N7.157NC

AA NF

CBA FFF

N158N7.157FA N692N8.691NC

030sinN981N7.157N7.525P

0Fx

N1174N9.1173P

Page 21: ENGI 1313 Mechanics I

21 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

Example 43-03 (cont.)

Check Assumption Impending motion at A

Find maximum friction force at point B and C

xy

CBAA FFN158NF

N692N8.691NC

N795N9.794NB

N199N79525.0NF BBmaxB

N277N6924.0NF CCmaxC

N199N158F maxB

N277N158F maxC

Page 22: ENGI 1313 Mechanics I

22 ENGI 1313 Statics I – Lecture 43© 2007 S. Kenny, Ph.D., P.Eng.

References

Hibbeler (2007) http://wps.prenhall.com/

esm_hibbeler_engmech_1


Recommended